// dnstap: flexible, structured event replication format for DNS software
//
// This file contains the protobuf schemas for the "dnstap" structured event
// replication format for DNS software.

// Written in 2013-2014 by Farsight Security, Inc.
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this file to the public
// domain worldwide. This file is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this file. If not, see:
//
// <http://creativecommons.org/publicdomain/zero/1.0/>.

syntax = "proto2";
package dnstap;

// "Dnstap": this is the top-level dnstap type, which is a "union" type that
// contains other kinds of dnstap payloads, although currently only one type
// of dnstap payload is defined.
// See: https://developers.google.com/protocol-buffers/docs/techniques#union
message Dnstap {
   // DNS server identity.
   // If enabled, this is the identity string of the DNS server which generated
   // this message. Typically this would be the same string as returned by an
   // "NSID" (RFC 5001) query.
   optional bytes      identity = 1;

   // DNS server version.
   // If enabled, this is the version string of the DNS server which generated
   // this message. Typically this would be the same string as returned by a
   // "version.bind" query.
   optional bytes      version = 2;

   // Extra data for this payload.
   // This field can be used for adding an arbitrary byte-string annotation to
   // the payload. No encoding or interpretation is applied or enforced.
   optional bytes      extra = 3;

   // Identifies which field below is filled in.
   enum Type {
       MESSAGE = 1;
   }
   required Type       type = 15;

   // One of the following will be filled in.
   optional Message    message = 14;
}

// SocketFamily: the network protocol family of a socket. This specifies how
// to interpret "network address" fields.
enum SocketFamily {
   INET = 1;   // IPv4 (RFC 791)
   INET6 = 2;  // IPv6 (RFC 2460)
}

// SocketProtocol: the protocol used to transport a DNS message.
enum SocketProtocol {
   UDP = 1;         // DNS over UDP transport (RFC 1035 section 4.2.1)
   TCP = 2;         // DNS over TCP transport (RFC 1035 section 4.2.2)
   DOT = 3;         // DNS over TLS (RFC 7858)
   DOH = 4;         // DNS over HTTPS (RFC 8484)
   DNSCryptUDP = 5; // DNSCrypt over UDP (https://dnscrypt.info/protocol)
   DNSCryptTCP = 6; // DNSCrypt over TCP (https://dnscrypt.info/protocol)
   DOQ = 7;         // DNS over QUIC (RFC 9250)
}

// Policy: information about any name server operator policy
// applied to the processing of a DNS message.
message Policy {

   // Match: what aspect of the message or message exchange
   // triggered the application of the Policy.
   enum Match {
       QNAME = 1;       // Name in question section of query
       CLIENT_IP = 2;   // Client IP address
       RESPONSE_IP = 3; // Address in A/AAAA RRSet
       NS_NAME = 4;     // Authoritative name server, by name
       NS_IP = 5;       // Authoritative name server, by IP address
   }

   // The Action taken to implement the Policy.
   enum Action {
       NXDOMAIN = 1;   // Respond with NXDOMAIN
       NODATA = 2;     // Respond with empty answer section
       PASS = 3;       // Do not alter the response (passthrough)
       DROP = 4;       // Do not respond.
       TRUNCATE = 5;   // Truncate UDP response, forcing TCP retry
       LOCAL_DATA = 6; // Respond with local data from policy
   }

   // type: the type of policy applied, e.g. "RPZ" for a
   // policy from a Response Policy Zone.
   optional string type = 1;

   // rule: the rule matched by the message.
   //
   // In a RPZ context, this is the owner name of the rule in
   // the Reponse Policy Zone in wire format.
   optional bytes rule = 2;

   // action: the policy action taken in response to the
   // rule match.
   optional Action action = 3;

   // match: the feature of the message exchange which matched the rule.
   optional Match match = 4;

   // The matched value. Format depends on the matched feature .
   optional bytes value = 5;
}

// Message: a wire-format (RFC 1035 section 4) DNS message and associated
// metadata. Applications generating "Message" payloads should follow
// certain requirements based on the MessageType, see below.
message Message {

   // There are eight types of "Message" defined that correspond to the
   // four arrows in the following diagram, slightly modified from RFC 1035
   // section 2:

   //    +---------+               +----------+           +--------+
   //    |         |     query     |          |   query   |        |
   //    | Stub    |-SQ--------CQ->| Recursive|-RQ----AQ->| Auth.  |
   //    | Resolver|               | Server   |           | Name   |
   //    |         |<-SR--------CR-|          |<-RR----AR-| Server |
   //    +---------+    response   |          |  response |        |
   //                              +----------+           +--------+

   // Each arrow has two Type values each, one for each "end" of each arrow,
   // because these are considered to be distinct events. Each end of each
   // arrow on the diagram above has been marked with a two-letter Type
   // mnemonic. Clockwise from upper left, these mnemonic values are:
   //
   //   SQ:        STUB_QUERY
   //   CQ:      CLIENT_QUERY
   //   RQ:    RESOLVER_QUERY
   //   AQ:        AUTH_QUERY
   //   AR:        AUTH_RESPONSE
   //   RR:    RESOLVER_RESPONSE
   //   CR:      CLIENT_RESPONSE
   //   SR:        STUB_RESPONSE

   // Two additional types of "Message" have been defined for the
   // "forwarding" case where an upstream DNS server is responsible for
   // further recursion. These are not shown on the diagram above, but have
   // the following mnemonic values:

   //   FQ:   FORWARDER_QUERY
   //   FR:   FORWARDER_RESPONSE

   // The "Message" Type values are defined below.

   enum Type {
       // AUTH_QUERY is a DNS query message received from a resolver by an
       // authoritative name server, from the perspective of the authoritative
       // name server.
       AUTH_QUERY = 1;

       // AUTH_RESPONSE is a DNS response message sent from an authoritative
       // name server to a resolver, from the perspective of the authoritative
       // name server.
       AUTH_RESPONSE = 2;

       // RESOLVER_QUERY is a DNS query message sent from a resolver to an
       // authoritative name server, from the perspective of the resolver.
       // Resolvers typically clear the RD (recursion desired) bit when
       // sending queries.
       RESOLVER_QUERY = 3;

       // RESOLVER_RESPONSE is a DNS response message received from an
       // authoritative name server by a resolver, from the perspective of
       // the resolver.
       RESOLVER_RESPONSE = 4;

       // CLIENT_QUERY is a DNS query message sent from a client to a DNS
       // server which is expected to perform further recursion, from the
       // perspective of the DNS server. The client may be a stub resolver or
       // forwarder or some other type of software which typically sets the RD
       // (recursion desired) bit when querying the DNS server. The DNS server
       // may be a simple forwarding proxy or it may be a full recursive
       // resolver.
       CLIENT_QUERY = 5;

       // CLIENT_RESPONSE is a DNS response message sent from a DNS server to
       // a client, from the perspective of the DNS server. The DNS server
       // typically sets the RA (recursion available) bit when responding.
       CLIENT_RESPONSE = 6;

       // FORWARDER_QUERY is a DNS query message sent from a downstream DNS
       // server to an upstream DNS server which is expected to perform
       // further recursion, from the perspective of the downstream DNS
       // server.
       FORWARDER_QUERY = 7;

       // FORWARDER_RESPONSE is a DNS response message sent from an upstream
       // DNS server performing recursion to a downstream DNS server, from the
       // perspective of the downstream DNS server.
       FORWARDER_RESPONSE = 8;

       // STUB_QUERY is a DNS query message sent from a stub resolver to a DNS
       // server, from the perspective of the stub resolver.
       STUB_QUERY = 9;

       // STUB_RESPONSE is a DNS response message sent from a DNS server to a
       // stub resolver, from the perspective of the stub resolver.
       STUB_RESPONSE = 10;

       // TOOL_QUERY is a DNS query message sent from a DNS software tool to a
       // DNS server, from the perspective of the tool.
       TOOL_QUERY = 11;

       // TOOL_RESPONSE is a DNS response message received by a DNS software
       // tool from a DNS server, from the perspective of the tool.
       TOOL_RESPONSE = 12;

       // UPDATE_QUERY is a Dynamic DNS Update request (RFC 2136) received
       // by an authoritative name server, from the perspective of the
       // authoritative name server.
       UPDATE_QUERY = 13;

       // UPDATE_RESPONSE is a Dynamic DNS Update response (RFC 2136) sent
       // from an authoritative name server, from the perspective of the
       // authoritative name server.
       UPDATE_RESPONSE = 14;
   }

   // One of the Type values described above.
   required Type               type = 1;

   // One of the SocketFamily values described above.
   optional SocketFamily       socket_family = 2;

   // One of the SocketProtocol values described above.
   optional SocketProtocol     socket_protocol = 3;

   // The network address of the message initiator.
   // For SocketFamily INET, this field is 4 octets (IPv4 address).
   // For SocketFamily INET6, this field is 16 octets (IPv6 address).
   optional bytes              query_address = 4;

   // The network address of the message responder.
   // For SocketFamily INET, this field is 4 octets (IPv4 address).
   // For SocketFamily INET6, this field is 16 octets (IPv6 address).
   optional bytes              response_address = 5;

   // The transport port of the message initiator.
   // This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
   optional uint32             query_port = 6;

   // The transport port of the message responder.
   // This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
   optional uint32             response_port = 7;

   // The time at which the DNS query message was sent or received, depending
   // on whether this is an AUTH_QUERY, RESOLVER_QUERY, or CLIENT_QUERY.
   // This is the number of seconds since the UNIX epoch.
   optional uint64             query_time_sec = 8;

   // The time at which the DNS query message was sent or received.
   // This is the seconds fraction, expressed as a count of nanoseconds.
   optional fixed32            query_time_nsec = 9;

   // The initiator's original wire-format DNS query message, verbatim.
   optional bytes              query_message = 10;

   // The "zone" or "bailiwick" pertaining to the DNS query message.
   // This is a wire-format DNS domain name.
   optional bytes              query_zone = 11;

   // The time at which the DNS response message was sent or received,
   // depending on whether this is an AUTH_RESPONSE, RESOLVER_RESPONSE, or
   // CLIENT_RESPONSE.
   // This is the number of seconds since the UNIX epoch.
   optional uint64             response_time_sec = 12;

   // The time at which the DNS response message was sent or received.
   // This is the seconds fraction, expressed as a count of nanoseconds.
   optional fixed32            response_time_nsec = 13;

   // The responder's original wire-format DNS response message, verbatim.
   optional bytes              response_message = 14;

   // Operator policy applied to the processing of this message, if any.
   optional Policy             policy = 15;
}

// All fields except for 'type' in the Message schema are optional.
// It is recommended that at least the following fields be filled in for
// particular types of Messages.

// AUTH_QUERY:
//      socket_family, socket_protocol
//      query_address, query_port
//      query_message
//      query_time_sec, query_time_nsec

// AUTH_RESPONSE:
//      socket_family, socket_protocol
//      query_address, query_port
//      query_time_sec, query_time_nsec
//      response_message
//      response_time_sec, response_time_nsec

// RESOLVER_QUERY:
//      socket_family, socket_protocol
//      query_message
//      query_time_sec, query_time_nsec
//      query_zone
//      response_address, response_port

// RESOLVER_RESPONSE:
//      socket_family, socket_protocol
//      query_time_sec, query_time_nsec
//      query_zone
//      response_address, response_port
//      response_message
//      response_time_sec, response_time_nsec

// CLIENT_QUERY:
//      socket_family, socket_protocol
//      query_message
//      query_time_sec, query_time_nsec

// CLIENT_RESPONSE:
//      socket_family, socket_protocol
//      query_time_sec, query_time_nsec
//      response_message
//      response_time_sec, response_time_nsec