/*      $NetBSD: refclock_nmea.c,v 1.15 2024/08/18 20:47:18 christos Exp $      */

/*
* refclock_nmea.c - clock driver for an NMEA GPS CLOCK
*              Michael Petry Jun 20, 1994
*               based on refclock_heathn.c
*
* Updated to add support for Accord GPS Clock
*              Venu Gopal Dec 05, 2007
*              [email protected], [email protected]
*
* Updated to process 'time1' fudge factor
*              Venu Gopal May 05, 2008
*
* Converted to common PPSAPI code, separate PPS fudge time1
* from serial timecode fudge time2.
*              Dave Hart July 1, 2009
*              [email protected], [email protected]
*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "ntp_types.h"

#if defined(REFCLOCK) && defined(CLOCK_NMEA)

#define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */

#include <sys/stat.h>
#include <stdio.h>
#include <ctype.h>
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
#include "ntp_calgps.h"
#include "timespecops.h"

#ifdef HAVE_PPSAPI
# include "ppsapi_timepps.h"
# include "refclock_atom.h"
#endif /* HAVE_PPSAPI */


/*
* This driver supports NMEA-compatible GPS receivers
*
* Prototype was refclock_trak.c, Thanks a lot.
*
* The receiver used spits out the NMEA sentences for boat navigation.
* And you thought it was an information superhighway.  Try a raging river
* filled with rapids and whirlpools that rip away your data and warp time.
*
* If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
* On startup if initialization of the PPSAPI fails, it will fall back
* to the "normal" timestamps.
*
* The PPSAPI part of the driver understands fudge flag2 and flag3. If
* flag2 is set, it will use the clear edge of the pulse. If flag3 is
* set, kernel hardpps is enabled.
*
* GPS sentences other than RMC (the default) may be enabled by setting
* the relevent bits of 'mode' in the server configuration line
* server 127.127.20.x mode X
*
* bit 0 - enables RMC (1)
* bit 1 - enables GGA (2)
* bit 2 - enables GLL (4)
* bit 3 - enables ZDA (8) - Standard Time & Date
* bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
*                           very close to standard ZDA
*
* Multiple sentences may be selected except when ZDG/ZDA is selected.
*
* bit 4/5/6 - selects the baudrate for serial port :
*              0 for 4800 (default)
*              1 for 9600
*              2 for 19200
*              3 for 38400
*              4 for 57600
*              5 for 115200
*/
#define NMEA_MESSAGE_MASK       0x0000FF0FU
#define NMEA_BAUDRATE_MASK      0x00000070U
#define NMEA_BAUDRATE_SHIFT     4

#define NMEA_DELAYMEAS_MASK     0x00000080U
#define NMEA_EXTLOG_MASK        0x00010000U
#define NMEA_QUIETPPS_MASK      0x00020000U
#define NMEA_DATETRUST_MASK     0x00040000U
#define NMEA_IGNSTATUS_MASK     0x00080000U

#define NMEA_PROTO_IDLEN        4       /* tag name must be at least 4 chars */
#define NMEA_PROTO_MINLEN       6       /* min chars in sentence, excluding CS */
#define NMEA_PROTO_MAXLEN       80      /* max chars in sentence, excluding CS */
#define NMEA_PROTO_FIELDS       32      /* not official; limit on fields per record */

/*
* We check the timecode format and decode its contents.  We only care
* about a few of them, the most important being the $GPRMC format:
*
* $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
*
* mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
* $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
* $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
* $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
*
* Defining GPZDA to support Standard Time & Date
* sentence. The sentence has the following format
*
*  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
*
*  Apart from the familiar fields,
*  'TH'    Time zone Hours
*  'TM'    Time zone Minutes
*
* Defining GPZDG to support Accord GPS Clock's custom NMEA
* sentence. The sentence has the following format
*
*  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
*
*  It contains the GPS timestamp valid for next PPS pulse.
*  Apart from the familiar fields,
*  'AA.BB' denotes the signal strength( should be < 05.00 )
*  'V'     denotes the GPS sync status :
*         '0' indicates INVALID time,
*         '1' indicates accuracy of +/-20 ms
*         '2' indicates accuracy of +/-100 ns
*
* Defining PGRMF for Garmin GPS Fix Data
* $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
* WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
* WS  -- GPS seconds in week
* LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
* FIX -- Fix type: 0=nofix, 1=2D, 2=3D
* DATE/TIME are standard date/time strings in UTC time scale
*
* The GPS time can be used to get the full century for the truncated
* date spec.
*/

/*
* Definitions
*/
#define DEVICE          "/dev/gps%d"    /* GPS serial device */
#define PPSDEV          "/dev/gpspps%d" /* PPSAPI device override */
#define SPEED232        B4800   /* uart speed (4800 bps) */
#define PRECISION       (-9)    /* precision assumed (about 2 ms) */
#define PPS_PRECISION   (-20)   /* precision assumed (about 1 us) */
#define DATE_HOLD       16      /* seconds to hold on provided GPS date */
#define DATE_HLIM       4       /* when do we take ANY date format */
#define REFID           "GPS\0" /* reference id */
#define DESCRIPTION     "NMEA GPS Clock" /* who we are */
#ifndef O_NOCTTY
#define M_NOCTTY        0
#else
#define M_NOCTTY        O_NOCTTY
#endif
#ifndef O_NONBLOCK
#define M_NONBLOCK      0
#else
#define M_NONBLOCK      O_NONBLOCK
#endif
#define PPSOPENMODE     (O_RDWR | M_NOCTTY | M_NONBLOCK)

/* NMEA sentence array indexes for those we use */
#define NMEA_GPRMC      0       /* recommended min. nav. */
#define NMEA_GPGGA      1       /* fix and quality */
#define NMEA_GPGLL      2       /* geo. lat/long */
#define NMEA_GPZDA      3       /* date/time */
/*
* $GPZDG is a proprietary sentence that violates the spec, by not
* using $P and an assigned company identifier to prefix the sentence
* identifier.  When used with this driver, the system needs to be
* isolated from other NTP networks, as it operates in GPS time, not
* UTC as is much more common.  GPS time is >15 seconds different from
* UTC due to not respecting leap seconds since 1970 or so.  Other
* than the different timebase, $GPZDG is similar to $GPZDA.
*/
#define NMEA_GPZDG      4
#define NMEA_PGRMF      5
#define NMEA_PUBX04     6
#define NMEA_ARRAY_SIZE (NMEA_PUBX04 + 1)

/*
* Sentence selection mode bits
*/
#define USE_GPRMC               0x00000001u
#define USE_GPGGA               0x00000002u
#define USE_GPGLL               0x00000004u
#define USE_GPZDA               0x00000008u
#define USE_PGRMF               0x00000100u
#define USE_PUBX04              0x00000200u

/* mapping from sentence index to controlling mode bit */
static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
{
       USE_GPRMC,
       USE_GPGGA,
       USE_GPGLL,
       USE_GPZDA,
       USE_GPZDA,
       USE_PGRMF,
       USE_PUBX04
};

/* date formats we support */
enum date_fmt {
       DATE_1_DDMMYY,  /* use 1 field  with 2-digit year */
       DATE_3_DDMMYYYY /* use 3 fields with 4-digit year */
};

/* date type */
enum date_type {
       DTYP_NONE,
       DTYP_Y2D,       /* 2-digit year */
       DTYP_W10B,      /* 10-bit week in GPS epoch */
       DTYP_Y4D,       /* 4-digit (full) year */
       DTYP_WEXT       /* extended week in GPS epoch */
};

/* results for 'field_init()'
*
* Note: If a checksum is present, the checksum test must pass OK or the
* sentence is tagged invalid.
*/
#define CHECK_EMPTY  -1 /* no data                      */
#define CHECK_INVALID 0 /* not a valid NMEA sentence    */
#define CHECK_VALID   1 /* valid but without checksum   */
#define CHECK_CSVALID 2 /* valid with checksum OK       */

/*
* Unit control structure
*/
struct refclock_atom;
typedef struct refclock_atom TAtomUnit;
typedef struct {
#   ifdef HAVE_PPSAPI
       TAtomUnit       atom;           /* PPSAPI structure */
       int             ppsapi_fd;      /* fd used with PPSAPI */
       u_char          ppsapi_tried;   /* attempt PPSAPI once */
       u_char          ppsapi_lit;     /* time_pps_create() worked */
#   endif /* HAVE_PPSAPI */
       uint16_t        rcvtout;        /* one-shot for sample expiration */
       u_char          ppsapi_gate;    /* system is on PPS */
       u_char          gps_time;       /* use GPS time, not UTC */
       l_fp            last_reftime;   /* last processed reference stamp */
       TNtpDatum       last_gpsdate;   /* last processed split date/time */
       u_short         hold_gpsdate;   /* validity ticker for above */
       u_short         type_gpsdate;   /* date info type for above */
       /* tally stats, reset each poll cycle */
       struct
       {
               u_int total;
               u_int accepted;
               u_int rejected;   /* GPS said not enough signal */
               u_int malformed;  /* Bad checksum, invalid date or time */
               u_int filtered;   /* mode bits, not GPZDG, same second */
               u_int pps_used;
       }
               tally;
       /* per sentence checksum seen flag */
       u_char          cksum_type[NMEA_ARRAY_SIZE];

       /* line assembly buffer (NMEAD support) */
       u_short lb_len;
       char    lb_buf[BMAX];   /* assembly buffer */
} nmea_unit;

/*
* helper for faster field access
*/
typedef struct {
       char  *base;    /* buffer base          */
       char  *cptr;    /* current field ptr    */
       int    blen;    /* buffer length        */
       int    cidx;    /* current field index  */
} nmea_data;

/*
* Function prototypes
*/
static  int     nmea_start      (int, struct peer *);
static  void    nmea_shutdown   (int, struct peer *);
static  void    nmea_receive    (struct recvbuf *);
static  void    nmea_poll       (int, struct peer *);
static  void    nmea_procrec    (struct peer * const, l_fp);
#ifdef HAVE_PPSAPI
static  double  tabsdiffd       (l_fp, l_fp);
static  void    nmea_control    (int, const struct refclockstat *,
                                struct refclockstat *, struct peer *);
#define         NMEA_CONTROL    nmea_control
#else
#define         NMEA_CONTROL    noentry
#endif /* HAVE_PPSAPI */
static  void    nmea_timer      (int, struct peer *);

/* parsing helpers */
static int      field_init      (nmea_data * data, char * cp, int len);
static char *   field_parse     (nmea_data * data, int fn);
static void     field_wipe      (nmea_data * data, ...);
static u_char   parse_qual      (nmea_data * data, int idx,
                                char tag, int inv);
static int      parse_time      (TCivilDate * jd, l_fp * fofs,
                                nmea_data *, int idx);
static int      parse_date      (TCivilDate * jd, nmea_data *,
                                int idx, enum date_fmt fmt);
static int      parse_gpsw      (TGpsDatum *, nmea_data *,
                                int weekidx, int timeidx, int leapidx);

static int      nmead_open      (const char * device);

/*
* If we want the driver to output sentences, too: re-enable the send
* support functions by defining NMEA_WRITE_SUPPORT to non-zero...
*/
#if NMEA_WRITE_SUPPORT
static  void gps_send(int, const char *, struct peer *);
#endif /* NMEA_WRITE_SUPPORT */

/*
* -------------------------------------------------------------------
* Transfer vector
* -------------------------------------------------------------------
*/
struct refclock refclock_nmea = {
       nmea_start,             /* start up driver */
       nmea_shutdown,          /* shut down driver */
       nmea_poll,              /* transmit poll message */
       NMEA_CONTROL,           /* fudge control */
       noentry,                /* initialize driver */
       noentry,                /* buginfo */
       nmea_timer              /* called once per second */
};


/*
* -------------------------------------------------------------------
* nmea_start - open the GPS devices and initialize data for processing
*
* return 0 on error, 1 on success. Even on error the peer structures
* must be in a state that permits 'nmea_shutdown()' to clean up all
* resources, because it will be called immediately to do so.
* -------------------------------------------------------------------
*/
static int
nmea_start(
       int             unit,
       struct peer *   peer
       )
{
       struct refclockproc * const     pp = peer->procptr;
       nmea_unit * const               up = emalloc_zero(sizeof(*up));
       char                            device[20];
       size_t                          devlen;
       u_int32                         rate;
       int                             baudrate;

       /* Get baudrate choice from mode byte bits 4/5/6 */
       rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;

       switch (rate) {
       default:
       case 0:
               baudrate = SPEED232;
               break;
       case 1:
               baudrate = B9600;
               break;
       case 2:
               baudrate = B19200;
               break;
       case 3:
               baudrate = B38400;
               break;
#   ifdef B57600
       case 4:
               baudrate = B57600;
               break;
#   endif
#   ifdef B115200
       case 5:
               baudrate = B115200;
               break;
#   endif
       }

       /* Allocate and initialize unit structure */
       pp->unitptr = (caddr_t)up;
       pp->io.fd = -1;
       pp->io.clock_recv = nmea_receive;
       pp->io.srcclock = peer;
       pp->io.datalen = 0;
       /* force change detection on first valid message */
       memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
       memset(&up->last_gpsdate, 0x00, sizeof(up->last_gpsdate));
       /* force checksum on GPRMC, see below */
       up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
#   ifdef HAVE_PPSAPI
       up->ppsapi_fd = -1;
#   endif /* HAVE_PPSAPI */
       ZERO(up->tally);

       /* Initialize miscellaneous variables */
       peer->precision = PRECISION;
       pp->clockdesc = DESCRIPTION;
       memcpy(&pp->refid, REFID, 4);

       /* Open serial port. Use CLK line discipline, if available. */
       devlen = snprintf(device, sizeof(device), DEVICE, unit);
       if (devlen >= sizeof(device)) {
               msyslog(LOG_ERR, "%s clock device name too long",
                       refnumtoa(&peer->srcadr));
               return FALSE; /* buffer overflow */
       }
       pp->io.fd = refclock_open(&peer->srcadr, device, baudrate, LDISC_CLK);
       if (0 >= pp->io.fd) {
               pp->io.fd = nmead_open(device);
               if (-1 == pp->io.fd)
                       return FALSE;
       }

       /* succeed if this clock can be added */
       return io_addclock(&pp->io) != 0;
}

/*
* -------------------------------------------------------------------
* nmea_shutdown - shut down a GPS clock
*
* NOTE this routine is called after nmea_start() returns failure,
* as well as during a normal shutdown due to ntpq :config unpeer.
* -------------------------------------------------------------------
*/
static void
nmea_shutdown(
       int           unit,
       struct peer * peer
       )
{
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit *)pp->unitptr;

       UNUSED_ARG(unit);

       if (up != NULL) {
#           ifdef HAVE_PPSAPI
               if (up->ppsapi_lit)
                       time_pps_destroy(up->atom.handle);
               ppsdev_close(pp->io.fd, up->ppsapi_fd);
#           endif
               free(up);
       }
       pp->unitptr = (caddr_t)NULL;
       if (-1 != pp->io.fd)
               io_closeclock(&pp->io);
       pp->io.fd = -1;
}

/*
* -------------------------------------------------------------------
* nmea_control - configure fudge params
* -------------------------------------------------------------------
*/
#ifdef HAVE_PPSAPI
static void
nmea_control(
       int                         unit,
       const struct refclockstat * in_st,
       struct refclockstat       * out_st,
       struct peer               * peer
       )
{
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit *)pp->unitptr;

       char   device[32];
       size_t devlen;

       UNUSED_ARG(in_st);
       UNUSED_ARG(out_st);

       /*
        * PPS control
        *
        * If /dev/gpspps$UNIT can be opened that will be used for
        * PPSAPI.  On Linux, a PPS device mathing the TTY will be
        * searched for and possibly created on the fly.  Otherwise, the
        * GPS serial device /dev/gps$UNIT already opened is used for
        * PPSAPI as well. (This might not work, in which case the PPS
        * API remains unavailable...)
        */

       /* Light up the PPSAPI interface if not yet attempted. */
       if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
               const char *ppsname = device;
               up->ppsapi_tried = TRUE;
               /* get FD for the pps device; might be the tty itself! */
               devlen = snprintf(device, sizeof(device), PPSDEV, unit);
               if (devlen >= sizeof(device)) {
                       msyslog(LOG_ERR, "%s PPS device name too long",
                               refnumtoa(&peer->srcadr));
                       ppsname = NULL;
               }
               up->ppsapi_fd = ppsdev_reopen(
                       &peer->srcadr,
                       pp->io.fd, up->ppsapi_fd,
                       ppsname, PPSOPENMODE, (S_IRUSR|S_IWUSR));
               /* note 1: the pps fd might be the same as the tty fd
                * note 2: the current PPS fd remains valid until
                *  - the clock is shut down
                *  - flag1 is set again after being cleared
                */
               if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
                       /* use the PPS API for our own purposes now. */
                       up->ppsapi_lit = refclock_params(
                               pp->sloppyclockflag, &up->atom);
                       if (!up->ppsapi_lit) {
                               /* failed to configure, drop PPS unit */
                               time_pps_destroy(up->atom.handle);
                               msyslog(LOG_WARNING,
                                       "%s set PPSAPI params fails",
                                       refnumtoa(&peer->srcadr));
                       }
               } else {
                       msyslog(LOG_WARNING,
                               "%s flag1 1 but PPSAPI fails",
                               refnumtoa(&peer->srcadr));
               }
       }

       /* shut down PPS API if activated */
       if ( !(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
               /* shutdown PPS API */
               if (up->ppsapi_lit)
                       time_pps_destroy(up->atom.handle);
               up->atom.handle = 0;
               /* do !!NOT!! close/drop PPS fd here! */

               /* clear markers and peer items */
               up->ppsapi_gate  = FALSE;
               up->ppsapi_lit   = FALSE;
               up->ppsapi_tried = FALSE;

               peer->flags &= ~FLAG_PPS;
               peer->precision = PRECISION;
       }
}
#endif /* HAVE_PPSAPI */

/*
* -------------------------------------------------------------------
* nmea_timer - called once per second
*
* Usually 'nmea_receive()' can get a timestamp every second, but at
* least one Motorola unit needs prompting each time. Doing so in
* 'nmea_poll()' gives only one sample per poll cycle, which actually
* defeats the purpose of the median filter. Polling once per second
* seems a much better idea.
*
* Also takes care of sample expiration if the receiver fails to
* provide new input data.
* -------------------------------------------------------------------
*/
static void
nmea_timer(
       int           unit,
       struct peer * peer
       )
{
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit *)pp->unitptr;

       UNUSED_ARG(unit);

#   if NMEA_WRITE_SUPPORT

       if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
               gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);

#   endif /* NMEA_WRITE_SUPPORT */

       /* receive timeout occurred? */
       if (up->rcvtout) {
               --up->rcvtout;
       } else if (pp->codeproc != pp->coderecv) {
               /* expire one (the oldest) sample, if any */
               refclock_samples_expire(pp, 1);
               /* reset message assembly buffer */
               up->lb_buf[0] = '\0';
               up->lb_len    = 0;
       }

       if (up->hold_gpsdate && (--up->hold_gpsdate < DATE_HLIM))
               up->type_gpsdate = DTYP_NONE;
}

/*
* -------------------------------------------------------------------
* nmea_procrec - receive data from the serial interface
*
* This is the workhorse for NMEA data evaluation:
*
* + it checks all NMEA data, and rejects sentences that are not valid
*   NMEA sentences
* + it checks whether a sentence is known and to be used
* + it parses the time and date data from the NMEA data string and
*   augments the missing bits. (century in date, whole date, ...)
* + it rejects data that is not from the first accepted sentence in a
*   burst
* + it eventually replaces the receive time with the PPS edge time.
* + it feeds the data to the internal processing stages.
*
* This function assumes a non-empty line in the unit line buffer.
* -------------------------------------------------------------------
*/
static void
nmea_procrec(
       struct peer * const     peer,
       l_fp                    rd_timestamp
       )
{
       /* declare & init control structure pointers */
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit*)pp->unitptr;

       /* Use these variables to hold data until we decide its worth keeping */
       nmea_data rdata;
       l_fp      rd_reftime;

       /* working stuff */
       TCivilDate      date;   /* to keep & convert the time stamp */
       TGpsDatum       wgps;   /* week time storage */
       TNtpDatum       dntp;
       l_fp            tofs;   /* offset to full-second reftime */
       /* results of sentence/date/time parsing */
       u_char          sentence;       /* sentence tag */
       int             checkres;
       int             warp;           /* warp to GPS base date */
       char *          cp;
       int             rc_date, rc_time;
       u_short         rc_dtyp;
#   ifdef HAVE_PPSAPI
       int             withpps = 0;
#   endif /* HAVE_PPSAPI */

       /* make sure data has defined pristine state */
       ZERO(tofs);
       ZERO(date);
       ZERO(wgps);
       ZERO(dntp);

       /*
        * Read the timecode and timestamp, then initialize field
        * processing. The <CR><LF> at the NMEA line end is translated
        * to <LF><LF> by the terminal input routines on most systems,
        * and this gives us one spurious empty read per record which we
        * better ignore silently.
        */
       checkres = field_init(&rdata, up->lb_buf, up->lb_len);
       switch (checkres) {

       case CHECK_INVALID:
               DPRINTF(1, ("%s invalid data: '%s'\n",
                       refnumtoa(&peer->srcadr), up->lb_buf));
               refclock_report(peer, CEVNT_BADREPLY);
               return;

       case CHECK_EMPTY:
               return;

       default:
               DPRINTF(1, ("%s gpsread: %d '%s'\n",
                       refnumtoa(&peer->srcadr), up->lb_len,
                       up->lb_buf));
               break;
       }
       up->tally.total++;

       /*
        * --> below this point we have a valid NMEA sentence <--
        *
        * Check sentence name. Skip first 2 chars (talker ID) in most
        * cases, to allow for $GLGGA and $GPGGA etc. Since the name
        * field has at least 5 chars we can simply shift the field
        * start.
        */
       cp = field_parse(&rdata, 0);
       if      (strncmp(cp + 2, "RMC,", 4) == 0)
               sentence = NMEA_GPRMC;
       else if (strncmp(cp + 2, "GGA,", 4) == 0)
               sentence = NMEA_GPGGA;
       else if (strncmp(cp + 2, "GLL,", 4) == 0)
               sentence = NMEA_GPGLL;
       else if (strncmp(cp + 2, "ZDA,", 4) == 0)
               sentence = NMEA_GPZDA;
       else if (strncmp(cp + 2, "ZDG,", 4) == 0)
               sentence = NMEA_GPZDG;
       else if (strncmp(cp,   "PGRMF,", 6) == 0)
               sentence = NMEA_PGRMF;
       else if (strncmp(cp,   "PUBX,04,", 8) == 0)
               sentence = NMEA_PUBX04;
       else
               return; /* not something we know about */

       /* Eventually output delay measurement now. */
       if (peer->ttl & NMEA_DELAYMEAS_MASK) {
               mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
                        ldexp(rd_timestamp.l_uf, -32),
                        (int)(strchr(up->lb_buf, ',') - up->lb_buf),
                        up->lb_buf);
       }

       /* See if I want to process this message type */
       if ((peer->ttl & NMEA_MESSAGE_MASK) &&
           !(peer->ttl & sentence_mode[sentence])) {
               up->tally.filtered++;
               return;
       }

       /*
        * make sure it came in clean
        *
        * Apparently, older NMEA specifications (which are expensive)
        * did not require the checksum for all sentences.  $GPMRC is
        * the only one so far identified which has always been required
        * to include a checksum.
        *
        * Today, most NMEA GPS receivers checksum every sentence.  To
        * preserve its error-detection capabilities with modern GPSes
        * while allowing operation without checksums on all but $GPMRC,
        * we keep track of whether we've ever seen a valid checksum on
        * a given sentence, and if so, reject future instances without
        * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
        * 'nmea_start()' to enforce checksums for $GPRMC right from the
        * start.)
        */
       if (up->cksum_type[sentence] <= (u_char)checkres) {
               up->cksum_type[sentence] = (u_char)checkres;
       } else {
               DPRINTF(1, ("%s checksum missing: '%s'\n",
                       refnumtoa(&peer->srcadr), up->lb_buf));
               refclock_report(peer, CEVNT_BADREPLY);
               up->tally.malformed++;
               return;
       }

       /*
        * $GPZDG provides GPS time not UTC, and the two mix poorly.
        * Once have processed a $GPZDG, do not process any further UTC
        * sentences (all but $GPZDG currently).
        */
       if (sentence == NMEA_GPZDG) {
               if (!up->gps_time) {
                       msyslog(LOG_INFO,
                               "%s using GPS time as if it were UTC",
                               refnumtoa(&peer->srcadr));
                       up->gps_time = 1;
               }
       } else {
               if (up->gps_time) {
                       up->tally.filtered++;
                       return;
               }
       }

       DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
               refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf));

       /*
        * Grab fields depending on clock string type and possibly wipe
        * sensitive data from the last timecode.
        */
       rc_date = -1;   /* assume we have to do day-time mapping */
       rc_dtyp = DTYP_NONE;
       switch (sentence) {

       case NMEA_GPRMC:
               /* Check quality byte, fetch data & time */
               rc_time  = parse_time(&date, &tofs, &rdata, 1);
               pp->leap = parse_qual(&rdata, 2, 'A', 0);
               if (up->type_gpsdate <= DTYP_Y2D) {
                       rc_date = parse_date(&date, &rdata, 9, DATE_1_DDMMYY);
                       rc_dtyp = DTYP_Y2D;
               }
               if (CLK_FLAG4 & pp->sloppyclockflag)
                       field_wipe(&rdata, 3, 4, 5, 6, -1);
               break;

       case NMEA_GPGGA:
               /* Check quality byte, fetch time only */
               rc_time  = parse_time(&date, &tofs, &rdata, 1);
               pp->leap = parse_qual(&rdata, 6, '0', 1);
               if (CLK_FLAG4 & pp->sloppyclockflag)
                       field_wipe(&rdata, 2, 4, -1);
               break;

       case NMEA_GPGLL:
               /* Check quality byte, fetch time only */
               rc_time  = parse_time(&date, &tofs, &rdata, 5);
               pp->leap = parse_qual(&rdata, 6, 'A', 0);
               if (CLK_FLAG4 & pp->sloppyclockflag)
                       field_wipe(&rdata, 1, 3, -1);
               break;

       case NMEA_GPZDA:
               /* No quality.  Assume best, fetch time & full date */
               rc_time = parse_time(&date, &tofs, &rdata, 1);
               if (up->type_gpsdate <= DTYP_Y4D) {
                       rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
                       rc_dtyp = DTYP_Y4D;
               }
               break;

       case NMEA_GPZDG:
               /* Check quality byte, fetch time & full date */
               rc_time  = parse_time(&date, &tofs, &rdata, 1);
               pp->leap = parse_qual(&rdata, 4, '0', 1);
               --tofs.l_ui; /* GPZDG gives *following* second */
               if (up->type_gpsdate <= DTYP_Y4D) {
                       rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
                       rc_dtyp = DTYP_Y4D;
               }
               break;

       case NMEA_PGRMF:
               /* get time, qualifier and GPS weektime. */
               rc_time = parse_time(&date, &tofs, &rdata, 4);
               if (up->type_gpsdate <= DTYP_W10B) {
                       rc_date = parse_gpsw(&wgps, &rdata, 1, 2, 5);
                       rc_dtyp = DTYP_W10B;
               }
               pp->leap = parse_qual(&rdata, 11, '0', 1);
               if (CLK_FLAG4 & pp->sloppyclockflag)
                       field_wipe(&rdata, 6, 8, -1);
               break;

       case NMEA_PUBX04:
               /* PUBX,04 is peculiar. The UTC time-of-week is the *internal*
                * time base, which is not exactly on par with the fix time.
                */
               rc_time = parse_time(&date, &tofs, &rdata, 2);
               if (up->type_gpsdate <= DTYP_WEXT) {
                       rc_date = parse_gpsw(&wgps, &rdata, 5, 4, -1);
                       rc_dtyp = DTYP_WEXT;
               }
               break;

       default:
               INVARIANT(0);   /* Coverity 97123 */
               return;
       }

       /* ignore receiver status? [bug 3694] */
       if (peer->ttl & NMEA_IGNSTATUS_MASK) { /* assume always good? */
               pp->leap = LEAP_NOWARNING;
       }

       /* check clock sanity; [bug 2143] */
       if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
               checkres = CEVNT_PROP;
               up->tally.rejected++;
       }
       /* Check sanity of time-of-day. */
       else if (rc_time == 0) {        /* no time or conversion error? */
               checkres = CEVNT_BADTIME;
               up->tally.malformed++;
       }
       /* Check sanity of date. */
       else if (rc_date == 0) {        /* no date or conversion error? */
               checkres = CEVNT_BADDATE;
               up->tally.malformed++;
       }
       else {
               checkres = -1;
       }

       if (checkres != -1) {
               refclock_save_lcode(pp, up->lb_buf, up->lb_len);
               refclock_report(peer, checkres);
               return;
       }

       /* See if we can augment the receive time stamp. If not, apply
        * fudge time 2 to the receive time stamp directly.
        */
#   ifdef HAVE_PPSAPI
       if (up->ppsapi_lit && pp->leap != LEAP_NOTINSYNC)
               withpps = refclock_ppsaugment(
                       &up->atom, &rd_timestamp,
                       pp->fudgetime2, pp->fudgetime1);
       else
#   endif /* HAVE_PPSAPI */
               rd_timestamp = ntpfp_with_fudge(
                       rd_timestamp, pp->fudgetime2);

       /* set the GPS base date, if possible */
       warp = !(peer->ttl & NMEA_DATETRUST_MASK);
       if (rc_dtyp != DTYP_NONE) {
               DPRINTF(1, ("%s saving date, type=%hu\n",
                           refnumtoa(&peer->srcadr), rc_dtyp));
               switch (rc_dtyp) {
               case DTYP_W10B:
                       up->last_gpsdate = gpsntp_from_gpscal_ex(
                               &wgps, (warp = TRUE));
                       break;
               case DTYP_WEXT:
                       up->last_gpsdate = gpsntp_from_gpscal_ex(
                               &wgps, warp);
                       break;
               default:
                       up->last_gpsdate = gpsntp_from_calendar_ex(
                               &date, tofs, warp);
                       break;
               }
               up->type_gpsdate = rc_dtyp;
               up->hold_gpsdate = DATE_HOLD;
       }
       /* now convert and possibly extend/expand the time stamp. */
       if (up->hold_gpsdate) { /* time of day, based */
               dntp = gpsntp_from_daytime2_ex(
                       &date, tofs, &up->last_gpsdate, warp);
       } else {                /* time of day, floating */
               dntp = gpsntp_from_daytime1_ex(
                       &date, tofs, rd_timestamp, warp);
       }

       if (debug) {
               /* debug print time stamp */
               gpsntp_to_calendar(&date, &dntp);
#           ifdef HAVE_PPSAPI
               DPRINTF(1, ("%s effective timecode: %s (%s PPS)\n",
                           refnumtoa(&peer->srcadr),
                           ntpcal_iso8601std(NULL, 0, &date),
                           (withpps ? "with" : "without")));
#           else /* ?HAVE_PPSAPI */
               DPRINTF(1, ("%s effective timecode: %s\n",
                           refnumtoa(&peer->srcadr),
                           ntpcal_iso8601std(NULL, 0, &date)));
#           endif /* !HAVE_PPSAPI */
       }

       /* Get the reference time stamp from the calendar buffer.
        * Process the new sample in the median filter and determine the
        * timecode timestamp, but only if the PPS is not in control.
        * Discard sentence if reference time did not change.
        */
       rd_reftime = ntpfp_from_ntpdatum(&dntp);
       if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
               /* Do not touch pp->a_lastcode on purpose! */
               up->tally.filtered++;
               return;
       }
       up->last_reftime = rd_reftime;

       DPRINTF(1, ("%s using '%s'\n",
                   refnumtoa(&peer->srcadr), up->lb_buf));

       /* Data will be accepted. Update stats & log data. */
       up->tally.accepted++;
       refclock_save_lcode(pp, up->lb_buf, up->lb_len);
       pp->lastrec = rd_timestamp;

       /* If we have PPS augmented receive time, we *must* have a
        * working PPS source and we must set the flags accordingly.
        */
#   ifdef HAVE_PPSAPI
       if (withpps) {
               up->ppsapi_gate = TRUE;
               peer->precision = PPS_PRECISION;
               if (tabsdiffd(rd_reftime, rd_timestamp) < 0.5) {
                       if ( ! (peer->ttl & NMEA_QUIETPPS_MASK))
                               peer->flags |= FLAG_PPS;
                       DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
                                   refnumtoa(&peer->srcadr)));
                       up->tally.pps_used++;
               } else {
                       DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
                                   refnumtoa(&peer->srcadr)));
               }
               /* !Note! 'FLAG_PPS' is reset in 'nmea_poll()' */
       }
#   endif /* HAVE_PPSAPI */
       /* Whether the receive time stamp is PPS-augmented or not,
        * the proper fudge offset is already applied. There's no
        * residual fudge to process.
        */
       refclock_process_offset(pp, rd_reftime, rd_timestamp, 0.0);
       up->rcvtout = 2;
}

/*
* -------------------------------------------------------------------
* nmea_receive - receive data from the serial interface
*
* With serial IO only, a single call to 'refclock_gtlin()' to get the
* string would suffice to get the NMEA data. When using NMEAD, this
* does unfortunately no longer hold, since TCP is stream oriented and
* not line oriented, and there's no one to do the line-splitting work
* of the TTY driver in line/cooked mode.
*
* So we have to do this manually here, and we have to live with the
* fact that there could be more than one sentence in a receive buffer.
* Likewise, there can be partial messages on either end. (Strictly
* speaking, a receive buffer could also contain just a single fragment,
* though that's unlikely.)
*
* We deal with that by scanning the input buffer, copying bytes from
* the receive buffer to the assembly buffer as we go and calling the
* record processor every time we hit a CR/LF, provided the resulting
* line is not empty. Any leftovers are kept for the next round.
*
* Note: When used with a serial data stream, there's no change to the
* previous line-oriented input: One line is copied to the buffer and
* processed per call. Only with NMEAD the behavior changes, and the
* timing is badly affected unless a PPS channel is also associated with
* the clock instance. TCP leaves us nothing to improve on here.
* -------------------------------------------------------------------
*/
static void
nmea_receive(
       struct recvbuf * rbufp
       )
{
       /* declare & init control structure pointers */
       struct peer         * const peer = rbufp->recv_peer;
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit*)pp->unitptr;

       const char *sp, *se;
       char       *dp, *de;

       /* paranoia check: */
       if (up->lb_len >= sizeof(up->lb_buf))
               up->lb_len = 0;

       /* pick up last assembly position; leave room for NUL */
       dp = up->lb_buf + up->lb_len;
       de = up->lb_buf + sizeof(up->lb_buf) - 1;
       /* set up input range */
       sp = (const char *)rbufp->recv_buffer;
       se = sp + rbufp->recv_length;

       /* walk over the input data, dropping parity bits and control
        * chars as we go, and calling the record processor for each
        * complete non-empty line.
        */
       while (sp != se) {
               char ch = (*sp++ & 0x7f);
               if (dp == up->lb_buf) {
                       if (ch == '$')
                               *dp++ = ch;
               } else if (dp > de) {
                       dp = up->lb_buf;
               } else if (ch == '\n' || ch == '\r') {
                       *dp = '\0';
                       up->lb_len = (int)(dp - up->lb_buf);
                       dp = up->lb_buf;
                       nmea_procrec(peer, rbufp->recv_time);
               } else if (ch >= 0x20 && ch < 0x7f) {
                       *dp++ = ch;
               }
       }
       /* update state to keep for next round */
       *dp = '\0';
       up->lb_len = (int)(dp - up->lb_buf);
}

/*
* -------------------------------------------------------------------
* nmea_poll - called by the transmit procedure
*
* Does the necessary bookkeeping stuff to keep the reported state of
* the clock in sync with reality.
*
* We go to great pains to avoid changing state here, since there may
* be more than one eavesdropper receiving the same timecode.
* -------------------------------------------------------------------
*/
static void
nmea_poll(
       int           unit,
       struct peer * peer
       )
{
       struct refclockproc * const pp = peer->procptr;
       nmea_unit           * const up = (nmea_unit *)pp->unitptr;

       /*
        * Process median filter samples. If none received, declare a
        * timeout and keep going.
        */
#   ifdef HAVE_PPSAPI
       /*
        * If we don't have PPS pulses and time stamps, turn PPS down
        * for now.
        */
       if (!up->ppsapi_gate) {
               peer->flags &= ~FLAG_PPS;
               peer->precision = PRECISION;
       } else {
               up->ppsapi_gate = FALSE;
       }
#   endif /* HAVE_PPSAPI */

       /*
        * If the median filter is empty, claim a timeout. Else process
        * the input data and keep the stats going.
        */
       if (pp->coderecv == pp->codeproc) {
               peer->flags &= ~FLAG_PPS;
               if (pp->currentstatus < CEVNT_TIMEOUT)
                   refclock_report(peer, CEVNT_TIMEOUT);
               memset(&up->last_gpsdate, 0, sizeof(up->last_gpsdate));
       } else {
               pp->polls++;
               pp->lastref = pp->lastrec;
               refclock_receive(peer);
               if (pp->currentstatus > CEVNT_NOMINAL)
                   refclock_report(peer, CEVNT_NOMINAL);
       }

       /*
        * If extended logging is required, write the tally stats to the
        * clockstats file; otherwise just do a normal clock stats
        * record. Clear the tally stats anyway.
       */
       if (peer->ttl & NMEA_EXTLOG_MASK) {
               /* Log & reset counters with extended logging */
               const char *nmea = pp->a_lastcode;
               if (*nmea == '\0') nmea = "(none)";
               mprintf_clock_stats(
                 &peer->srcadr, "%s  %u %u %u %u %u %u",
                 nmea,
                 up->tally.total, up->tally.accepted,
                 up->tally.rejected, up->tally.malformed,
                 up->tally.filtered, up->tally.pps_used);
       } else {
               record_clock_stats(&peer->srcadr, pp->a_lastcode);
       }
       ZERO(up->tally);
}

#if NMEA_WRITE_SUPPORT
/*
* -------------------------------------------------------------------
*  gps_send(fd, cmd, peer)     Sends a command to the GPS receiver.
*   as in gps_send(fd, "rqts,u", peer);
*
* If 'cmd' starts with a '$' it is assumed that this command is in raw
* format, that is, starts with '$', ends with '<cr><lf>' and that any
* checksum is correctly provided; the command will be send 'as is' in
* that case. Otherwise the function will create the necessary frame
* (start char, chksum, final CRLF) on the fly.
*
* We don't currently send any data, but would like to send RTCM SC104
* messages for differential positioning. It should also give us better
* time. Without a PPS output, we're Just fooling ourselves because of
* the serial code paths
* -------------------------------------------------------------------
*/
static void
gps_send(
       int           fd,
       const char  * cmd,
       struct peer * peer
       )
{
       /* $...*xy<CR><LF><NUL> add 7 */
       char          buf[NMEA_PROTO_MAXLEN + 7];
       int           len;
       u_char        dcs;
       const u_char *beg, *end;

       if (*cmd != '$') {
               /* get checksum and length */
               beg = end = (const u_char*)cmd;
               dcs = 0;
               while (*end >= ' ' && *end != '*')
                       dcs ^= *end++;
               len = end - beg;
               /* format into output buffer with overflow check */
               len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
                              len, beg, dcs);
               if ((size_t)len >= sizeof(buf)) {
                       DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
                                   refnumtoa(&peer->srcadr), cmd));
                       return; /* game over player 1 */
               }
               cmd = buf;
       } else {
               len = strlen(cmd);
       }

       DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
               len - 2, cmd));

       /* send out the whole stuff */
       if (refclock_fdwrite(peer, fd, cmd, len) != len)
               refclock_report(peer, CEVNT_FAULT);
}
#endif /* NMEA_WRITE_SUPPORT */

/*
* -------------------------------------------------------------------
* helpers for faster field splitting
* -------------------------------------------------------------------
*
* set up a field record, check syntax and verify checksum
*
* format is $XXXXX,1,2,3,4*ML
*
* 8-bit XOR of characters between $ and * noninclusive is transmitted
* in last two chars M and L holding most and least significant nibbles
* in hex representation such as:
*
*   $GPGLL,5057.970,N,00146.110,E,142451,A*27
*   $GPVTG,089.0,T,,,15.2,N,,*7F
*
* Some other constraints:
* + The field name must be at least 5 upcase characters or digits and
*   must start with a character.
* + The checksum (if present) must be uppercase hex digits.
* + The length of a sentence is limited to 80 characters (not including
*   the final CR/LF nor the checksum, but including the leading '$')
*
* Return values:
*  + CHECK_INVALID
*      The data does not form a valid NMEA sentence or a checksum error
*      occurred.
*  + CHECK_VALID
*      The data is a valid NMEA sentence but contains no checksum.
*  + CHECK_CSVALID
*      The data is a valid NMEA sentence and passed the checksum test.
* -------------------------------------------------------------------
*/
static int
field_init(
       nmea_data * data,       /* context structure                   */
       char      * cptr,       /* start of raw data                   */
       int         dlen        /* data len, not counting trailing NUL */
       )
{
       u_char cs_l;    /* checksum local computed      */
       u_char cs_r;    /* checksum remote given        */
       char * eptr;    /* buffer end end pointer       */
       char   tmp;     /* char buffer                  */

       cs_l = 0;
       cs_r = 0;
       /* some basic input constraints */
       if (dlen < 0)
               dlen = 0;
       eptr = cptr + dlen;
       *eptr = '\0';

       /* load data context */
       data->base = cptr;
       data->cptr = cptr;
       data->cidx = 0;
       data->blen = dlen;

       /* syntax check follows here. check allowed character
        * sequences, updating the local computed checksum as we go.
        *
        * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
        */

       /* -*- start character: '^\$' */
       if (*cptr == '\0')
               return CHECK_EMPTY;
       if (*cptr++ != '$')
               return CHECK_INVALID;

       /* -*- advance context beyond start character */
       data->base++;
       data->cptr++;
       data->blen--;

       /* -*- field name: '[A-Z][A-Z0-9]{4,},' */
       if (*cptr < 'A' || *cptr > 'Z')
               return CHECK_INVALID;
       cs_l ^= *cptr++;
       while ((*cptr >= 'A' && *cptr <= 'Z') ||
              (*cptr >= '0' && *cptr <= '9')  )
               cs_l ^= *cptr++;
       if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
               return CHECK_INVALID;
       cs_l ^= *cptr++;

       /* -*- data: '[^*]*' */
       while (*cptr && *cptr != '*')
               cs_l ^= *cptr++;

       /* -*- checksum field: (\*[0-9A-F]{2})?$ */
       if (*cptr == '\0')
               return CHECK_VALID;
       if (*cptr != '*' || cptr != eptr - 3 ||
           (cptr - data->base) >= NMEA_PROTO_MAXLEN)
               return CHECK_INVALID;

       for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
               if (tmp >= '0' && tmp <= '9')
                       cs_r = (cs_r << 4) + (tmp - '0');
               else if (tmp >= 'A' && tmp <= 'F')
                       cs_r = (cs_r << 4) + (tmp - 'A' + 10);
               else
                       break;
       }

       /* -*- make sure we are at end of string and csum matches */
       if (cptr != eptr || cs_l != cs_r)
               return CHECK_INVALID;

       return CHECK_CSVALID;
}

/*
* -------------------------------------------------------------------
* fetch a data field by index, zero being the name field. If this
* function is called repeatedly with increasing indices, the total load
* is O(n), n being the length of the string; if it is called with
* decreasing indices, the total load is O(n^2). Try not to go backwards
* too often.
* -------------------------------------------------------------------
*/
static char *
field_parse(
       nmea_data * data,
       int         fn
       )
{
       char tmp;

       if (fn < data->cidx) {
               data->cidx = 0;
               data->cptr = data->base;
       }
       while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
               data->cidx += (tmp == ',');
               data->cptr++;
       }
       return data->cptr;
}

/*
* -------------------------------------------------------------------
* Wipe (that is, overwrite with '_') data fields and the checksum in
* the last timecode.  The list of field indices is given as integers
* in a varargs list, preferably in ascending order, in any case
* terminated by a negative field index.
*
* A maximum number of 8 fields can be overwritten at once to guard
* against runaway (that is, unterminated) argument lists.
*
* This function affects what a remote user can see with
*
* ntpq -c clockvar <server>
*
* Note that this also removes the wiped fields from any clockstats
* log.  Some NTP operators monitor their NMEA GPS using the change in
* location in clockstats over time as as a proxy for the quality of
* GPS reception and thereby time reported.
* -------------------------------------------------------------------
*/
static void
field_wipe(
       nmea_data * data,
       ...
       )
{
       va_list va;             /* vararg index list */
       int     fcnt;           /* safeguard against runaway arglist */
       int     fidx;           /* field to nuke, or -1 for checksum */
       char  * cp;             /* overwrite destination */

       fcnt = 8;
       cp = NULL;
       va_start(va, data);
       do {
               fidx = va_arg(va, int);
               if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
                       cp = field_parse(data, fidx);
               } else {
                       cp = data->base + data->blen;
                       if (data->blen >= 3 && cp[-3] == '*')
                               cp -= 2;
               }
               for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
                       if ('.' != *cp)
                               *cp = '_';
       } while (fcnt-- && fidx >= 0);
       va_end(va);
}

/*
* -------------------------------------------------------------------
* PARSING HELPERS
* -------------------------------------------------------------------
*/
typedef unsigned char const UCC;

static char const * const s_eof_chars = ",*\r\n";

#ifdef DEBUG
static int field_length(UCC *cp, unsigned int nfields)
{
       char const * ep = (char const*)cp;
       ep = strpbrk(ep, s_eof_chars);
       if (ep && nfields)
               while (--nfields && ep && *ep == ',')
                       ep = strpbrk(ep + 1, s_eof_chars);
       return (ep)
           ? (int)((UCC*)ep - cp)
           : (int)strlen((char const*)cp);
}
#endif  /* DEBUG */

/* /[,*\r\n]/ --> skip */
static int _parse_eof(UCC *cp, UCC ** ep)
{
       int rc = (strchr(s_eof_chars, *(char const*)cp) != NULL);
       *ep = cp + rc;
       return rc;
}

/* /,/ --> skip */
static int _parse_sep(UCC *cp, UCC ** ep)
{
       int rc = (*cp == ',');
       *ep = cp + rc;
       return rc;
}

/* /[[:digit:]]{2}/ --> uint16_t */
static int _parse_num2d(UCC *cp, UCC ** ep, uint16_t *into)
{
       int     rc = FALSE;

       if (isdigit(cp[0]) && isdigit(cp[1])) {
               *into = (cp[0] - '0') * 10 + (cp[1] - '0');
               cp += 2;
               rc = TRUE;
       }
       *ep = cp;
       return rc;
}

/* /[[:digit:]]+/ --> uint16_t */
static int _parse_u16(UCC *cp, UCC **ep, uint16_t *into, unsigned int ndig)
{
       uint16_t        num = 0;
       int             rc  = FALSE;
       if (isdigit(*cp) && ndig) {
               rc = TRUE;
               do
                       num = (num * 10) + (*cp - '0');
               while (isdigit(*++cp) && --ndig);
               *into = num;
       }
       *ep = cp;
       return rc;
}

/* /[[:digit:]]+/ --> uint32_t */
static int _parse_u32(UCC *cp, UCC **ep, uint32_t *into, unsigned int ndig)
{
       uint32_t        num = 0;
       int             rc  = FALSE;
       if (isdigit(*cp) && ndig) {
               rc = TRUE;
               do
                       num = (num * 10) + (*cp - '0');
               while (isdigit(*++cp) && --ndig);
               *into = num;
       }
       *ep = cp;
       return rc;
}

/* /(\.[[:digit:]]*)?/ --> l_fp{0, f}
* read fractional seconds, convert to l_fp
*
* Only the first 9 decimal digits are evaluated; any excess is parsed
* away but silently ignored. (--> truncation to 1 nanosecond)
*/
static int _parse_frac(UCC *cp, UCC **ep, l_fp *into)
{
       static const uint32_t powtab[10] = {
                       0,
               100000000, 10000000, 1000000,
                  100000,    10000,    1000,
                     100,       10,       1
       };

       struct timespec ts;
       ZERO(ts);
       if (*cp == '.') {
               uint32_t fval = 0;
               UCC *    sp   = cp + 1;
               if (_parse_u32(sp, &cp, &fval, 9))
                       ts.tv_nsec = fval * powtab[(size_t)(cp - sp)];
               while (isdigit(*cp))
                       ++cp;
       }

       *ep   = cp;
       *into = tspec_intv_to_lfp(ts);
       return TRUE;
}

/* /[[:digit:]]{6}/ --> time-of-day
* parses a number string representing 'HHMMSS'
*/
static int _parse_time(UCC *cp, UCC ** ep, TCivilDate *into)
{
       uint16_t        s, m, h;
       int             rc;
       UCC *           xp = cp;

       rc =   _parse_num2d(cp, &cp, &h) && (h < 24)
           && _parse_num2d(cp, &cp, &m) && (m < 60)
           && _parse_num2d(cp, &cp, &s) && (s < 61); /* leap seconds! */

       if (rc) {
               into->hour   = (uint8_t)h;
               into->minute = (uint8_t)m;
               into->second = (uint8_t)s;
               *ep = cp;
       } else {
               *ep = xp;
               DPRINTF(1, ("nmea: invalid time code: '%.*s'\n",
                           field_length(xp, 1), xp));
       }
       return rc;
}

/* /[[:digit:]]{6}/ --> civil date
* parses a number string representing 'ddmmyy'
*/
static int _parse_date1(UCC *cp, UCC **ep, TCivilDate *into)
{
       unsigned short  d, m, y;
       int             rc;
       UCC *           xp = cp;

       rc =   _parse_num2d(cp, &cp, &d) && (d - 1 < 31)
           && _parse_num2d(cp, &cp, &m) && (m - 1 < 12)
           && _parse_num2d(cp, &cp, &y)
           && _parse_eof(cp, ep);
       if (rc) {
               into->monthday = (uint8_t )d;
               into->month    = (uint8_t )m;
               into->year     = (uint16_t)y;
               *ep = cp;
       } else {
               *ep = xp;
               DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
                           field_length(xp, 1), xp));
       }
       return rc;
}

/* /[[:digit:]]+,[[:digit:]]+,[[:digit:]]+/ --> civil date
* parses three successive numeric fields as date: day,month,year
*/
static int _parse_date3(UCC *cp, UCC **ep, TCivilDate *into)
{
       uint16_t        d, m, y;
       int             rc;
       UCC *           xp = cp;

       rc =   _parse_u16(cp, &cp, &d, 2) && (d - 1 < 31)
           && _parse_sep(cp, &cp)
           && _parse_u16(cp, &cp, &m, 2) && (m - 1 < 12)
           && _parse_sep(cp, &cp)
           && _parse_u16(cp, &cp, &y, 4) && (y > 1980)
           && _parse_eof(cp, ep);
       if (rc) {
               into->monthday = (uint8_t )d;
               into->month    = (uint8_t )m;
               into->year     = (uint16_t)y;
               *ep = cp;
       } else {
               *ep = xp;
               DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
                           field_length(xp, 3), xp));
       }
       return rc;
}

/*
* -------------------------------------------------------------------
* Check sync status
*
* If the character at the data field start matches the tag value,
* return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
* flag is given, just the opposite value is returned. If there is no
* data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
* -------------------------------------------------------------------
*/
static u_char
parse_qual(
       nmea_data * rd,
       int         idx,
       char        tag,
       int         inv
       )
{
       static const u_char table[2] = {
               LEAP_NOTINSYNC, LEAP_NOWARNING };

       char * dp = field_parse(rd, idx);

       return table[ *dp && ((*dp == tag) == !inv) ];
}

/*
* -------------------------------------------------------------------
* Parse a time stamp in HHMMSS[.sss] format with error checking.
*
* returns 1 on success, 0 on failure
* -------------------------------------------------------------------
*/
static int
parse_time(
       struct calendar * jd,   /* result calendar pointer */
       l_fp            * fofs, /* storage for nsec fraction */
       nmea_data       * rd,
       int               idx
       )
{
       UCC *   dp = (UCC*)field_parse(rd, idx);

       return _parse_time(dp, &dp, jd)
           && _parse_frac(dp, &dp, fofs)
           && _parse_eof (dp, &dp);
}

/*
* -------------------------------------------------------------------
* Parse a date string from an NMEA sentence. This could either be a
* partial date in DDMMYY format in one field, or DD,MM,YYYY full date
* spec spanning three fields. This function does some extensive error
* checking to make sure the date string was consistent.
*
* returns 1 on success, 0 on failure
* -------------------------------------------------------------------
*/
static int
parse_date(
       struct calendar * jd,   /* result pointer */
       nmea_data       * rd,
       int               idx,
       enum date_fmt     fmt
       )
{
       UCC  * dp = (UCC*)field_parse(rd, idx);

       switch (fmt) {
       case DATE_1_DDMMYY:
               return _parse_date1(dp, &dp, jd);
       case DATE_3_DDMMYYYY:
               return _parse_date3(dp, &dp, jd);
       default:
               DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
               break;
       }
       return FALSE;
}

/*
* -------------------------------------------------------------------
* Parse GPS week time info from an NMEA sentence. This info contains
* the GPS week number, the GPS time-of-week and the leap seconds GPS
* to UTC.
*
* returns 1 on success, 0 on failure
* -------------------------------------------------------------------
*/
static int
parse_gpsw(
       TGpsDatum *  wd,
       nmea_data *  rd,
       int          weekidx,
       int          timeidx,
       int          leapidx
       )
{
       uint32_t        secs;
       uint16_t        week, leap = 0;
       l_fp            fofs;
       int             rc;

       UCC *   dpw = (UCC*)field_parse(rd, weekidx);
       UCC *   dps = (UCC*)field_parse(rd, timeidx);

       rc =   _parse_u16 (dpw, &dpw, &week, 5)
           && _parse_eof (dpw, &dpw)
           && _parse_u32 (dps, &dps, &secs, 9)
           && _parse_frac(dps, &dps, &fofs)
           && _parse_eof (dps, &dps)
           && (secs < 7*SECSPERDAY);
       if (rc && leapidx > 0) {
               UCC *   dpl = (UCC*)field_parse(rd, leapidx);
               rc =   _parse_u16 (dpl, &dpl, &leap, 5)
                   && _parse_eof (dpl, &dpl);
       }
       if (rc) {
               fofs.l_ui -= leap;
               *wd = gpscal_from_gpsweek(week, secs, fofs);
       } else {
               DPRINTF(1, ("nmea: parse_gpsw: invalid weektime spec\n"));
       }
       return rc;
}


#ifdef HAVE_PPSAPI
static double
tabsdiffd(
       l_fp    t1,
       l_fp    t2
       )
{
       double  dd;
       L_SUB(&t1, &t2);
       LFPTOD(&t1, dd);
       return fabs(dd);
}
#endif /* HAVE_PPSAPI */

/*
* ===================================================================
*
* NMEAD support
*
* original nmead support added by Jon Miner ([email protected])
*
* See http://home.hiwaay.net/~taylorc/gps/nmea-server/
* for information about nmead
*
* To use this, you need to create a link from /dev/gpsX to
* the server:port where nmead is running.  Something like this:
*
* ln -s server:port /dev/gps1
*
* Split into separate function by Juergen Perlinger
* (perlinger-at-ntp-dot-org)
*
* ===================================================================
*/
static int
nmead_open(
       const char * device
       )
{
       int     fd = -1;                /* result file descriptor */

#   ifdef HAVE_READLINK
       char    host[80];               /* link target buffer   */
       char  * port;                   /* port name or number  */
       int     rc;                     /* result code (several)*/
       int     sh;                     /* socket handle        */
       struct addrinfo  ai_hint;       /* resolution hint      */
       struct addrinfo *ai_list;       /* resolution result    */
       struct addrinfo *ai;            /* result scan ptr      */

       fd = -1;

       /* try to read as link, make sure no overflow occurs */
       rc = readlink(device, host, sizeof(host));
       if ((size_t)rc >= sizeof(host))
               return fd;      /* error / overflow / truncation */
       host[rc] = '\0';        /* readlink does not place NUL  */

       /* get port */
       port = strchr(host, ':');
       if (!port)
               return fd; /* not 'host:port' syntax ? */
       *port++ = '\0'; /* put in separator */

       /* get address infos and try to open socket
        *
        * This getaddrinfo() is naughty in ntpd's nonblocking main
        * thread, but you have to go out of your wary to use this code
        * and typically the blocking is at startup where its impact is
        * reduced. The same holds for the 'connect()', as it is
        * blocking, too...
        */
       ZERO(ai_hint);
       ai_hint.ai_protocol = IPPROTO_TCP;
       ai_hint.ai_socktype = SOCK_STREAM;
       if (getaddrinfo(host, port, &ai_hint, &ai_list))
               return fd;

       for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
               sh = socket(ai->ai_family, ai->ai_socktype,
                           ai->ai_protocol);
               if (INVALID_SOCKET == sh)
                       continue;
               rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
               if (-1 != rc)
                       fd = sh;
               else
                       close(sh);
       }
       freeaddrinfo(ai_list);
       if (fd != -1)
               make_socket_nonblocking(fd);
#   else
       fd = -1;
#   endif

       return fd;
}
#else
NONEMPTY_TRANSLATION_UNIT
#endif /* REFCLOCK && CLOCK_NMEA */