/*      $NetBSD: ntp-keygen.c,v 1.16 2024/08/18 20:47:27 christos Exp $ */

/*
* Program to generate cryptographic keys for ntp clients and servers
*
* This program generates password encrypted data files for use with the
* Autokey security protocol and Network Time Protocol Version 4. Files
* are prefixed with a header giving the name and date of creation
* followed by a type-specific descriptive label and PEM-encoded data
* structure compatible with programs of the OpenSSL library.
*
* All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
* <type> is the file type, <hostname> the generating host name and
* <filestamp> the generation time in NTP seconds. The NTP programs
* expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
* association maintained by soft links. Following is a list of file
* types; the first line is the file name and the second link name.
*
* ntpkey_MD5key_<hostname>.<filestamp>
*      MD5 (128-bit) keys used to compute message digests in symmetric
*      key cryptography
*
* ntpkey_RSAhost_<hostname>.<filestamp>
* ntpkey_host_<hostname>
*      RSA private/public host key pair used for public key signatures
*
* ntpkey_RSAsign_<hostname>.<filestamp>
* ntpkey_sign_<hostname>
*      RSA private/public sign key pair used for public key signatures
*
* ntpkey_DSAsign_<hostname>.<filestamp>
* ntpkey_sign_<hostname>
*      DSA Private/public sign key pair used for public key signatures
*
* Available digest/signature schemes
*
* RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
* DSA: DSA-SHA, DSA-SHA1
*
* ntpkey_XXXcert_<hostname>.<filestamp>
* ntpkey_cert_<hostname>
*      X509v3 certificate using RSA or DSA public keys and signatures.
*      XXX is a code identifying the message digest and signature
*      encryption algorithm
*
* Identity schemes. The key type par is used for the challenge; the key
* type key is used for the response.
*
* ntpkey_IFFkey_<groupname>.<filestamp>
* ntpkey_iffkey_<groupname>
*      Schnorr (IFF) identity parameters and keys
*
* ntpkey_GQkey_<groupname>.<filestamp>,
* ntpkey_gqkey_<groupname>
*      Guillou-Quisquater (GQ) identity parameters and keys
*
* ntpkey_MVkeyX_<groupname>.<filestamp>,
* ntpkey_mvkey_<groupname>
*      Mu-Varadharajan (MV) identity parameters and keys
*
* Note: Once in a while because of some statistical fluke this program
* fails to generate and verify some cryptographic data, as indicated by
* exit status -1. In this case simply run the program again. If the
* program does complete with exit code 0, the data are correct as
* verified.
*
* These cryptographic routines are characterized by the prime modulus
* size in bits. The default value of 512 bits is a compromise between
* cryptographic strength and computing time and is ordinarily
* considered adequate for this application. The routines have been
* tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
* digest and signature encryption schemes work with sizes less than 512
* bits. The computing time for sizes greater than 2048 bits is
* prohibitive on all but the fastest processors. An UltraSPARC Blade
* 1000 took something over nine minutes to generate and verify the
* values with size 2048. An old SPARC IPC would take a week.
*
* The OpenSSL library used by this program expects a random seed file.
* As described in the OpenSSL documentation, the file name defaults to
* first the RANDFILE environment variable in the user's home directory
* and then .rnd in the user's home directory.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>

#include "ntp.h"
#include "ntp_random.h"
#include "ntp_stdlib.h"
#include "ntp_assert.h"
#include "ntp_libopts.h"
#include "ntp_unixtime.h"
#include "ntp-keygen-opts.h"

#ifdef OPENSSL
#include "openssl/asn1.h"
#include "openssl/bn.h"
#include "openssl/crypto.h"
#include "openssl/evp.h"
#include "openssl/err.h"
#include "openssl/rand.h"
#include "openssl/opensslv.h"
#include "openssl/pem.h"
#include "openssl/x509.h"
#include "openssl/x509v3.h"
#include <openssl/objects.h>
#include "libssl_compat.h"
#endif  /* OPENSSL */
#include <ssl_applink.c>

#define _UC(str)        ((char *)(intptr_t)(str))
/*
* Cryptodefines
*/
#define MD5KEYS         10      /* number of keys generated of each type */
#define MD5SIZE         20      /* maximum key size */
#ifdef AUTOKEY
#define PLEN            512     /* default prime modulus size (bits) */
#define ILEN            512     /* default identity modulus size (bits) */
#define MVMAX           100     /* max MV parameters */

/*
* Strings used in X509v3 extension fields
*/
#define KEY_USAGE               "digitalSignature,keyCertSign"
#define BASIC_CONSTRAINTS       "critical,CA:TRUE"
#define EXT_KEY_PRIVATE         "private"
#define EXT_KEY_TRUST           "trustRoot"
#endif  /* AUTOKEY */

/*
* Prototypes
*/
FILE    *fheader        (const char *, const char *, const char *);
int     gen_md5         (const char *);
void    followlink      (char *, size_t);
#ifdef AUTOKEY
EVP_PKEY *gen_rsa       (const char *);
EVP_PKEY *gen_dsa       (const char *);
EVP_PKEY *gen_iffkey    (const char *);
EVP_PKEY *gen_gqkey     (const char *);
EVP_PKEY *gen_mvkey     (const char *, EVP_PKEY **);
void    gen_mvserv      (char *, EVP_PKEY **);
int     x509            (EVP_PKEY *, const EVP_MD *, char *, const char *,
                           char *);
void    cb              (int, int, void *);
EVP_PKEY *genkey        (const char *, const char *);
EVP_PKEY *readkey       (char *, char *, u_int *, EVP_PKEY **);
void    writekey        (char *, char *, u_int *, EVP_PKEY **);
u_long  asn2ntp         (ASN1_TIME *);

static DSA* genDsaParams(int, char*);
static RSA* genRsaKeyPair(int, char*);

#endif  /* AUTOKEY */

/*
* Program variables
*/
extern char *optarg;            /* command line argument */
char    const *progname;
u_int   lifetime = DAYSPERYEAR; /* certificate lifetime (days) */
int     nkeys;                  /* MV keys */
time_t  epoch;                  /* Unix epoch (seconds) since 1970 */
u_int   fstamp;                 /* NTP filestamp */
char    hostbuf[MAXHOSTNAME + 1];
char    *hostname = NULL;       /* host, used in cert filenames */
char    *groupname = NULL;      /* group name */
char    certnamebuf[2 * sizeof(hostbuf)];
char    *certname = NULL;       /* certificate subject/issuer name */
char    *passwd1 = NULL;        /* input private key password */
char    *passwd2 = NULL;        /* output private key password */
char    filename[MAXFILENAME + 1]; /* file name */
#ifdef AUTOKEY
u_int   modulus = PLEN;         /* prime modulus size (bits) */
u_int   modulus2 = ILEN;        /* identity modulus size (bits) */
long    d0, d1, d2, d3;         /* callback counters */
const EVP_CIPHER * cipher = NULL;
#endif  /* AUTOKEY */

#ifdef SYS_WINNT
BOOL init_randfile();

/*
* Don't try to follow symbolic links on Windows.  Assume link == file.
*/
int
readlink(
       char *  link,
       char *  file,
       int     len
       )
{
       return (int)strlen(file); /* assume no overflow possible */
}

/*
* Don't try to create symbolic links on Windows, that is supported on
* Vista and later only.  Instead, if CreateHardLink is available (XP
* and later), hardlink the linkname to the original filename.  On
* earlier systems, user must rename file to match expected link for
* ntpd to find it.  To allow building a ntp-keygen.exe which loads on
* Windows pre-XP, runtime link to CreateHardLinkA().
*/
int
symlink(
       char *  filename,
       char*   linkname
       )
{
       typedef BOOL (WINAPI *PCREATEHARDLINKA)(
               __in LPCSTR     lpFileName,
               __in LPCSTR     lpExistingFileName,
               __reserved LPSECURITY_ATTRIBUTES lpSA
               );
       static PCREATEHARDLINKA pCreateHardLinkA;
       static int              tried;
       HMODULE                 hDll;
       FARPROC                 pfn;
       int                     link_created;
       int                     saved_errno;

       if (!tried) {
               tried = TRUE;
               hDll = LoadLibrary("kernel32");
               pfn = GetProcAddress(hDll, "CreateHardLinkA");
               pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
       }

       if (NULL == pCreateHardLinkA) {
               errno = ENOSYS;
               return -1;
       }

       link_created = (*pCreateHardLinkA)(linkname, filename, NULL);

       if (link_created)
               return 0;

       saved_errno = GetLastError();   /* yes we play loose */
       mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
                linkname, filename);
       errno = saved_errno;
       return -1;
}

void
InitWin32Sockets() {
       WORD wVersionRequested;
       WSADATA wsaData;
       wVersionRequested = MAKEWORD(2,0);
       if (WSAStartup(wVersionRequested, &wsaData))
       {
               fprintf(stderr, "No useable winsock.dll\n");
               exit(1);
       }
}
#endif /* SYS_WINNT */


/*
* followlink() - replace filename with its target if symlink.
*
* readlink() does not null-terminate the result.
*/
void
followlink(
       char *  fname,
       size_t  bufsiz
       )
{
       ssize_t len;
       char *  target;

       REQUIRE(bufsiz > 0 && bufsiz <= SSIZE_MAX);

       target = emalloc(bufsiz);
       len = readlink(fname, target, bufsiz);
       if (len < 0) {
               fname[0] = '\0';
               return;
       }
       if ((size_t)len > bufsiz - 1)
               len = bufsiz - 1;
       memcpy(fname, target, len);
       fname[len] = '\0';
       free(target);
}


/*
* Main program
*/
int
main(
       int     argc,           /* command line options */
       char    **argv
       )
{
       struct timeval tv;      /* initialization vector */
       int     md5key = 0;     /* generate MD5 keys */
       int     optct;          /* option count */
#ifdef AUTOKEY
       X509    *cert = NULL;   /* X509 certificate */
       EVP_PKEY *pkey_host = NULL; /* host key */
       EVP_PKEY *pkey_sign = NULL; /* sign key */
       EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
       EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
       EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
       EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
       int     hostkey = 0;    /* generate RSA keys */
       int     iffkey = 0;     /* generate IFF keys */
       int     gqkey = 0;      /* generate GQ keys */
       int     mvkey = 0;      /* update MV keys */
       int     mvpar = 0;      /* generate MV parameters */
       char    *sign = NULL;   /* sign key */
       EVP_PKEY *pkey = NULL;  /* temp key */
       const EVP_MD *ectx;     /* EVP digest */
       char    pathbuf[MAXFILENAME + 1];
       const char *scheme = NULL; /* digest/signature scheme */
       const char *ciphername = NULL; /* to encrypt priv. key */
       const char *exten = NULL;       /* private extension */
       char    *grpkey = NULL; /* identity extension */
       int     nid;            /* X509 digest/signature scheme */
       FILE    *fstr = NULL;   /* file handle */
       char    groupbuf[MAXHOSTNAME + 1];
       u_int   temp;
       BIO *   bp;
       int     i, cnt;
       char *  ptr;
#endif  /* AUTOKEY */
#ifdef OPENSSL
       const char *sslvtext;
       int sslvmatch;
#endif /* OPENSSL */

       progname = argv[0];

#ifdef SYS_WINNT
       /* Initialize before OpenSSL checks */
       InitWin32Sockets();
       if (!init_randfile())
               fprintf(stderr, "Unable to initialize .rnd file\n");
       ssl_applink();
#endif

#ifdef OPENSSL
       ssl_check_version();
#endif  /* OPENSSL */

       ntp_crypto_srandom();

       /*
        * Process options, initialize host name and timestamp.
        * gethostname() won't null-terminate if hostname is exactly the
        * length provided for the buffer.
        */
       gethostname(hostbuf, sizeof(hostbuf) - 1);
       hostbuf[COUNTOF(hostbuf) - 1] = '\0';
       hostname = hostbuf;
       groupname = hostbuf;
       passwd1 = hostbuf;
       passwd2 = NULL;
       GETTIMEOFDAY(&tv, NULL);
       epoch = tv.tv_sec;
       fstamp = (u_int)(epoch + JAN_1970);

       optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
       argc -= optct;  // Just in case we care later.
       argv += optct;  // Just in case we care later.

#ifdef OPENSSL
       sslvtext = OpenSSL_version(OPENSSL_VERSION);
       sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
       if (sslvmatch)
               fprintf(stderr, "Using OpenSSL version %s\n",
                       sslvtext);
       else
               fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
                       OPENSSL_VERSION_TEXT, sslvtext);
#endif /* OPENSSL */

       debug = OPT_VALUE_SET_DEBUG_LEVEL;

       if (HAVE_OPT( MD5KEY ))
               md5key++;
#ifdef AUTOKEY
       if (HAVE_OPT( PASSWORD ))
               passwd1 = estrdup(OPT_ARG( PASSWORD ));

       if (HAVE_OPT( EXPORT_PASSWD ))
               passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));

       if (HAVE_OPT( HOST_KEY ))
               hostkey++;

       if (HAVE_OPT( SIGN_KEY ))
               sign = estrdup(OPT_ARG( SIGN_KEY ));

       if (HAVE_OPT( GQ_PARAMS ))
               gqkey++;

       if (HAVE_OPT( IFFKEY ))
               iffkey++;

       if (HAVE_OPT( MV_PARAMS )) {
               mvkey++;                        /* DLH are these two swapped? */
               nkeys = OPT_VALUE_MV_PARAMS;
       }
       if (HAVE_OPT( MV_KEYS )) {
               mvpar++;        /* not used! */ /* DLH are these two swapped? */
               nkeys = OPT_VALUE_MV_KEYS;
       }

       if (HAVE_OPT( IMBITS ))
               modulus2 = OPT_VALUE_IMBITS;

       if (HAVE_OPT( MODULUS ))
               modulus = OPT_VALUE_MODULUS;

       if (HAVE_OPT( CERTIFICATE ))
               scheme = OPT_ARG( CERTIFICATE );

       if (HAVE_OPT( CIPHER ))
               ciphername = OPT_ARG( CIPHER );

       if (HAVE_OPT( SUBJECT_NAME ))
               hostname = estrdup(OPT_ARG( SUBJECT_NAME ));

       if (HAVE_OPT( IDENT ))
               groupname = estrdup(OPT_ARG( IDENT ));

       if (HAVE_OPT( LIFETIME ))
               lifetime = OPT_VALUE_LIFETIME;

       if (HAVE_OPT( PVT_CERT ))
               exten = EXT_KEY_PRIVATE;

       if (HAVE_OPT( TRUSTED_CERT ))
               exten = EXT_KEY_TRUST;

       /*
        * Remove the group name from the hostname variable used
        * in host and sign certificate file names.
        */
       if (hostname != hostbuf)
               ptr = strchr(hostname, '@');
       else
               ptr = NULL;
       if (ptr != NULL) {
               *ptr = '\0';
               groupname = estrdup(ptr + 1);
               /* -s @group is equivalent to -i group, host unch. */
               if (ptr == hostname)
                       hostname = hostbuf;
       }

       /*
        * Derive host certificate issuer/subject names from host name
        * and optional group.  If no groupname is provided, the issuer
        * and subject is the hostname with no '@group', and the
        * groupname variable is pointed to hostname for use in IFF, GQ,
        * and MV parameters file names.
        */
       if (groupname == hostbuf) {
               certname = hostname;
       } else {
               snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
                        hostname, groupname);
               certname = certnamebuf;
       }

       /*
        * Seed random number generator and grow weeds.
        */
#if OPENSSL_VERSION_NUMBER < 0x10100000L
       ERR_load_crypto_strings();
       OpenSSL_add_all_algorithms();
#endif /* OPENSSL_VERSION_NUMBER */
       if (!RAND_status()) {
               if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
                       fprintf(stderr, "RAND_file_name %s\n",
                           ERR_error_string(ERR_get_error(), NULL));
                       exit (-1);
               }
               temp = RAND_load_file(pathbuf, -1);
               if (temp == 0) {
                       fprintf(stderr,
                           "RAND_load_file %s not found or empty\n",
                           pathbuf);
                       exit (-1);
               }
               fprintf(stderr,
                   "Random seed file %s %u bytes\n", pathbuf, temp);
               RAND_add(&epoch, sizeof(epoch), 4.0);
       }
#endif  /* AUTOKEY */

       /*
        * Create new unencrypted MD5 keys file if requested. If this
        * option is selected, ignore all other options.
        */
       if (md5key) {
               gen_md5("md5");
               exit (0);
       }

#ifdef AUTOKEY
       /*
        * Load previous certificate if available.
        */
       snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
       if ((fstr = fopen(filename, "r")) != NULL) {
               cert = PEM_read_X509(fstr, NULL, NULL, NULL);
               fclose(fstr);
       }
       if (cert != NULL) {

               /*
                * Extract subject name.
                */
               X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
                   MAXFILENAME);

               /*
                * Extract digest/signature scheme.
                */
               if (scheme == NULL) {
                       nid = X509_get_signature_nid(cert);
                       scheme = OBJ_nid2sn(nid);
               }

               /*
                * If a key_usage extension field is present, determine
                * whether this is a trusted or private certificate.
                */
               if (exten == NULL) {
                       ptr = strstr(groupbuf, "CN=");
                       cnt = X509_get_ext_count(cert);
                       for (i = 0; i < cnt; i++) {
                               X509_EXTENSION *ext;
                               ASN1_OBJECT *obj;

                               ext = X509_get_ext(cert, i);
                               obj = X509_EXTENSION_get_object(ext);

                               if (OBJ_obj2nid(obj) ==
                                   NID_ext_key_usage) {
                                       bp = BIO_new(BIO_s_mem());
                                       X509V3_EXT_print(bp, ext, 0, 0);
                                       BIO_gets(bp, pathbuf,
                                           MAXFILENAME);
                                       BIO_free(bp);
                                       if (strcmp(pathbuf,
                                           "Trust Root") == 0)
                                               exten = EXT_KEY_TRUST;
                                       else if (strcmp(pathbuf,
                                           "Private") == 0)
                                               exten = EXT_KEY_PRIVATE;
                                       certname = estrdup(ptr + 3);
                               }
                       }
               }
       }
       if (scheme == NULL)
               scheme = "RSA-MD5";
       if (ciphername == NULL)
               ciphername = "des-ede3-cbc";
       cipher = EVP_get_cipherbyname(ciphername);
       if (cipher == NULL) {
               fprintf(stderr, "Unknown cipher %s\n", ciphername);
               exit(-1);
       }
       fprintf(stderr, "Using host %s group %s\n", hostname,
           groupname);

       /*
        * Create a new encrypted RSA host key file if requested;
        * otherwise, look for an existing host key file. If not found,
        * create a new encrypted RSA host key file. If that fails, go
        * no further.
        */
       if (hostkey)
               pkey_host = genkey("RSA", "host");
       if (pkey_host == NULL) {
               snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
               pkey_host = readkey(filename, passwd1, &fstamp, NULL);
               if (pkey_host != NULL) {
                       followlink(filename, sizeof(filename));
                       fprintf(stderr, "Using host key %s\n",
                           filename);
               } else {
                       pkey_host = genkey("RSA", "host");
               }
       }
       if (pkey_host == NULL) {
               fprintf(stderr, "Generating host key fails\n");
               exit(-1);
       }

       /*
        * Create new encrypted RSA or DSA sign keys file if requested;
        * otherwise, look for an existing sign key file. If not found,
        * use the host key instead.
        */
       if (sign != NULL)
               pkey_sign = genkey(sign, "sign");
       if (pkey_sign == NULL) {
               snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
                        hostname);
               pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
               if (pkey_sign != NULL) {
                       followlink(filename, sizeof(filename));
                       fprintf(stderr, "Using sign key %s\n",
                           filename);
               } else {
                       pkey_sign = pkey_host;
                       fprintf(stderr, "Using host key as sign key\n");
               }
       }

       /*
        * Create new encrypted GQ server keys file if requested;
        * otherwise, look for an exisiting file. If found, fetch the
        * public key for the certificate.
        */
       if (gqkey)
               pkey_gqkey = gen_gqkey("gqkey");
       if (pkey_gqkey == NULL) {
               snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
                   groupname);
               pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
               if (pkey_gqkey != NULL) {
                       followlink(filename, sizeof(filename));
                       fprintf(stderr, "Using GQ parameters %s\n",
                           filename);
               }
       }
       if (pkey_gqkey != NULL) {
               RSA             *rsa;
               const BIGNUM    *q;

               rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
               RSA_get0_factors(rsa, NULL, &q);
               grpkey = BN_bn2hex(q);
               RSA_free(rsa);
       }

       /*
        * Write the nonencrypted GQ client parameters to the stdout
        * stream. The parameter file is the server key file with the
        * private key obscured.
        */
       if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
               RSA     *rsa;

               snprintf(filename, sizeof(filename),
                   "ntpkey_gqpar_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing GQ parameters %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
               RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
               pkey = EVP_PKEY_new();
               EVP_PKEY_assign_RSA(pkey, rsa);
               PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
                   NULL, NULL);
               fflush(stdout);
               if (debug) {
                       RSA_print_fp(stderr, rsa, 0);
               }
               EVP_PKEY_free(pkey);
               pkey = NULL;
               RSA_free(rsa);
       }

       /*
        * Write the encrypted GQ server keys to the stdout stream.
        */
       if (pkey_gqkey != NULL && passwd2 != NULL) {
               RSA     *rsa;

               snprintf(filename, sizeof(filename),
                   "ntpkey_gqkey_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing GQ keys %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
               pkey = EVP_PKEY_new();
               EVP_PKEY_assign_RSA(pkey, rsa);
               PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
                   NULL, passwd2);
               fflush(stdout);
               if (debug) {
                       RSA_print_fp(stderr, rsa, 0);
               }
               EVP_PKEY_free(pkey);
               pkey = NULL;
               RSA_free(rsa);
       }

       /*
        * Create new encrypted IFF server keys file if requested;
        * otherwise, look for existing file.
        */
       if (iffkey)
               pkey_iffkey = gen_iffkey("iffkey");
       if (pkey_iffkey == NULL) {
               snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
                   groupname);
               pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
               if (pkey_iffkey != NULL) {
                       followlink(filename, sizeof(filename));
                       fprintf(stderr, "Using IFF keys %s\n",
                           filename);
               }
       }

       /*
        * Write the nonencrypted IFF client parameters to the stdout
        * stream. The parameter file is the server key file with the
        * private key obscured.
        */
       if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
               DSA     *dsa;

               snprintf(filename, sizeof(filename),
                   "ntpkey_iffpar_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing IFF parameters %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
               DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
               pkey = EVP_PKEY_new();
               EVP_PKEY_assign_DSA(pkey, dsa);
               PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
                   NULL, NULL);
               fflush(stdout);
               if (debug) {
                       DSA_print_fp(stderr, dsa, 0);
               }
               EVP_PKEY_free(pkey);
               pkey = NULL;
               DSA_free(dsa);
       }

       /*
        * Write the encrypted IFF server keys to the stdout stream.
        */
       if (pkey_iffkey != NULL && passwd2 != NULL) {
               DSA     *dsa;

               snprintf(filename, sizeof(filename),
                   "ntpkey_iffkey_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing IFF keys %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
               pkey = EVP_PKEY_new();
               EVP_PKEY_assign_DSA(pkey, dsa);
               PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
                   NULL, passwd2);
               fflush(stdout);
               if (debug) {
                       DSA_print_fp(stderr, dsa, 0);
               }
               EVP_PKEY_free(pkey);
               pkey = NULL;
               DSA_free(dsa);
       }

       /*
        * Create new encrypted MV trusted-authority keys file if
        * requested; otherwise, look for existing keys file.
        */
       if (mvkey)
               pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
       if (pkey_mvkey == NULL) {
               snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
                   groupname);
               pkey_mvkey = readkey(filename, passwd1, &fstamp,
                   pkey_mvpar);
               if (pkey_mvkey != NULL) {
                       followlink(filename, sizeof(filename));
                       fprintf(stderr, "Using MV keys %s\n",
                           filename);
               }
       }

       /*
        * Write the nonencrypted MV client parameters to the stdout
        * stream. For the moment, we always use the client parameters
        * associated with client key 1.
        */
       if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
               snprintf(filename, sizeof(filename),
                   "ntpkey_mvpar_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing MV parameters %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               pkey = pkey_mvpar[2];
               PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
                   NULL, NULL);
               fflush(stdout);
               if (debug) {
                       DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
               }
       }

       /*
        * Write the encrypted MV server keys to the stdout stream.
        */
       if (pkey_mvkey != NULL && passwd2 != NULL) {
               snprintf(filename, sizeof(filename),
                   "ntpkey_mvkey_%s.%u", groupname, fstamp);
               fprintf(stderr, "Writing MV keys %s to stdout\n",
                   filename);
               fprintf(stdout, "# %s\n# %s\n", filename,
                   ctime(&epoch));
               pkey = pkey_mvpar[1];
               PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
                   NULL, passwd2);
               fflush(stdout);
               if (debug) {
                       DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
               }
       }

       /*
        * Decode the digest/signature scheme and create the
        * certificate. Do this every time we run the program.
        */
       ectx = EVP_get_digestbyname(scheme);
       if (ectx == NULL) {
               fprintf(stderr,
                   "Invalid digest/signature combination %s\n",
                   scheme);
               exit (-1);
       }
       x509(pkey_sign, ectx, grpkey, exten, certname);
#endif  /* AUTOKEY */
       exit(0);
}


/*
* Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
* if OpenSSL is around, generate random SHA1 keys compatible with
* symmetric key cryptography.
*/
int
gen_md5(
       const char *id          /* file name id */
       )
{
       u_char  md5key[MD5SIZE + 1];    /* MD5 key */
       FILE    *str;
       int     i, j;
#ifdef OPENSSL
       u_char  keystr[MD5SIZE];
       u_char  hexstr[2 * MD5SIZE + 1];
       u_char  hex[] = "0123456789abcdef";
#endif  /* OPENSSL */

       str = fheader("MD5key", id, groupname);
       for (i = 1; i <= MD5KEYS; i++) {
               for (j = 0; j < MD5SIZE; j++) {
                       u_char temp;

                       while (1) {
                               int rc;

                               rc = ntp_crypto_random_buf(
                                   &temp, sizeof(temp));
                               if (-1 == rc) {
                                       fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
                                       exit (-1);
                               }
                               if (temp == '#')
                                       continue;

                               if (temp > 0x20 && temp < 0x7f)
                                       break;
                       }
                       md5key[j] = temp;
               }
               md5key[j] = '\0';
               fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
                   md5key);
       }
#ifdef OPENSSL
       for (i = 1; i <= MD5KEYS; i++) {
               RAND_bytes(keystr, 20);
               for (j = 0; j < MD5SIZE; j++) {
                       hexstr[2 * j] = hex[keystr[j] >> 4];
                       hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
               }
               hexstr[2 * MD5SIZE] = '\0';
               fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
                   hexstr);
       }
#endif  /* OPENSSL */
       fclose(str);
       return (1);
}


#ifdef AUTOKEY
/*
* readkey - load cryptographic parameters and keys
*
* This routine loads a PEM-encoded file of given name and password and
* extracts the filestamp from the file name. It returns a pointer to
* the first key if valid, NULL if not.
*/
EVP_PKEY *                      /* public/private key pair */
readkey(
       char    *cp,            /* file name */
       char    *passwd,        /* password */
       u_int   *estamp,        /* file stamp */
       EVP_PKEY **evpars       /* parameter list pointer */
       )
{
       FILE    *str;           /* file handle */
       EVP_PKEY *pkey = NULL;  /* public/private key */
       u_int   gstamp;         /* filestamp */
       char    linkname[MAXFILENAME]; /* filestamp buffer) */
       EVP_PKEY *parkey;
       char    *ptr;
       int     i;

       /*
        * Open the key file.
        */
       str = fopen(cp, "r");
       if (str == NULL)
               return (NULL);

       /*
        * Read the filestamp, which is contained in the first line.
        */
       if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
               fprintf(stderr, "Empty key file %s\n", cp);
               fclose(str);
               return (NULL);
       }
       if ((ptr = strrchr(ptr, '.')) == NULL) {
               fprintf(stderr, "No filestamp found in %s\n", cp);
               fclose(str);
               return (NULL);
       }
       if (sscanf(++ptr, "%u", &gstamp) != 1) {
               fprintf(stderr, "Invalid filestamp found in %s\n", cp);
               fclose(str);
               return (NULL);
       }

       /*
        * Read and decrypt PEM-encoded private keys. The first one
        * found is returned. If others are expected, add them to the
        * parameter list.
        */
       for (i = 0; i <= MVMAX - 1;) {
               parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
               if (evpars != NULL) {
                       evpars[i++] = parkey;
                       evpars[i] = NULL;
               }
               if (parkey == NULL)
                       break;

               if (pkey == NULL)
                       pkey = parkey;
               if (debug) {
                       if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
                               DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
                                   0);
                       else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
                               RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
                                   0);
               }
       }
       fclose(str);
       if (pkey == NULL) {
               fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
                   cp, passwd, ERR_error_string(ERR_get_error(),
                   NULL));
               exit (-1);
       }
       *estamp = gstamp;
       return (pkey);
}


/*
* Generate RSA public/private key pair
*/
EVP_PKEY *                      /* public/private key pair */
gen_rsa(
       const char *id          /* file name id */
       )
{
       EVP_PKEY *pkey;         /* private key */
       RSA     *rsa;           /* RSA parameters and key pair */
       FILE    *str;

       fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
       rsa = genRsaKeyPair(modulus, _UC("RSA"));
       fprintf(stderr, "\n");
       if (rsa == NULL) {
               fprintf(stderr, "RSA generate keys fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (NULL);
       }

       /*
        * For signature encryption it is not necessary that the RSA
        * parameters be strictly groomed and once in a while the
        * modulus turns out to be non-prime. Just for grins, we check
        * the primality.
        */
       if (!RSA_check_key(rsa)) {
               fprintf(stderr, "Invalid RSA key\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               RSA_free(rsa);
               return (NULL);
       }

       /*
        * Write the RSA parameters and keys as a RSA private key
        * encoded in PEM.
        */
       if (strcmp(id, "sign") == 0)
               str = fheader("RSAsign", id, hostname);
       else
               str = fheader("RSAhost", id, hostname);
       pkey = EVP_PKEY_new();
       EVP_PKEY_assign_RSA(pkey, rsa);
       PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
           passwd1);
       fclose(str);
       if (debug)
               RSA_print_fp(stderr, rsa, 0);
       return (pkey);
}


/*
* Generate DSA public/private key pair
*/
EVP_PKEY *                      /* public/private key pair */
gen_dsa(
       const char *id          /* file name id */
       )
{
       EVP_PKEY *pkey;         /* private key */
       DSA     *dsa;           /* DSA parameters */
       FILE    *str;

       /*
        * Generate DSA parameters.
        */
       fprintf(stderr,
           "Generating DSA parameters (%d bits)...\n", modulus);
       dsa = genDsaParams(modulus, _UC("DSA"));
       fprintf(stderr, "\n");
       if (dsa == NULL) {
               fprintf(stderr, "DSA generate parameters fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (NULL);
       }

       /*
        * Generate DSA keys.
        */
       fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
       if (!DSA_generate_key(dsa)) {
               fprintf(stderr, "DSA generate keys fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               DSA_free(dsa);
               return (NULL);
       }

       /*
        * Write the DSA parameters and keys as a DSA private key
        * encoded in PEM.
        */
       str = fheader("DSAsign", id, hostname);
       pkey = EVP_PKEY_new();
       EVP_PKEY_assign_DSA(pkey, dsa);
       PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
           passwd1);
       fclose(str);
       if (debug)
               DSA_print_fp(stderr, dsa, 0);
       return (pkey);
}


/*
***********************************************************************
*                                                                     *
* The following routines implement the Schnorr (IFF) identity scheme  *
*                                                                     *
***********************************************************************
*
* The Schnorr (IFF) identity scheme is intended for use when
* certificates are generated by some other trusted certificate
* authority and the certificate cannot be used to convey public
* parameters. There are two kinds of files: encrypted server files that
* contain private and public values and nonencrypted client files that
* contain only public values. New generations of server files must be
* securely transmitted to all servers of the group; client files can be
* distributed by any means. The scheme is self contained and
* independent of new generations of host keys, sign keys and
* certificates.
*
* The IFF values hide in a DSA cuckoo structure which uses the same
* parameters. The values are used by an identity scheme based on DSA
* cryptography and described in Stimson p. 285. The p is a 512-bit
* prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
* and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
* private random group key b (0 < b < q) and public key v = g^b, then
* sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
* Alice challenges Bob to confirm identity using the protocol described
* below.
*
* How it works
*
* The scheme goes like this. Both Alice and Bob have the public primes
* p, q and generator g. The TA gives private key b to Bob and public
* key v to Alice.
*
* Alice rolls new random challenge r (o < r < q) and sends to Bob in
* the IFF request message. Bob rolls new random k (0 < k < q), then
* computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
* to Alice in the response message. Besides making the response
* shorter, the hash makes it effectivey impossible for an intruder to
* solve for b by observing a number of these messages.
*
* Alice receives the response and computes g^y v^r mod p. After a bit
* of algebra, this simplifies to g^k. If the hash of this result
* matches hash(x), Alice knows that Bob has the group key b. The signed
* response binds this knowledge to Bob's private key and the public key
* previously received in his certificate.
*/
/*
* Generate Schnorr (IFF) keys.
*/
EVP_PKEY *                      /* DSA cuckoo nest */
gen_iffkey(
       const char *id          /* file name id */
       )
{
       EVP_PKEY *pkey;         /* private key */
       DSA     *dsa;           /* DSA parameters */
       BN_CTX  *ctx;           /* BN working space */
       BIGNUM  *b, *r, *k, *u, *v, *w; /* BN temp */
       FILE    *str;
       u_int   temp;
       const BIGNUM *p, *q, *g;
       BIGNUM *pub_key, *priv_key;

       /*
        * Generate DSA parameters for use as IFF parameters.
        */
       fprintf(stderr, "Generating IFF keys (%d bits)...\n",
           modulus2);
       dsa = genDsaParams(modulus2, _UC("IFF"));
       fprintf(stderr, "\n");
       if (dsa == NULL) {
               fprintf(stderr, "DSA generate parameters fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (NULL);
       }
       DSA_get0_pqg(dsa, &p, &q, &g);

       /*
        * Generate the private and public keys. The DSA parameters and
        * private key are distributed to the servers, while all except
        * the private key are distributed to the clients.
        */
       b = BN_new(); r = BN_new(); k = BN_new();
       u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
       BN_rand(b, BN_num_bits(q), -1, 0);      /* a */
       BN_mod(b, b, q, ctx);
       BN_sub(v, q, b);
       BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
       BN_mod_exp(u, g, b, p, ctx);    /* g^b mod p */
       BN_mod_mul(u, u, v, p, ctx);
       temp = BN_is_one(u);
       fprintf(stderr,
           "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
           "yes" : "no");
       if (!temp) {
               BN_free(b); BN_free(r); BN_free(k);
               BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
               return (NULL);
       }
       pub_key = BN_dup(v);
       priv_key = BN_dup(b);
       DSA_set0_key(dsa, pub_key, priv_key);

       /*
        * Here is a trial round of the protocol. First, Alice rolls
        * random nonce r mod q and sends it to Bob. She needs only
        * q from parameters.
        */
       BN_rand(r, BN_num_bits(q), -1, 0);      /* r */
       BN_mod(r, r, q, ctx);

       /*
        * Bob rolls random nonce k mod q, computes y = k + b r mod q
        * and x = g^k mod p, then sends (y, x) to Alice. He needs
        * p, q and b from parameters and r from Alice.
        */
       BN_rand(k, BN_num_bits(q), -1, 0);      /* k, 0 < k < q  */
       BN_mod(k, k, q, ctx);
       BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
       BN_add(v, v, k);
       BN_mod(v, v, q, ctx);           /* y = k + b r mod q */
       BN_mod_exp(u, g, k, p, ctx);    /* x = g^k mod p */

       /*
        * Alice verifies x = g^y v^r to confirm that Bob has group key
        * b. She needs p, q, g from parameters, (y, x) from Bob and the
        * original r. We omit the detail here thatt only the hash of y
        * is sent.
        */
       BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
       BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
       BN_mod_mul(v, w, v, p, ctx);    /* product mod p */
       temp = BN_cmp(u, v);
       fprintf(stderr,
           "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
           0 ? "yes" : "no");
       BN_free(b); BN_free(r); BN_free(k);
       BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
       if (temp != 0) {
               DSA_free(dsa);
               return (NULL);
       }

       /*
        * Write the IFF keys as an encrypted DSA private key encoded in
        * PEM.
        *
        * p    modulus p
        * q    modulus q
        * g    generator g
        * priv_key b
        * public_key v
        * kinv not used
        * r    not used
        */
       str = fheader("IFFkey", id, groupname);
       pkey = EVP_PKEY_new();
       EVP_PKEY_assign_DSA(pkey, dsa);
       PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
           passwd1);
       fclose(str);
       if (debug)
               DSA_print_fp(stderr, dsa, 0);
       return (pkey);
}


/*
***********************************************************************
*                                                                     *
* The following routines implement the Guillou-Quisquater (GQ)        *
* identity scheme                                                     *
*                                                                     *
***********************************************************************
*
* The Guillou-Quisquater (GQ) identity scheme is intended for use when
* the certificate can be used to convey public parameters. The scheme
* uses a X509v3 certificate extension field do convey the public key of
* a private key known only to servers. There are two kinds of files:
* encrypted server files that contain private and public values and
* nonencrypted client files that contain only public values. New
* generations of server files must be securely transmitted to all
* servers of the group; client files can be distributed by any means.
* The scheme is self contained and independent of new generations of
* host keys and sign keys. The scheme is self contained and independent
* of new generations of host keys and sign keys.
*
* The GQ parameters hide in a RSA cuckoo structure which uses the same
* parameters. The values are used by an identity scheme based on RSA
* cryptography and described in Stimson p. 300 (with errors). The 512-
* bit public modulus is n = p q, where p and q are secret large primes.
* The TA rolls private random group key b as RSA exponent. These values
* are known to all group members.
*
* When rolling new certificates, a server recomputes the private and
* public keys. The private key u is a random roll, while the public key
* is the inverse obscured by the group key v = (u^-1)^b. These values
* replace the private and public keys normally generated by the RSA
* scheme. Alice challenges Bob to confirm identity using the protocol
* described below.
*
* How it works
*
* The scheme goes like this. Both Alice and Bob have the same modulus n
* and some random b as the group key. These values are computed and
* distributed in advance via secret means, although only the group key
* b is truly secret. Each has a private random private key u and public
* key (u^-1)^b, although not necessarily the same ones. Bob and Alice
* can regenerate the key pair from time to time without affecting
* operations. The public key is conveyed on the certificate in an
* extension field; the private key is never revealed.
*
* Alice rolls new random challenge r and sends to Bob in the GQ
* request message. Bob rolls new random k, then computes y = k u^r mod
* n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
* message. Besides making the response shorter, the hash makes it
* effectivey impossible for an intruder to solve for b by observing
* a number of these messages.
*
* Alice receives the response and computes y^b v^r mod n. After a bit
* of algebra, this simplifies to k^b. If the hash of this result
* matches hash(x), Alice knows that Bob has the group key b. The signed
* response binds this knowledge to Bob's private key and the public key
* previously received in his certificate.
*/
/*
* Generate Guillou-Quisquater (GQ) parameters file.
*/
EVP_PKEY *                      /* RSA cuckoo nest */
gen_gqkey(
       const char *id          /* file name id */
       )
{
       EVP_PKEY *pkey;         /* private key */
       RSA     *rsa;           /* RSA parameters */
       BN_CTX  *ctx;           /* BN working space */
       BIGNUM  *u, *v, *g, *k, *r, *y; /* BN temps */
       FILE    *str;
       u_int   temp;
       BIGNUM  *b;
       const BIGNUM    *n;

       /*
        * Generate RSA parameters for use as GQ parameters.
        */
       fprintf(stderr,
           "Generating GQ parameters (%d bits)...\n",
            modulus2);
       rsa = genRsaKeyPair(modulus2, _UC("GQ"));
       fprintf(stderr, "\n");
       if (rsa == NULL) {
               fprintf(stderr, "RSA generate keys fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (NULL);
       }
       RSA_get0_key(rsa, &n, NULL, NULL);
       u = BN_new(); v = BN_new(); g = BN_new();
       k = BN_new(); r = BN_new(); y = BN_new();
       b = BN_new();

       /*
        * Generate the group key b, which is saved in the e member of
        * the RSA structure. The group key is transmitted to each group
        * member encrypted by the member private key.
        */
       ctx = BN_CTX_new();
       BN_rand(b, BN_num_bits(n), -1, 0); /* b */
       BN_mod(b, b, n, ctx);

       /*
        * When generating his certificate, Bob rolls random private key
        * u, then computes inverse v = u^-1.
        */
       BN_rand(u, BN_num_bits(n), -1, 0); /* u */
       BN_mod(u, u, n, ctx);
       BN_mod_inverse(v, u, n, ctx);   /* u^-1 mod n */
       BN_mod_mul(k, v, u, n, ctx);

       /*
        * Bob computes public key v = (u^-1)^b, which is saved in an
        * extension field on his certificate. We check that u^b v =
        * 1 mod n.
        */
       BN_mod_exp(v, v, b, n, ctx);
       BN_mod_exp(g, u, b, n, ctx); /* u^b */
       BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
       temp = BN_is_one(g);
       fprintf(stderr,
           "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
           "no");
       if (!temp) {
               BN_free(u); BN_free(v);
               BN_free(g); BN_free(k); BN_free(r); BN_free(y);
               BN_CTX_free(ctx);
               RSA_free(rsa);
               return (NULL);
       }
       /* setting 'u' and 'v' into a RSA object takes over ownership.
        * Since we use these values again, we have to pass in dupes,
        * or we'll corrupt the program!
        */
       RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));

       /*
        * Here is a trial run of the protocol. First, Alice rolls
        * random nonce r mod n and sends it to Bob. She needs only n
        * from parameters.
        */
       BN_rand(r, BN_num_bits(n), -1, 0);      /* r */
       BN_mod(r, r, n, ctx);

       /*
        * Bob rolls random nonce k mod n, computes y = k u^r mod n and
        * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
        * from parameters and r from Alice.
        */
       BN_rand(k, BN_num_bits(n), -1, 0);      /* k */
       BN_mod(k, k, n, ctx);
       BN_mod_exp(y, u, r, n, ctx);    /* u^r mod n */
       BN_mod_mul(y, k, y, n, ctx);    /* y = k u^r mod n */
       BN_mod_exp(g, k, b, n, ctx);    /* g = k^b mod n */

       /*
        * Alice verifies g = v^r y^b mod n to confirm that Bob has
        * private key u. She needs n, g from parameters, public key v =
        * (u^-1)^b from the certificate, (y, g) from Bob and the
        * original r. We omit the detaul here that only the hash of g
        * is sent.
        */
       BN_mod_exp(v, v, r, n, ctx);    /* v^r mod n */
       BN_mod_exp(y, y, b, n, ctx);    /* y^b mod n */
       BN_mod_mul(y, v, y, n, ctx);    /* v^r y^b mod n */
       temp = BN_cmp(y, g);
       fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
           "yes" : "no");
       BN_CTX_free(ctx); BN_free(u); BN_free(v);
       BN_free(g); BN_free(k); BN_free(r); BN_free(y);
       if (temp != 0) {
               RSA_free(rsa);
               return (NULL);
       }

       /*
        * Write the GQ parameter file as an encrypted RSA private key
        * encoded in PEM.
        *
        * n    modulus n
        * e    group key b
        * d    not used
        * p    private key u
        * q    public key (u^-1)^b
        * dmp1 not used
        * dmq1 not used
        * iqmp not used
        */
       RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
       RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
               BN_dup(BN_value_one()));
       str = fheader("GQkey", id, groupname);
       pkey = EVP_PKEY_new();
       EVP_PKEY_assign_RSA(pkey, rsa);
       PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
           passwd1);
       fclose(str);
       if (debug)
               RSA_print_fp(stderr, rsa, 0);
       return (pkey);
}


/*
***********************************************************************
*                                                                     *
* The following routines implement the Mu-Varadharajan (MV) identity  *
* scheme                                                              *
*                                                                     *
***********************************************************************
*
* The Mu-Varadharajan (MV) cryptosystem was originally intended when
* servers broadcast messages to clients, but clients never send
* messages to servers. There is one encryption key for the server and a
* separate decryption key for each client. It operated something like a
* pay-per-view satellite broadcasting system where the session key is
* encrypted by the broadcaster and the decryption keys are held in a
* tamperproof set-top box.
*
* The MV parameters and private encryption key hide in a DSA cuckoo
* structure which uses the same parameters, but generated in a
* different way. The values are used in an encryption scheme similar to
* El Gamal cryptography and a polynomial formed from the expansion of
* product terms (x - x[j]), as described in Mu, Y., and V.
* Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
* 223-231. The paper has significant errors and serious omissions.
*
* Let q be the product of n distinct primes s1[j] (j = 1...n), where
* each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
* that q and each s1[j] divide p - 1 and p has M = n * m + 1
* significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
* = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
* project into Zp* as exponents of g. Sometimes we have to compute an
* inverse b^-1 of random b in Zq, but for that purpose we require
* gcd(b, q) = 1. We expect M to be in the 500-bit range and n
* relatively small, like 30. These are the parameters of the scheme and
* they are expensive to compute.
*
* We set up an instance of the scheme as follows. A set of random
* values x[j] mod q (j = 1...n), are generated as the zeros of a
* polynomial of order n. The product terms (x - x[j]) are expanded to
* form coefficients a[i] mod q (i = 0...n) in powers of x. These are
* used as exponents of the generator g mod p to generate the private
* encryption key A. The pair (gbar, ghat) of public server keys and the
* pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
* to construct the decryption keys. The devil is in the details.
*
* This routine generates a private server encryption file including the
* private encryption key E and partial decryption keys gbar and ghat.
* It then generates public client decryption files including the public
* keys xbar[j] and xhat[j] for each client j. The partial decryption
* files are used to compute the inverse of E. These values are suitably
* blinded so secrets are not revealed.
*
* The distinguishing characteristic of this scheme is the capability to
* revoke keys. Included in the calculation of E, gbar and ghat is the
* product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
* subsequently removed from the product and E, gbar and ghat
* recomputed, the jth client will no longer be able to compute E^-1 and
* thus unable to decrypt the messageblock.
*
* How it works
*
* The scheme goes like this. Bob has the server values (p, E, q,
* gbar, ghat) and Alice has the client values (p, xbar, xhat).
*
* Alice rolls new random nonce r mod p and sends to Bob in the MV
* request message. Bob rolls random nonce k mod q, encrypts y = r E^k
* mod p and sends (y, gbar^k, ghat^k) to Alice.
*
* Alice receives the response and computes the inverse (E^k)^-1 from
* the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
* decrypts y and verifies it matches the original r. The signed
* response binds this knowledge to Bob's private key and the public key
* previously received in his certificate.
*/
EVP_PKEY *                      /* DSA cuckoo nest */
gen_mvkey(
       const char *id,         /* file name id */
       EVP_PKEY **evpars       /* parameter list pointer */
       )
{
       EVP_PKEY *pkey, *pkey1; /* private keys */
       DSA     *dsa, *dsa2, *sdsa; /* DSA parameters */
       BN_CTX  *ctx;           /* BN working space */
       BIGNUM  *a[MVMAX];      /* polynomial coefficient vector */
       BIGNUM  *gs[MVMAX];     /* public key vector */
       BIGNUM  *s1[MVMAX];     /* private enabling keys */
       BIGNUM  *x[MVMAX];      /* polynomial zeros vector */
       BIGNUM  *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
       BIGNUM  *b;             /* group key */
       BIGNUM  *b1;            /* inverse group key */
       BIGNUM  *s;             /* enabling key */
       BIGNUM  *biga;          /* master encryption key */
       BIGNUM  *bige;          /* session encryption key */
       BIGNUM  *gbar, *ghat;   /* public key */
       BIGNUM  *u, *v, *w;     /* BN scratch */
       BIGNUM  *p, *q, *g, *priv_key, *pub_key;
       int     i, j, n;
       FILE    *str;
       u_int   temp;

       /*
        * Generate MV parameters.
        *
        * The object is to generate a multiplicative group Zp* modulo a
        * prime p and a subset Zq mod q, where q is the product of n
        * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
        * first generate n m-bit primes, where the product n m is in
        * the order of 512 bits. One or more of these may have to be
        * replaced later. As a practical matter, it is tough to find
        * more than 31 distinct primes for 512 bits or 61 primes for
        * 1024 bits. The latter can take several hundred iterations
        * and several minutes on a Sun Blade 1000.
        */
       n = nkeys;
       fprintf(stderr,
           "Generating MV parameters for %d keys (%d bits)...\n", n,
           modulus2 / n);
       ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
       b = BN_new(); b1 = BN_new();
       dsa = DSA_new();
       p = BN_new(); q = BN_new(); g = BN_new();
       priv_key = BN_new(); pub_key = BN_new();
       temp = 0;
       for (j = 1; j <= n; j++) {
               s1[j] = BN_new();
               while (1) {
                       BN_generate_prime_ex(s1[j], modulus2 / n, 0,
                                            NULL, NULL, NULL);
                       for (i = 1; i < j; i++) {
                               if (BN_cmp(s1[i], s1[j]) == 0)
                                       break;
                       }
                       if (i == j)
                               break;
                       temp++;
               }
       }
       fprintf(stderr, "Birthday keys regenerated %d\n", temp);

       /*
        * Compute the modulus q as the product of the primes. Compute
        * the modulus p as 2 * q + 1 and test p for primality. If p
        * is composite, replace one of the primes with a new distinct
        * one and try again. Note that q will hardly be a secret since
        * we have to reveal p to servers, but not clients. However,
        * factoring q to find the primes should be adequately hard, as
        * this is the same problem considered hard in RSA. Question: is
        * it as hard to find n small prime factors totalling n bits as
        * it is to find two large prime factors totalling n bits?
        * Remember, the bad guy doesn't know n.
        */
       temp = 0;
       while (1) {
               BN_one(q);
               for (j = 1; j <= n; j++)
                       BN_mul(q, q, s1[j], ctx);
               BN_copy(p, q);
               BN_add(p, p, p);
               BN_add_word(p, 1);
               if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
                       break;

               temp++;
               j = temp % n + 1;
               while (1) {
                       BN_generate_prime_ex(u, modulus2 / n, 0,
                                            NULL, NULL, NULL);
                       for (i = 1; i <= n; i++) {
                               if (BN_cmp(u, s1[i]) == 0)
                                       break;
                       }
                       if (i > n)
                               break;
               }
               BN_copy(s1[j], u);
       }
       fprintf(stderr, "Defective keys regenerated %d\n", temp);

       /*
        * Compute the generator g using a random roll such that
        * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
        * q. This may take several iterations.
        */
       BN_copy(v, p);
       BN_sub_word(v, 1);
       while (1) {
               BN_rand(g, BN_num_bits(p) - 1, 0, 0);
               BN_mod(g, g, p, ctx);
               BN_gcd(u, g, v, ctx);
               if (!BN_is_one(u))
                       continue;

               BN_mod_exp(u, g, q, p, ctx);
               if (BN_is_one(u))
                       break;
       }

       DSA_set0_pqg(dsa, p, q, g);

       /*
        * Setup is now complete. Roll random polynomial roots x[j]
        * (j = 1...n) for all j. While it may not be strictly
        * necessary, Make sure each root has no factors in common with
        * q.
        */
       fprintf(stderr,
           "Generating polynomial coefficients for %d roots (%d bits)\n",
           n, BN_num_bits(q));
       for (j = 1; j <= n; j++) {
               x[j] = BN_new();

               while (1) {
                       BN_rand(x[j], BN_num_bits(q), 0, 0);
                       BN_mod(x[j], x[j], q, ctx);
                       BN_gcd(u, x[j], q, ctx);
                       if (BN_is_one(u))
                               break;
               }
       }

       /*
        * Generate polynomial coefficients a[i] (i = 0...n) from the
        * expansion of root products (x - x[j]) mod q for all j. The
        * method is a present from Charlie Boncelet.
        */
       for (i = 0; i <= n; i++) {
               a[i] = BN_new();
               BN_one(a[i]);
       }
       for (j = 1; j <= n; j++) {
               BN_zero(w);
               for (i = 0; i < j; i++) {
                       BN_copy(u, q);
                       BN_mod_mul(v, a[i], x[j], q, ctx);
                       BN_sub(u, u, v);
                       BN_add(u, u, w);
                       BN_copy(w, a[i]);
                       BN_mod(a[i], u, q, ctx);
               }
       }

       /*
        * Generate gs[i] = g^a[i] mod p for all i and the generator g.
        */
       for (i = 0; i <= n; i++) {
               gs[i] = BN_new();
               BN_mod_exp(gs[i], g, a[i], p, ctx);
       }

       /*
        * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
        * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
        * computed mod p. also note the expression given in the paper
        * is incorrect.
        */
       temp = 1;
       for (j = 1; j <= n; j++) {
               BN_one(u);
               for (i = 0; i <= n; i++) {
                       BN_set_word(v, i);
                       BN_mod_exp(v, x[j], v, q, ctx);
                       BN_mod_mul(v, v, a[i], q, ctx);
                       BN_mod_exp(v, g, v, p, ctx);
                       BN_mod_mul(u, u, v, p, ctx);
               }
               if (!BN_is_one(u))
                       temp = 0;
       }
       fprintf(stderr,
           "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
           "yes" : "no");
       if (!temp) {
               return (NULL);
       }

       /*
        * Make private encryption key A. Keep it around for awhile,
        * since it is expensive to compute.
        */
       biga = BN_new();

       BN_one(biga);
       for (j = 1; j <= n; j++) {
               for (i = 0; i < n; i++) {
                       BN_set_word(v, i);
                       BN_mod_exp(v, x[j], v, q, ctx);
                       BN_mod_exp(v, gs[i], v, p, ctx);
                       BN_mod_mul(biga, biga, v, p, ctx);
               }
       }

       /*
        * Roll private random group key b mod q (0 < b < q), where
        * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
        * mod q. If b is changed, the client keys must be recomputed.
        */
       while (1) {
               BN_rand(b, BN_num_bits(q), 0, 0);
               BN_mod(b, b, q, ctx);
               BN_gcd(u, b, q, ctx);
               if (BN_is_one(u))
                       break;
       }
       BN_mod_inverse(b1, b, q, ctx);

       /*
        * Make private client keys (xbar[j], xhat[j]) for all j. Note
        * that the keys for the jth client do not s1[j] or the product
        * s1[j]) (j = 1...n) which is q by construction.
        *
        * Compute the factor w such that w s1[j] = s1[j] for all j. The
        * easy way to do this is to compute (q + s1[j]) / s1[j].
        * Exercise for the student: prove the remainder is always zero.
        */
       for (j = 1; j <= n; j++) {
               xbar[j] = BN_new(); xhat[j] = BN_new();

               BN_add(w, q, s1[j]);
               BN_div(w, u, w, s1[j], ctx);
               BN_zero(xbar[j]);
               BN_set_word(v, n);
               for (i = 1; i <= n; i++) {
                       if (i == j)
                               continue;

                       BN_mod_exp(u, x[i], v, q, ctx);
                       BN_add(xbar[j], xbar[j], u);
               }
               BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
               BN_mod_exp(xhat[j], x[j], v, q, ctx);
               BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
       }

       /*
        * We revoke client j by dividing q by s1[j]. The quotient
        * becomes the enabling key s. Note we always have to revoke
        * one key; otherwise, the plaintext and cryptotext would be
        * identical. For the present there are no provisions to revoke
        * additional keys, so we sail on with only token revocations.
        */
       s = BN_new();
       BN_copy(s, q);
       BN_div(s, u, s, s1[n], ctx);

       /*
        * For each combination of clients to be revoked, make private
        * encryption key E = A^s and partial decryption keys gbar = g^s
        * and ghat = g^(s b), all mod p. The servers use these keys to
        * compute the session encryption key and partial decryption
        * keys. These values must be regenerated if the enabling key is
        * changed.
        */
       bige = BN_new(); gbar = BN_new(); ghat = BN_new();
       BN_mod_exp(bige, biga, s, p, ctx);
       BN_mod_exp(gbar, g, s, p, ctx);
       BN_mod_mul(v, s, b, q, ctx);
       BN_mod_exp(ghat, g, v, p, ctx);

       /*
        * Notes: We produce the key media in three steps. The first
        * step is to generate the system parameters p, q, g, b, A and
        * the enabling keys s1[j]. Associated with each s1[j] are
        * parameters xbar[j] and xhat[j]. All of these parameters are
        * retained in a data structure protecteted by the trusted-agent
        * password. The p, xbar[j] and xhat[j] paremeters are
        * distributed to the j clients. When the client keys are to be
        * activated, the enabled keys are multipied together to form
        * the master enabling key s. This and the other parameters are
        * used to compute the server encryption key E and the partial
        * decryption keys gbar and ghat.
        *
        * In the identity exchange the client rolls random r and sends
        * it to the server. The server rolls random k, which is used
        * only once, then computes the session key E^k and partial
        * decryption keys gbar^k and ghat^k. The server sends the
        * encrypted r along with gbar^k and ghat^k to the client. The
        * client completes the decryption and verifies it matches r.
        */
       /*
        * Write the MV trusted-agent parameters and keys as a DSA
        * private key encoded in PEM.
        *
        * p    modulus p
        * q    modulus q
        * g    generator g
        * priv_key A mod p
        * pub_key b mod q
        * (remaining values are not used)
        */
       i = 0;
       str = fheader("MVta", "mvta", groupname);
       fprintf(stderr, "Generating MV trusted-authority keys\n");
       BN_copy(priv_key, biga);
       BN_copy(pub_key, b);
       DSA_set0_key(dsa, pub_key, priv_key);
       pkey = EVP_PKEY_new();
       EVP_PKEY_assign_DSA(pkey, dsa);
       PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
           passwd1);
       evpars[i++] = pkey;
       if (debug)
               DSA_print_fp(stderr, dsa, 0);

       /*
        * Append the MV server parameters and keys as a DSA key encoded
        * in PEM.
        *
        * p    modulus p
        * q    modulus q (used only when generating k)
        * g    bige
        * priv_key gbar
        * pub_key ghat
        * (remaining values are not used)
        */
       fprintf(stderr, "Generating MV server keys\n");
       dsa2 = DSA_new();
       DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
       DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
       pkey1 = EVP_PKEY_new();
       EVP_PKEY_assign_DSA(pkey1, dsa2);
       PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
           passwd1);
       evpars[i++] = pkey1;
       if (debug)
               DSA_print_fp(stderr, dsa2, 0);

       /*
        * Append the MV client parameters for each client j as DSA keys
        * encoded in PEM.
        *
        * p    modulus p
        * priv_key xbar[j] mod q
        * pub_key xhat[j] mod q
        * (remaining values are not used)
        */
       fprintf(stderr, "Generating %d MV client keys\n", n);
       for (j = 1; j <= n; j++) {
               sdsa = DSA_new();
               DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
                       BN_dup(BN_value_one()));
               DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
               pkey1 = EVP_PKEY_new();
               EVP_PKEY_set1_DSA(pkey1, sdsa);
               PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
                   NULL, passwd1);
               evpars[i++] = pkey1;
               if (debug)
                       DSA_print_fp(stderr, sdsa, 0);

               /*
                * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
                * are inverses of each other. We check that the product
                * is one for each client except the ones that have been
                * revoked.
                */
               BN_mod_exp(v, gbar, xhat[j], p, ctx);
               BN_mod_exp(u, ghat, xbar[j], p, ctx);
               BN_mod_mul(u, u, v, p, ctx);
               BN_mod_mul(u, u, bige, p, ctx);
               if (!BN_is_one(u)) {
                       fprintf(stderr, "Revoke key %d\n", j);
                       continue;
               }
       }
       evpars[i++] = NULL;
       fclose(str);

       /*
        * Free the countries.
        */
       for (i = 0; i <= n; i++) {
               BN_free(a[i]); BN_free(gs[i]);
       }
       for (j = 1; j <= n; j++) {
               BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
               BN_free(s1[j]);
       }
       return (pkey);
}


/*
* Generate X509v3 certificate.
*
* The certificate consists of the version number, serial number,
* validity interval, issuer name, subject name and public key. For a
* self-signed certificate, the issuer name is the same as the subject
* name and these items are signed using the subject private key. The
* validity interval extends from the current time to the same time one
* year hence. For NTP purposes, it is convenient to use the NTP seconds
* of the current time as the serial number.
*/
int
x509    (
       EVP_PKEY *pkey,         /* signing key */
       const EVP_MD *md,       /* signature/digest scheme */
       char    *gqpub,         /* identity extension (hex string) */
       const char *exten,      /* private cert extension */
       char    *name           /* subject/issuer name */
       )
{
       X509    *cert;          /* X509 certificate */
       X509_NAME *subj;        /* distinguished (common) name */
       X509_EXTENSION *ex;     /* X509v3 extension */
       FILE    *str;           /* file handle */
       ASN1_INTEGER *serial;   /* serial number */
       const char *id;         /* digest/signature scheme name */
       char    pathbuf[MAXFILENAME + 1];

       /*
        * Generate X509 self-signed certificate.
        *
        * Set the certificate serial to the NTP seconds for grins. Set
        * the version to 3. Set the initial validity to the current
        * time and the finalvalidity one year hence.
        */
       id = OBJ_nid2sn(EVP_MD_pkey_type(md));
       fprintf(stderr, "Generating new certificate %s %s\n", name, id);
       cert = X509_new();
       X509_set_version(cert, 2L);
       serial = ASN1_INTEGER_new();
       ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
       X509_set_serialNumber(cert, serial);
       ASN1_INTEGER_free(serial);
       X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
       X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
       subj = X509_get_subject_name(cert);
       X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
           (u_char *)name, -1, -1, 0);
       subj = X509_get_issuer_name(cert);
       X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
           (u_char *)name, -1, -1, 0);
       if (!X509_set_pubkey(cert, pkey)) {
               fprintf(stderr, "Assign certificate signing key fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               X509_free(cert);
               return (0);
       }

       /*
        * Add X509v3 extensions if present. These represent the minimum
        * set defined in RFC3280 less the certificate_policy extension,
        * which is seriously obfuscated in OpenSSL.
        */
       /*
        * The basic_constraints extension CA:TRUE allows servers to
        * sign client certficitates.
        */
       fprintf(stderr, "%s: %s\n", LN_basic_constraints,
           BASIC_CONSTRAINTS);
       ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
           _UC(BASIC_CONSTRAINTS));
       if (!X509_add_ext(cert, ex, -1)) {
               fprintf(stderr, "Add extension field fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (0);
       }
       X509_EXTENSION_free(ex);

       /*
        * The key_usage extension designates the purposes the key can
        * be used for.
        */
       fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
       ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
       if (!X509_add_ext(cert, ex, -1)) {
               fprintf(stderr, "Add extension field fails\n%s\n",
                   ERR_error_string(ERR_get_error(), NULL));
               return (0);
       }
       X509_EXTENSION_free(ex);
       /*
        * The subject_key_identifier is used for the GQ public key.
        * This should not be controversial.
        */
       if (gqpub != NULL) {
               fprintf(stderr, "%s\n", LN_subject_key_identifier);
               ex = X509V3_EXT_conf_nid(NULL, NULL,
                   NID_subject_key_identifier, gqpub);
               if (!X509_add_ext(cert, ex, -1)) {
                       fprintf(stderr,
                           "Add extension field fails\n%s\n",
                           ERR_error_string(ERR_get_error(), NULL));
                       return (0);
               }
               X509_EXTENSION_free(ex);
       }

       /*
        * The extended key usage extension is used for special purpose
        * here. The semantics probably do not conform to the designer's
        * intent and will likely change in future.
        *
        * "trustRoot" designates a root authority
        * "private" designates a private certificate
        */
       if (exten != NULL) {
               fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
               ex = X509V3_EXT_conf_nid(NULL, NULL,
                   NID_ext_key_usage, _UC(exten));
               if (!X509_add_ext(cert, ex, -1)) {
                       fprintf(stderr,
                           "Add extension field fails\n%s\n",
                           ERR_error_string(ERR_get_error(), NULL));
                       return (0);
               }
               X509_EXTENSION_free(ex);
       }

       /*
        * Sign and verify.
        */
       X509_sign(cert, pkey, md);
       if (X509_verify(cert, pkey) <= 0) {
               fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
                   ERR_error_string(ERR_get_error(), NULL));
               X509_free(cert);
               return (0);
       }

       /*
        * Write the certificate encoded in PEM.
        */
       snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
       str = fheader(pathbuf, "cert", hostname);
       PEM_write_X509(str, cert);
       fclose(str);
       if (debug)
               X509_print_fp(stderr, cert);
       X509_free(cert);
       return (1);
}

#if 0   /* asn2ntp is used only with commercial certificates */
/*
* asn2ntp - convert ASN1_TIME time structure to NTP time
*/
u_long
asn2ntp (
       ASN1_TIME *asn1time     /* pointer to ASN1_TIME structure */
       )
{
       char    *v;             /* pointer to ASN1_TIME string */
       struct  tm tm;          /* time decode structure time */

       /*
        * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
        * Note that the YY, MM, DD fields start with one, the HH, MM,
        * SS fiels start with zero and the Z character should be 'Z'
        * for UTC. Also note that years less than 50 map to years
        * greater than 100. Dontcha love ASN.1?
        */
       if (asn1time->length > 13)
               return (-1);
       v = (char *)asn1time->data;
       tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
       if (tm.tm_year < 50)
               tm.tm_year += 100;
       tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
       tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
       tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
       tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
       tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
       tm.tm_wday = 0;
       tm.tm_yday = 0;
       tm.tm_isdst = 0;
       return (mktime(&tm) + JAN_1970);
}
#endif

/*
* Callback routine
*/
void
cb      (
       int     n1,             /* arg 1 */
       int     n2,             /* arg 2 */
       void    *chr            /* arg 3 */
       )
{
       switch (n1) {
       case 0:
               d0++;
               fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
                   d0);
               break;
       case 1:
               d1++;
               fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
                   n2, d1);
               break;
       case 2:
               d2++;
               fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
                   n1, n2, d2);
               break;
       case 3:
               d3++;
               fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
                   (char *)chr, n1, n2, d3);
               break;
       }
}


/*
* Generate key
*/
EVP_PKEY *                      /* public/private key pair */
genkey(
       const char *type,       /* key type (RSA or DSA) */
       const char *id          /* file name id */
       )
{
       if (type == NULL)
               return (NULL);
       if (strcmp(type, "RSA") == 0)
               return (gen_rsa(id));

       else if (strcmp(type, "DSA") == 0)
               return (gen_dsa(id));

       fprintf(stderr, "Invalid %s key type %s\n", id, type);
       return (NULL);
}

static RSA*
genRsaKeyPair(
       int     bits,
       char *  what
       )
{
       RSA *           rsa = RSA_new();
       BN_GENCB *      gcb = BN_GENCB_new();
       BIGNUM *        bne = BN_new();

       if (gcb)
               BN_GENCB_set_old(gcb, cb, what);
       if (bne)
               BN_set_word(bne, 65537);
       if (!(rsa && gcb && bne && RSA_generate_key_ex(
                     rsa, bits, bne, gcb)))
       {
               RSA_free(rsa);
               rsa = NULL;
       }
       BN_GENCB_free(gcb);
       BN_free(bne);
       return rsa;
}

static DSA*
genDsaParams(
       int     bits,
       char *  what
       )
{

       DSA *           dsa = DSA_new();
       BN_GENCB *      gcb = BN_GENCB_new();
       u_char          seed[20];

       if (gcb)
               BN_GENCB_set_old(gcb, cb, what);
       RAND_bytes(seed, sizeof(seed));
       if (!(dsa && gcb && DSA_generate_parameters_ex(
                     dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
       {
               DSA_free(dsa);
               dsa = NULL;
       }
       BN_GENCB_free(gcb);
       return dsa;
}

#endif  /* AUTOKEY */


/*
* Generate file header and link
*/
FILE *
fheader (
       const char *file,       /* file name id */
       const char *ulink,      /* linkname */
       const char *owner       /* owner name */
       )
{
       FILE    *str;           /* file handle */
       char    linkname[MAXFILENAME]; /* link name */
       int     temp;
#ifdef HAVE_UMASK
       mode_t  orig_umask;
#endif

       snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
           owner, fstamp);
#ifdef HAVE_UMASK
       orig_umask = umask( S_IWGRP | S_IRWXO );
       str = fopen(filename, "w");
       (void) umask(orig_umask);
#else
       str = fopen(filename, "w");
#endif
       if (str == NULL) {
               perror("Write");
               exit (-1);
       }
       if (strcmp(ulink, "md5") == 0) {
         strcpy(linkname,"ntp.keys");
       } else {
         snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
                  hostname);
       }
       (void)remove(linkname);         /* The symlink() line below matters */
       temp = symlink(filename, linkname);
       if (temp < 0)
               perror(file);
       fprintf(stderr, "Generating new %s file and link\n", ulink);
       fprintf(stderr, "%s->%s\n", linkname, filename);
       fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
       return (str);
}