/* ******************************************************************
* bitstream
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE

#if defined (__cplusplus)
extern "C" {
#endif
/*
*  This API consists of small unitary functions, which must be inlined for best performance.
*  Since link-time-optimization is not available for all compilers,
*  these functions are defined into a .h to be included.
*/

/*-****************************************
*  Dependencies
******************************************/
#include "mem.h"            /* unaligned access routines */
#include "compiler.h"       /* UNLIKELY() */
#include "debug.h"          /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h"  /* error codes and messages */
#include "bits.h"           /* ZSTD_highbit32 */


/*=========================================
*  Target specific
=========================================*/
#ifndef ZSTD_NO_INTRINSICS
#  if (defined(__BMI__) || defined(__BMI2__)) && defined(__GNUC__)
#    include <immintrin.h>   /* support for bextr (experimental)/bzhi */
#  elif defined(__ICCARM__)
#    include <intrinsics.h>
#  endif
#endif

#define STREAM_ACCUMULATOR_MIN_32  25
#define STREAM_ACCUMULATOR_MIN_64  57
#define STREAM_ACCUMULATOR_MIN    ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))


/*-******************************************
*  bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
   size_t bitContainer;
   unsigned bitPos;
   char*  startPtr;
   char*  ptr;
   char*  endPtr;
} BIT_CStream_t;

MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void   BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void   BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);

/* Start with initCStream, providing the size of buffer to write into.
*  bitStream will never write outside of this buffer.
*  `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
*  bits are first added to a local register.
*  Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
*  Writing data into memory is an explicit operation, performed by the flushBits function.
*  Hence keep track how many bits are potentially stored into local register to avoid register overflow.
*  After a flushBits, a maximum of 7 bits might still be stored into local register.
*
*  Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
*  Last operation is to close the bitStream.
*  The function returns the final size of CStream in bytes.
*  If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/


/*-********************************************
*  bitStream decoding API (read backward)
**********************************************/
typedef size_t BitContainerType;
typedef struct {
   BitContainerType bitContainer;
   unsigned bitsConsumed;
   const char* ptr;
   const char* start;
   const char* limitPtr;
} BIT_DStream_t;

typedef enum { BIT_DStream_unfinished = 0,  /* fully refilled */
              BIT_DStream_endOfBuffer = 1, /* still some bits left in bitstream */
              BIT_DStream_completed = 2,   /* bitstream entirely consumed, bit-exact */
              BIT_DStream_overflow = 3     /* user requested more bits than present in bitstream */
   } BIT_DStream_status;  /* result of BIT_reloadDStream() */

MEM_STATIC size_t   BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t   BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);


/* Start by invoking BIT_initDStream().
*  A chunk of the bitStream is then stored into a local register.
*  Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (BitContainerType).
*  You can then retrieve bitFields stored into the local register, **in reverse order**.
*  Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
*  A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
*  Otherwise, it can be less than that, so proceed accordingly.
*  Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/


/*-****************************************
*  unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */

MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */

MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */

/*=====    Local Constants   =====*/
static const unsigned BIT_mask[] = {
   0,          1,         3,         7,         0xF,       0x1F,
   0x3F,       0x7F,      0xFF,      0x1FF,     0x3FF,     0x7FF,
   0xFFF,      0x1FFF,    0x3FFF,    0x7FFF,    0xFFFF,    0x1FFFF,
   0x3FFFF,    0x7FFFF,   0xFFFFF,   0x1FFFFF,  0x3FFFFF,  0x7FFFFF,
   0xFFFFFF,   0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
   0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))

/*-**************************************************************
*  bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
*  `dstCapacity` must be > sizeof(size_t)
*  @return : 0 if success,
*            otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
                                 void* startPtr, size_t dstCapacity)
{
   bitC->bitContainer = 0;
   bitC->bitPos = 0;
   bitC->startPtr = (char*)startPtr;
   bitC->ptr = bitC->startPtr;
   bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
   if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
   return 0;
}

FORCE_INLINE_TEMPLATE size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS)
   return  _bzhi_u64(bitContainer, nbBits);
#else
   assert(nbBits < BIT_MASK_SIZE);
   return bitContainer & BIT_mask[nbBits];
#endif
}

/*! BIT_addBits() :
*  can add up to 31 bits into `bitC`.
*  Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
                           size_t value, unsigned nbBits)
{
   DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
   assert(nbBits < BIT_MASK_SIZE);
   assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
   bitC->bitContainer |= BIT_getLowerBits(value, nbBits) << bitC->bitPos;
   bitC->bitPos += nbBits;
}

/*! BIT_addBitsFast() :
*  works only if `value` is _clean_,
*  meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
                               size_t value, unsigned nbBits)
{
   assert((value>>nbBits) == 0);
   assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
   bitC->bitContainer |= value << bitC->bitPos;
   bitC->bitPos += nbBits;
}

/*! BIT_flushBitsFast() :
*  assumption : bitContainer has not overflowed
*  unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
   size_t const nbBytes = bitC->bitPos >> 3;
   assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
   assert(bitC->ptr <= bitC->endPtr);
   MEM_writeLEST(bitC->ptr, bitC->bitContainer);
   bitC->ptr += nbBytes;
   bitC->bitPos &= 7;
   bitC->bitContainer >>= nbBytes*8;
}

/*! BIT_flushBits() :
*  assumption : bitContainer has not overflowed
*  safe version; check for buffer overflow, and prevents it.
*  note : does not signal buffer overflow.
*  overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
   size_t const nbBytes = bitC->bitPos >> 3;
   assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
   assert(bitC->ptr <= bitC->endPtr);
   MEM_writeLEST(bitC->ptr, bitC->bitContainer);
   bitC->ptr += nbBytes;
   if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
   bitC->bitPos &= 7;
   bitC->bitContainer >>= nbBytes*8;
}

/*! BIT_closeCStream() :
*  @return : size of CStream, in bytes,
*            or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
   BIT_addBitsFast(bitC, 1, 1);   /* endMark */
   BIT_flushBits(bitC);
   if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
   return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}


/*-********************************************************
*  bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
*  Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
   if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }

   bitD->start = (const char*)srcBuffer;
   bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);

   if (srcSize >=  sizeof(bitD->bitContainer)) {  /* normal case */
       bitD->ptr   = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
       bitD->bitContainer = MEM_readLEST(bitD->ptr);
       { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
         bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;  /* ensures bitsConsumed is always set */
         if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
   } else {
       bitD->ptr   = bitD->start;
       bitD->bitContainer = *(const BYTE*)(bitD->start);
       switch(srcSize)
       {
       case 7: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
               ZSTD_FALLTHROUGH;

       case 6: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
               ZSTD_FALLTHROUGH;

       case 5: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
               ZSTD_FALLTHROUGH;

       case 4: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[3]) << 24;
               ZSTD_FALLTHROUGH;

       case 3: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[2]) << 16;
               ZSTD_FALLTHROUGH;

       case 2: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[1]) <<  8;
               ZSTD_FALLTHROUGH;

       default: break;
       }
       {   BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
           bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
           if (lastByte == 0) return ERROR(corruption_detected);  /* endMark not present */
       }
       bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
   }

   return srcSize;
}

FORCE_INLINE_TEMPLATE size_t BIT_getUpperBits(BitContainerType bitContainer, U32 const start)
{
   return bitContainer >> start;
}

FORCE_INLINE_TEMPLATE size_t BIT_getMiddleBits(BitContainerType bitContainer, U32 const start, U32 const nbBits)
{
   U32 const regMask = sizeof(bitContainer)*8 - 1;
   /* if start > regMask, bitstream is corrupted, and result is undefined */
   assert(nbBits < BIT_MASK_SIZE);
   /* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better
    * than accessing memory. When bmi2 instruction is not present, we consider
    * such cpus old (pre-Haswell, 2013) and their performance is not of that
    * importance.
    */
#if defined(__x86_64__) || defined(_M_X86)
   return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1);
#else
   return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
#endif
}

/*! BIT_lookBits() :
*  Provides next n bits from local register.
*  local register is not modified.
*  On 32-bits, maxNbBits==24.
*  On 64-bits, maxNbBits==56.
* @return : value extracted */
FORCE_INLINE_TEMPLATE size_t BIT_lookBits(const BIT_DStream_t*  bitD, U32 nbBits)
{
   /* arbitrate between double-shift and shift+mask */
#if 1
   /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
    * bitstream is likely corrupted, and result is undefined */
   return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
   /* this code path is slower on my os-x laptop */
   U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
   return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}

/*! BIT_lookBitsFast() :
*  unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
   U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
   assert(nbBits >= 1);
   return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}

FORCE_INLINE_TEMPLATE void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
   bitD->bitsConsumed += nbBits;
}

/*! BIT_readBits() :
*  Read (consume) next n bits from local register and update.
*  Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
FORCE_INLINE_TEMPLATE size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
   size_t const value = BIT_lookBits(bitD, nbBits);
   BIT_skipBits(bitD, nbBits);
   return value;
}

/*! BIT_readBitsFast() :
*  unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
{
   size_t const value = BIT_lookBitsFast(bitD, nbBits);
   assert(nbBits >= 1);
   BIT_skipBits(bitD, nbBits);
   return value;
}

/*! BIT_reloadDStream_internal() :
*  Simple variant of BIT_reloadDStream(), with two conditions:
*  1. bitstream is valid : bitsConsumed <= sizeof(bitD->bitContainer)*8
*  2. look window is valid after shifted down : bitD->ptr >= bitD->start
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStream_internal(BIT_DStream_t* bitD)
{
   assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
   bitD->ptr -= bitD->bitsConsumed >> 3;
   assert(bitD->ptr >= bitD->start);
   bitD->bitsConsumed &= 7;
   bitD->bitContainer = MEM_readLEST(bitD->ptr);
   return BIT_DStream_unfinished;
}

/*! BIT_reloadDStreamFast() :
*  Similar to BIT_reloadDStream(), but with two differences:
*  1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
*  2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
*     point you must use BIT_reloadDStream() to reload.
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
   if (UNLIKELY(bitD->ptr < bitD->limitPtr))
       return BIT_DStream_overflow;
   return BIT_reloadDStream_internal(bitD);
}

/*! BIT_reloadDStream() :
*  Refill `bitD` from buffer previously set in BIT_initDStream() .
*  This function is safe, it guarantees it will not never beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
*           when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
FORCE_INLINE_TEMPLATE BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
   /* note : once in overflow mode, a bitstream remains in this mode until it's reset */
   if (UNLIKELY(bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))) {
       static const BitContainerType zeroFilled = 0;
       bitD->ptr = (const char*)&zeroFilled; /* aliasing is allowed for char */
       /* overflow detected, erroneous scenario or end of stream: no update */
       return BIT_DStream_overflow;
   }

   assert(bitD->ptr >= bitD->start);

   if (bitD->ptr >= bitD->limitPtr) {
       return BIT_reloadDStream_internal(bitD);
   }
   if (bitD->ptr == bitD->start) {
       /* reached end of bitStream => no update */
       if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
       return BIT_DStream_completed;
   }
   /* start < ptr < limitPtr => cautious update */
   {   U32 nbBytes = bitD->bitsConsumed >> 3;
       BIT_DStream_status result = BIT_DStream_unfinished;
       if (bitD->ptr - nbBytes < bitD->start) {
           nbBytes = (U32)(bitD->ptr - bitD->start);  /* ptr > start */
           result = BIT_DStream_endOfBuffer;
       }
       bitD->ptr -= nbBytes;
       bitD->bitsConsumed -= nbBytes*8;
       bitD->bitContainer = MEM_readLEST(bitD->ptr);   /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
       return result;
   }
}

/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
   return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}

#if defined (__cplusplus)
}
#endif

#endif /* BITSTREAM_H_MODULE */