/*      $NetBSD: refclock_irig.c,v 1.10 2024/08/18 20:47:18 christos Exp $      */

/*
* refclock_irig - audio IRIG-B/E demodulator/decoder
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined(REFCLOCK) && defined(CLOCK_IRIG)

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */

#include "audio.h"

/*
* Audio IRIG-B/E demodulator/decoder
*
* This driver synchronizes the computer time using data encoded in
* IRIG-B/E signals commonly produced by GPS receivers and other timing
* devices. The IRIG signal is an amplitude-modulated carrier with
* pulse-width modulated data bits. For IRIG-B, the carrier frequency is
* 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
* 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
& format is in use.
*
* The driver requires an audio codec or sound card with sampling rate 8
* kHz and mu-law companding. This is the same standard as used by the
* telephone industry and is supported by most hardware and operating
* systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
* implementation, only one audio driver and codec can be supported on a
* single machine.
*
* The program processes 8000-Hz mu-law companded samples using separate
* signal filters for IRIG-B and IRIG-E, a comb filter, envelope
* detector and automatic threshold corrector. Cycle crossings relative
* to the corrected slice level determine the width of each pulse and
* its value - zero, one or position identifier.
*
* The data encode 20 BCD digits which determine the second, minute,
* hour and day of the year and sometimes the year and synchronization
* condition. The comb filter exponentially averages the corresponding
* samples of successive baud intervals in order to reliably identify
* the reference carrier cycle. A type-II phase-lock loop (PLL) performs
* additional integration and interpolation to accurately determine the
* zero crossing of that cycle, which determines the reference
* timestamp. A pulse-width discriminator demodulates the data pulses,
* which are then encoded as the BCD digits of the timecode.
*
* The timecode and reference timestamp are updated once each second
* with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
* saved for later processing. At poll intervals of 64 s, the saved
* samples are processed by a trimmed-mean filter and used to update the
* system clock.
*
* An automatic gain control feature provides protection against
* overdriven or underdriven input signal amplitudes. It is designed to
* maintain adequate demodulator signal amplitude while avoiding
* occasional noise spikes. In order to assure reliable capture, the
* decompanded input signal amplitude must be greater than 100 units and
* the codec sample frequency error less than 250 PPM (.025 percent).
*
* Monitor Data
*
* The timecode format used for debugging and data recording includes
* data helpful in diagnosing problems with the IRIG signal and codec
* connections. The driver produces one line for each timecode in the
* following format:
*
* 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
*
* If clockstats is enabled, the most recent line is written to the
* clockstats file every 64 s. If verbose recording is enabled (fudge
* flag 4) each line is written as generated.
*
* The first field containes the error flags in hex, where the hex bits
* are interpreted as below. This is followed by the year of century,
* day of year and time of day. Note that the time of day is for the
* previous minute, not the current time. The status indicator and year
* are not produced by some IRIG devices and appear as zeros. Following
* these fields are the carrier amplitude (0-3000), codec gain (0-255),
* modulation index (0-1), time constant (4-10), carrier phase error
* +-.5) and carrier frequency error (PPM). The last field is the on-
* time timestamp in NTP format.
*
* The error flags are defined as follows in hex:
*
* x01  Low signal. The carrier amplitude is less than 100 units. This
*      is usually the result of no signal or wrong input port.
* x02  Frequency error. The codec frequency error is greater than 250
*      PPM. This may be due to wrong signal format or (rarely)
*      defective codec.
* x04  Modulation error. The IRIG modulation index is less than 0.5.
*      This is usually the result of an overdriven codec, wrong signal
*      format or wrong input port.
* x08  Frame synch error. The decoder frame does not match the IRIG
*      frame. This is usually the result of an overdriven codec, wrong
*      signal format or noisy IRIG signal. It may also be the result of
*      an IRIG signature check which indicates a failure of the IRIG
*      signal synchronization source.
* x10  Data bit error. The data bit length is out of tolerance. This is
*      usually the result of an overdriven codec, wrong signal format
*      or noisy IRIG signal.
* x20  Seconds numbering discrepancy. The decoder second does not match
*      the IRIG second. This is usually the result of an overdriven
*      codec, wrong signal format or noisy IRIG signal.
* x40  Codec error (overrun). The machine is not fast enough to keep up
*      with the codec.
* x80  Device status error (Spectracom).
*
*
* Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
* within a few tens of microseconds relative to the IRIG-B signal.
* Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
* broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
* modulation.
*
* Unlike other drivers, which can have multiple instantiations, this
* one supports only one. It does not seem likely that more than one
* audio codec would be useful in a single machine. More than one would
* probably chew up too much CPU time anyway.
*
* Fudge factors
*
* Fudge flag4 causes the dubugging output described above to be
* recorded in the clockstats file. Fudge flag2 selects the audio input
* port, where 0 is the mike port (default) and 1 is the line-in port.
* It does not seem useful to select the compact disc player port. Fudge
* flag3 enables audio monitoring of the input signal. For this purpose,
* the monitor gain is set t a default value. Fudgetime2 is used as a
* frequency vernier for broken codec sample frequency.
*
* Alarm codes
*
* CEVNT_BADTIME        invalid date or time
* CEVNT_TIMEOUT        no IRIG data since last poll
*/
/*
* Interface definitions
*/
#define DEVICE_AUDIO    "/dev/audio" /* audio device name */
#define PRECISION       (-17)   /* precision assumed (about 10 us) */
#define REFID           "IRIG"  /* reference ID */
#define DESCRIPTION     "Generic IRIG Audio Driver" /* WRU */
#define AUDIO_BUFSIZ    320     /* audio buffer size (40 ms) */
#define SECOND          8000    /* nominal sample rate (Hz) */
#define BAUD            80      /* samples per baud interval */
#define OFFSET          128     /* companded sample offset */
#define SIZE            256     /* decompanding table size */
#define CYCLE           8       /* samples per bit */
#define SUBFLD          10      /* bits per frame */
#define FIELD           100     /* bits per second */
#define MINTC           2       /* min PLL time constant */
#define MAXTC           10      /* max PLL time constant max */
#define MAXAMP          3000.   /* maximum signal amplitude */
#define MINAMP          2000.   /* minimum signal amplitude */
#define DRPOUT          100.    /* dropout signal amplitude */
#define MODMIN          0.5     /* minimum modulation index */
#define MAXFREQ         (250e-6 * SECOND) /* freq tolerance (.025%) */

/*
* The on-time synchronization point is the positive-going zero crossing
* of the first cycle of the second. The IIR baseband filter phase delay
* is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
* due to the codec and other causes was determined by calibrating to a
* PPS signal from a GPS receiver.
*
* The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
* within .02 ms short-term with .02 ms jitter. The processor load due
* to the driver is 0.51 percent.
*/
#define IRIG_B  ((1.03 + 2.68) / 1000)  /* IRIG-B system delay (s) */
#define IRIG_E  ((3.47 + 2.68) / 1000)  /* IRIG-E system delay (s) */

/*
* Data bit definitions
*/
#define BIT0            0       /* zero */
#define BIT1            1       /* one */
#define BITP            2       /* position identifier */

/*
* Error flags
*/
#define IRIG_ERR_AMP    0x01    /* low carrier amplitude */
#define IRIG_ERR_FREQ   0x02    /* frequency tolerance exceeded */
#define IRIG_ERR_MOD    0x04    /* low modulation index */
#define IRIG_ERR_SYNCH  0x08    /* frame synch error */
#define IRIG_ERR_DECODE 0x10    /* frame decoding error */
#define IRIG_ERR_CHECK  0x20    /* second numbering discrepancy */
#define IRIG_ERR_ERROR  0x40    /* codec error (overrun) */
#define IRIG_ERR_SIGERR 0x80    /* IRIG status error (Spectracom) */

static  char    hexchar[] = "0123456789abcdef";

/*
* IRIG unit control structure
*/
struct irigunit {
       u_char  timecode[2 * SUBFLD + 1]; /* timecode string */
       l_fp    timestamp;      /* audio sample timestamp */
       l_fp    tick;           /* audio sample increment */
       l_fp    refstamp;       /* reference timestamp */
       l_fp    chrstamp;       /* baud timestamp */
       l_fp    prvstamp;       /* previous baud timestamp */
       double  integ[BAUD];    /* baud integrator */
       double  phase, freq;    /* logical clock phase and frequency */
       double  zxing;          /* phase detector integrator */
       double  yxing;          /* cycle phase */
       double  exing;          /* envelope phase */
       double  modndx;         /* modulation index */
       double  irig_b;         /* IRIG-B signal amplitude */
       double  irig_e;         /* IRIG-E signal amplitude */
       int     errflg;         /* error flags */
       /*
        * Audio codec variables
        */
       double  comp[SIZE];     /* decompanding table */
       double  signal;         /* peak signal for AGC */
       int     port;           /* codec port */
       int     gain;           /* codec gain */
       int     mongain;        /* codec monitor gain */
       int     seccnt;         /* second interval counter */

       /*
        * RF variables
        */
       double  bpf[9];         /* IRIG-B filter shift register */
       double  lpf[5];         /* IRIG-E filter shift register */
       double  envmin, envmax; /* envelope min and max */
       double  slice;          /* envelope slice level */
       double  intmin, intmax; /* integrated envelope min and max */
       double  maxsignal;      /* integrated peak amplitude */
       double  noise;          /* integrated noise amplitude */
       double  lastenv[CYCLE]; /* last cycle amplitudes */
       double  lastint[CYCLE]; /* last integrated cycle amplitudes */
       double  lastsig;        /* last carrier sample */
       double  fdelay;         /* filter delay */
       int     decim;          /* sample decimation factor */
       int     envphase;       /* envelope phase */
       int     envptr;         /* envelope phase pointer */
       int     envsw;          /* envelope state */
       int     envxing;        /* envelope slice crossing */
       int     tc;             /* time constant */
       int     tcount;         /* time constant counter */
       int     badcnt;         /* decimation interval counter */

       /*
        * Decoder variables
        */
       int     pulse;          /* cycle counter */
       int     cycles;         /* carrier cycles */
       int     dcycles;        /* data cycles */
       int     lastbit;        /* last code element */
       int     second;         /* previous second */
       int     bitcnt;         /* bit count in frame */
       int     frmcnt;         /* bit count in second */
       int     xptr;           /* timecode pointer */
       int     bits;           /* demodulated bits */
};

/*
* Function prototypes
*/
static  int     irig_start      (int, struct peer *);
static  void    irig_shutdown   (int, struct peer *);
static  void    irig_receive    (struct recvbuf *);
static  void    irig_poll       (int, struct peer *);

/*
* More function prototypes
*/
static  void    irig_base       (struct peer *, double);
static  void    irig_rf         (struct peer *, double);
static  void    irig_baud       (struct peer *, int);
static  void    irig_decode     (struct peer *, int);
static  void    irig_gain       (struct peer *);

/*
* Transfer vector
*/
struct  refclock refclock_irig = {
       irig_start,             /* start up driver */
       irig_shutdown,          /* shut down driver */
       irig_poll,              /* transmit poll message */
       noentry,                /* not used (old irig_control) */
       noentry,                /* initialize driver (not used) */
       noentry,                /* not used (old irig_buginfo) */
       NOFLAGS                 /* not used */
};


/*
* irig_start - open the devices and initialize data for processing
*/
static int
irig_start(
       int     unit,           /* instance number (used for PCM) */
       struct peer *peer       /* peer structure pointer */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       /*
        * Local variables
        */
       int     fd;             /* file descriptor */
       int     i;              /* index */
       double  step;           /* codec adjustment */

       /*
        * Open audio device
        */
       fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
       if (fd < 0)
               return (0);
#ifdef DEBUG
       if (debug)
               audio_show();
#endif

       /*
        * Allocate and initialize unit structure
        */
       up = emalloc_zero(sizeof(*up));
       pp = peer->procptr;
       pp->io.clock_recv = irig_receive;
       pp->io.srcclock = peer;
       pp->io.datalen = 0;
       pp->io.fd = fd;
       if (!io_addclock(&pp->io)) {
               close(fd);
               pp->io.fd = -1;
               free(up);
               return (0);
       }
       pp->unitptr = up;

       /*
        * Initialize miscellaneous variables
        */
       peer->precision = PRECISION;
       pp->clockdesc = DESCRIPTION;
       memcpy((char *)&pp->refid, REFID, 4);
       up->tc = MINTC;
       up->decim = 1;
       up->gain = 127;

       /*
        * The companded samples are encoded sign-magnitude. The table
        * contains all the 256 values in the interest of speed.
        */
       up->comp[0] = up->comp[OFFSET] = 0.;
       up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
       up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
       step = 2.;
       for (i = 3; i < OFFSET; i++) {
               up->comp[i] = up->comp[i - 1] + step;
               up->comp[OFFSET + i] = -up->comp[i];
               if (i % 16 == 0)
                       step *= 2.;
       }
       DTOLFP(1. / SECOND, &up->tick);
       return (1);
}


/*
* irig_shutdown - shut down the clock
*/
static void
irig_shutdown(
       int     unit,           /* instance number (not used) */
       struct peer *peer       /* peer structure pointer */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       pp = peer->procptr;
       up = pp->unitptr;
       if (-1 != pp->io.fd)
               io_closeclock(&pp->io);
       if (NULL != up)
               free(up);
}


/*
* irig_receive - receive data from the audio device
*
* This routine reads input samples and adjusts the logical clock to
* track the irig clock by dropping or duplicating codec samples.
*/
static void
irig_receive(
       struct recvbuf *rbufp   /* receive buffer structure pointer */
       )
{
       struct peer *peer;
       struct refclockproc *pp;
       struct irigunit *up;

       /*
        * Local variables
        */
       double  sample;         /* codec sample */
       u_char  *dpt;           /* buffer pointer */
       int     bufcnt;         /* buffer counter */
       l_fp    ltemp;          /* l_fp temp */

       peer = rbufp->recv_peer;
       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * Main loop - read until there ain't no more. Note codec
        * samples are bit-inverted.
        */
       DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
       L_SUB(&rbufp->recv_time, &ltemp);
       up->timestamp = rbufp->recv_time;
       dpt = rbufp->recv_buffer;
       for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
               sample = up->comp[~*dpt++ & 0xff];

               /*
                * Variable frequency oscillator. The codec oscillator
                * runs at the nominal rate of 8000 samples per second,
                * or 125 us per sample. A frequency change of one unit
                * results in either duplicating or deleting one sample
                * per second, which results in a frequency change of
                * 125 PPM.
                */
               up->phase += (up->freq + clock_codec) / SECOND;
               up->phase += pp->fudgetime2 / 1e6;
               if (up->phase >= .5) {
                       up->phase -= 1.;
               } else if (up->phase < -.5) {
                       up->phase += 1.;
                       irig_rf(peer, sample);
                       irig_rf(peer, sample);
               } else {
                       irig_rf(peer, sample);
               }
               L_ADD(&up->timestamp, &up->tick);
               sample = fabs(sample);
               if (sample > up->signal)
                       up->signal = sample;
               up->signal += (sample - up->signal) /
                   1000;

               /*
                * Once each second, determine the IRIG format and gain.
                */
               up->seccnt = (up->seccnt + 1) % SECOND;
               if (up->seccnt == 0) {
                       if (up->irig_b > up->irig_e) {
                               up->decim = 1;
                               up->fdelay = IRIG_B;
                       } else {
                               up->decim = 10;
                               up->fdelay = IRIG_E;
                       }
                       up->irig_b = up->irig_e = 0;
                       irig_gain(peer);

               }
       }

       /*
        * Set the input port and monitor gain for the next buffer.
        */
       if (pp->sloppyclockflag & CLK_FLAG2)
               up->port = 2;
       else
               up->port = 1;
       if (pp->sloppyclockflag & CLK_FLAG3)
               up->mongain = MONGAIN;
       else
               up->mongain = 0;
}


/*
* irig_rf - RF processing
*
* This routine filters the RF signal using a bandass filter for IRIG-B
* and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
* decimated by a factor of ten. Note that the codec filters function as
* roofing filters to attenuate both the high and low ends of the
* passband. IIR filter coefficients were determined using Matlab Signal
* Processing Toolkit.
*/
static void
irig_rf(
       struct peer *peer,      /* peer structure pointer */
       double  sample          /* current signal sample */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       /*
        * Local variables
        */
       double  irig_b, irig_e; /* irig filter outputs */

       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
        * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
        * phase delay 1.03 ms.
        */
       irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
       irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
       irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
       irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
       irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
       irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
       irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
       irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
       up->bpf[0] = sample - irig_b;
       irig_b = up->bpf[0] * 4.952157e-003
           + up->bpf[1] * -2.055878e-002
           + up->bpf[2] * 4.401413e-002
           + up->bpf[3] * -6.558851e-002
           + up->bpf[4] * 7.462108e-002
           + up->bpf[5] * -6.558851e-002
           + up->bpf[6] * 4.401413e-002
           + up->bpf[7] * -2.055878e-002
           + up->bpf[8] * 4.952157e-003;
       up->irig_b += irig_b * irig_b;

       /*
        * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
        * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
        * 3.47 ms.
        */
       irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
       irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
       irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
       irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
       up->lpf[0] = sample - irig_e;
       irig_e = up->lpf[0] * 3.215696e-003
           + up->lpf[1] * -1.174951e-002
           + up->lpf[2] * 1.712074e-002
           + up->lpf[3] * -1.174951e-002
           + up->lpf[4] * 3.215696e-003;
       up->irig_e += irig_e * irig_e;

       /*
        * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
        */
       up->badcnt = (up->badcnt + 1) % up->decim;
       if (up->badcnt == 0) {
               if (up->decim == 1)
                       irig_base(peer, irig_b);
               else
                       irig_base(peer, irig_e);
       }
}

/*
* irig_base - baseband processing
*
* This routine processes the baseband signal and demodulates the AM
* carrier using a synchronous detector. It then synchronizes to the
* data frame at the baud rate and decodes the width-modulated data
* pulses.
*/
static void
irig_base(
       struct peer *peer,      /* peer structure pointer */
       double  sample          /* current signal sample */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       /*
        * Local variables
        */
       double  lope;           /* integrator output */
       double  env;            /* envelope detector output */
       double  dtemp;
       int     carphase;       /* carrier phase */

       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * Synchronous baud integrator. Corresponding samples of current
        * and past baud intervals are integrated to refine the envelope
        * amplitude and phase estimate. We keep one cycle (1 ms) of the
        * raw data and one baud (10 ms) of the integrated data.
        */
       up->envphase = (up->envphase + 1) % BAUD;
       up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
           (5 * up->tc);
       lope = up->integ[up->envphase];
       carphase = up->envphase % CYCLE;
       up->lastenv[carphase] = sample;
       up->lastint[carphase] = lope;

       /*
        * Phase detector. Find the negative-going zero crossing
        * relative to sample 4 in the 8-sample sycle. A phase change of
        * 360 degrees produces an output change of one unit.
        */
       if (up->lastsig > 0 && lope <= 0)
               up->zxing += (double)(carphase - 4) / CYCLE;
       up->lastsig = lope;

       /*
        * End of the baud. Update signal/noise estimates and PLL
        * phase, frequency and time constant.
        */
       if (up->envphase == 0) {
               up->maxsignal = up->intmax; up->noise = up->intmin;
               up->intmin = 1e6; up->intmax = -1e6;
               if (up->maxsignal < DRPOUT)
                       up->errflg |= IRIG_ERR_AMP;
               if (up->maxsignal > 0)
                       up->modndx = (up->maxsignal - up->noise) /
                           up->maxsignal;
               else
                       up->modndx = 0;
               if (up->modndx < MODMIN)
                       up->errflg |= IRIG_ERR_MOD;
               if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
                  IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
                       up->tc = MINTC;
                       up->tcount = 0;
               }

               /*
                * Update PLL phase and frequency. The PLL time constant
                * is set initially to stabilize the frequency within a
                * minute or two, then increases to the maximum. The
                * frequency is clamped so that the PLL capture range
                * cannot be exceeded.
                */
               dtemp = up->zxing * up->decim / BAUD;
               up->yxing = dtemp;
               up->zxing = 0.;
               up->phase += dtemp / up->tc;
               up->freq += dtemp / (4. * up->tc * up->tc);
               if (up->freq > MAXFREQ) {
                       up->freq = MAXFREQ;
                       up->errflg |= IRIG_ERR_FREQ;
               } else if (up->freq < -MAXFREQ) {
                       up->freq = -MAXFREQ;
                       up->errflg |= IRIG_ERR_FREQ;
               }
       }

       /*
        * Synchronous demodulator. There are eight samples in the cycle
        * and ten cycles in the baud. Since the PLL has aligned the
        * negative-going zero crossing at sample 4, the maximum
        * amplitude is at sample 2 and minimum at sample 6. The
        * beginning of the data pulse is determined from the integrated
        * samples, while the end of the pulse is determined from the
        * raw samples. The raw data bits are demodulated relative to
        * the slice level and left-shifted in the decoding register.
        */
       if (carphase != 7)
               return;

       lope = (up->lastint[2] - up->lastint[6]) / 2.;
       if (lope > up->intmax)
               up->intmax = lope;
       if (lope < up->intmin)
               up->intmin = lope;

       /*
        * Pulse code demodulator and reference timestamp. The decoder
        * looks for a sequence of ten bits; the first two bits must be
        * one, the last two bits must be zero. Frame synch is asserted
        * when three correct frames have been found.
        */
       up->pulse = (up->pulse + 1) % 10;
       up->cycles <<= 1;
       if (lope >= (up->maxsignal + up->noise) / 2.)
               up->cycles |= 1;
       if ((up->cycles & 0x303c0f03) == 0x300c0300) {
               if (up->pulse != 0)
                       up->errflg |= IRIG_ERR_SYNCH;
               up->pulse = 0;
       }

       /*
        * Assemble the baud and max/min to get the slice level for the
        * next baud. The slice level is based on the maximum over the
        * first two bits and the minimum over the last two bits, with
        * the slice level halfway between the maximum and minimum.
        */
       env = (up->lastenv[2] - up->lastenv[6]) / 2.;
       up->dcycles <<= 1;
       if (env >= up->slice)
               up->dcycles |= 1;
       switch(up->pulse) {

       case 0:
               irig_baud(peer, up->dcycles);
               if (env < up->envmin)
                       up->envmin = env;
               up->slice = (up->envmax + up->envmin) / 2;
               up->envmin = 1e6; up->envmax = -1e6;
               break;

       case 1:
               up->envmax = env;
               break;

       case 2:
               if (env > up->envmax)
                       up->envmax = env;
               break;

       case 9:
               up->envmin = env;
               break;
       }
}

/*
* irig_baud - update the PLL and decode the pulse-width signal
*/
static void
irig_baud(
       struct peer *peer,      /* peer structure pointer */
       int     bits            /* decoded bits */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;
       double  dtemp;
       l_fp    ltemp;

       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * The PLL time constant starts out small, in order to
        * sustain a frequency tolerance of 250 PPM. It
        * gradually increases as the loop settles down. Note
        * that small wiggles are not believed, unless they
        * persist for lots of samples.
        */
       up->exing = -up->yxing;
       if (abs(up->envxing - up->envphase) <= 1) {
               up->tcount++;
               if (up->tcount > 20 * up->tc) {
                       up->tc++;
                       if (up->tc > MAXTC)
                               up->tc = MAXTC;
                       up->tcount = 0;
                       up->envxing = up->envphase;
               } else {
                       up->exing -= up->envxing - up->envphase;
               }
       } else {
               up->tcount = 0;
               up->envxing = up->envphase;
       }

       /*
        * Strike the baud timestamp as the positive zero crossing of
        * the first bit, accounting for the codec delay and filter
        * delay.
        */
       up->prvstamp = up->chrstamp;
       dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
       DTOLFP(dtemp, &ltemp);
       up->chrstamp = up->timestamp;
       L_SUB(&up->chrstamp, &ltemp);

       /*
        * The data bits are collected in ten-bit bauds. The first two
        * bits are not used. The resulting patterns represent runs of
        * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
        * 8-bit run represents a soft error and is treated as 0.
        */
       switch (up->dcycles & 0xff) {

       case 0x00:              /* 0-1 bits (0) */
       case 0x80:
               irig_decode(peer, BIT0);
               break;

       case 0xc0:              /* 2-4 bits (1) */
       case 0xe0:
       case 0xf0:
               irig_decode(peer, BIT1);
               break;

       case 0xf8:              /* (5-7 bits (PI) */
       case 0xfc:
       case 0xfe:
               irig_decode(peer, BITP);
               break;

       default:                /* 8 bits (error) */
               irig_decode(peer, BIT0);
               up->errflg |= IRIG_ERR_DECODE;
       }
}


/*
* irig_decode - decode the data
*
* This routine assembles bauds into digits, digits into frames and
* frames into the timecode fields. Bits can have values of zero, one
* or position identifier. There are four bits per digit, ten digits per
* frame and ten frames per second.
*/
static void
irig_decode(
       struct  peer *peer,     /* peer structure pointer */
       int     bit             /* data bit (0, 1 or 2) */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       /*
        * Local variables
        */
       int     syncdig;        /* sync digit (Spectracom) */
       char    sbs[6 + 1];     /* binary seconds since 0h */
       char    spare[2 + 1];   /* mulligan digits */
       int     temp;

       syncdig = 0;
       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * Assemble frame bits.
        */
       up->bits >>= 1;
       if (bit == BIT1) {
               up->bits |= 0x200;
       } else if (bit == BITP && up->lastbit == BITP) {

               /*
                * Frame sync - two adjacent position identifiers, which
                * mark the beginning of the second. The reference time
                * is the beginning of the second position identifier,
                * so copy the character timestamp to the reference
                * timestamp.
                */
               if (up->frmcnt != 1)
                       up->errflg |= IRIG_ERR_SYNCH;
               up->frmcnt = 1;
               up->refstamp = up->prvstamp;
       }
       up->lastbit = bit;
       if (up->frmcnt % SUBFLD == 0) {

               /*
                * End of frame. Encode two hexadecimal digits in
                * little-endian timecode field. Note frame 1 is shifted
                * right one bit to account for the marker PI.
                */
               temp = up->bits;
               if (up->frmcnt == 10)
                       temp >>= 1;
               if (up->xptr >= 2) {
                       up->timecode[--up->xptr] = hexchar[temp & 0xf];
                       up->timecode[--up->xptr] = hexchar[(temp >> 5) &
                           0xf];
               }
               if (up->frmcnt == 0) {

                       /*
                        * End of second. Decode the timecode and wind
                        * the clock. Not all IRIG generators have the
                        * year; if so, it is nonzero after year 2000.
                        * Not all have the hardware status bit; if so,
                        * it is lit when the source is okay and dim
                        * when bad. We watch this only if the year is
                        * nonzero. Not all are configured for signature
                        * control. If so, all BCD digits are set to
                        * zero if the source is bad. In this case the
                        * refclock_process() will reject the timecode
                        * as invalid.
                        */
                       up->xptr = 2 * SUBFLD;
                       if (sscanf((char *)up->timecode,
                          "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
                           &syncdig, spare, &pp->day, &pp->hour,
                           &pp->minute, &pp->second) != 8)
                               pp->leap = LEAP_NOTINSYNC;
                       else
                               pp->leap = LEAP_NOWARNING;
                       up->second = (up->second + up->decim) % 60;

                       /*
                        * Raise an alarm if the day field is zero,
                        * which happens when signature control is
                        * enabled and the device has lost
                        * synchronization. Raise an alarm if the year
                        * field is nonzero and the sync indicator is
                        * zero, which happens when a Spectracom radio
                        * has lost synchronization. Raise an alarm if
                        * the expected second does not agree with the
                        * decoded second, which happens with a garbled
                        * IRIG signal. We are very particular.
                        */
                       if (pp->day == 0 || (pp->year != 0 && syncdig ==
                           0))
                               up->errflg |= IRIG_ERR_SIGERR;
                       if (pp->second != up->second)
                               up->errflg |= IRIG_ERR_CHECK;
                       up->second = pp->second;

                       /*
                        * Wind the clock only if there are no errors
                        * and the time constant has reached the
                        * maximum.
                        */
                       if (up->errflg == 0 && up->tc == MAXTC) {
                               pp->lastref = pp->lastrec;
                               pp->lastrec = up->refstamp;
                               if (!refclock_process(pp))
                                       refclock_report(peer,
                                           CEVNT_BADTIME);
                       }
                       snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
                           "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
                           up->errflg, pp->year, pp->day,
                           pp->hour, pp->minute, pp->second,
                           up->maxsignal, up->gain, up->modndx,
                           up->tc, up->exing * 1e6 / SECOND, up->freq *
                           1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
                       pp->lencode = strlen(pp->a_lastcode);
                       up->errflg = 0;
                       if (pp->sloppyclockflag & CLK_FLAG4) {
                               record_clock_stats(&peer->srcadr,
                                   pp->a_lastcode);
#ifdef DEBUG
                               if (debug)
                                       printf("irig %s\n",
                                           pp->a_lastcode);
#endif /* DEBUG */
                       }
               }
       }
       up->frmcnt = (up->frmcnt + 1) % FIELD;
}


/*
* irig_poll - called by the transmit procedure
*
* This routine sweeps up the timecode updates since the last poll. For
* IRIG-B there should be at least 60 updates; for IRIG-E there should
* be at least 6. If nothing is heard, a timeout event is declared.
*/
static void
irig_poll(
       int     unit,           /* instance number (not used) */
       struct peer *peer       /* peer structure pointer */
       )
{
       struct refclockproc *pp;

       pp = peer->procptr;

       if (pp->coderecv == pp->codeproc) {
               refclock_report(peer, CEVNT_TIMEOUT);
               return;

       }
       refclock_receive(peer);
       if (!(pp->sloppyclockflag & CLK_FLAG4)) {
               record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
               if (debug)
                       printf("irig %s\n", pp->a_lastcode);
#endif /* DEBUG */
       }
       pp->polls++;

}


/*
* irig_gain - adjust codec gain
*
* This routine is called at the end of each second. It uses the AGC to
* bradket the maximum signal level between MINAMP and MAXAMP to avoid
* hunting. The routine also jiggles the input port and selectively
* mutes the monitor.
*/
static void
irig_gain(
       struct peer *peer       /* peer structure pointer */
       )
{
       struct refclockproc *pp;
       struct irigunit *up;

       pp = peer->procptr;
       up = pp->unitptr;

       /*
        * Apparently, the codec uses only the high order bits of the
        * gain control field. Thus, it may take awhile for changes to
        * wiggle the hardware bits.
        */
       if (up->maxsignal < MINAMP) {
               up->gain += 4;
               if (up->gain > MAXGAIN)
                       up->gain = MAXGAIN;
       } else if (up->maxsignal > MAXAMP) {
               up->gain -= 4;
               if (up->gain < 0)
                       up->gain = 0;
       }
       audio_gain(up->gain, up->mongain, up->port);
}


#else
NONEMPTY_TRANSLATION_UNIT
#endif /* REFCLOCK */