/*      $NetBSD: refclock_gpsdjson.c,v 1.14 2024/08/18 20:47:18 christos Exp $  */

/*
* refclock_gpsdjson.c - clock driver as GPSD JSON client
*      Juergen Perlinger ([email protected])
*      Feb 11, 2014 for the NTP project.
*      The contents of 'html/copyright.html' apply.
*
*      Heavily inspired by refclock_nmea.c
*
* Special thanks to Gary Miller and Hal Murray for their comments and
* ideas.
*
* Note: This will currently NOT work with Windows due to some
* limitations:
*
*  - There is no GPSD for Windows. (There is an unofficial port to
*    cygwin, but Windows is not officially supported.)
*
*  - To work properly, this driver needs PPS and TPV/TOFF sentences
*    from GPSD. I don't see how the cygwin port should deal with the
*    PPS signal.
*
*  - The device name matching must be done in a different way for
*    Windows. (Can be done with COMxx matching, as done for NMEA.)
*
* Apart from those minor hickups, once GPSD has been fully ported to
* Windows, there's no reason why this should not work there ;-) If this
* is ever to happen at all is a different question.
*
* ---------------------------------------------------------------------
*
* This driver works slightly different from most others, as the PPS
* information (if available) is also coming from GPSD via the data
* connection. This makes using both the PPS data and the serial data
* easier, but OTOH it's not possible to use the ATOM driver to feed a
* raw PPS stream to the core of NTPD.
*
* To go around this, the driver can use a secondary clock unit
* (units>=128) that operate in tandem with the primary clock unit
* (unit%128). The primary clock unit does all the IO stuff and data
* decoding; if a a secondary unit is attached to a primary unit, this
* secondary unit is feed with the PPS samples only and can act as a PPS
* source to the clock selection.
*
* The drawback is that the primary unit must be present for the
* secondary unit to work.
*
* This design is a compromise to reduce the IO load for both NTPD and
* GPSD; it also ensures that data is transmitted and evaluated only
* once on the side of NTPD.
*
* ---------------------------------------------------------------------
*
* trouble shooting hints:
*
*   Enable and check the clock stats. Check if there are bad replies;
*   there should be none. If there are actually bad replies, then the
*   driver cannot parse all JSON records from GPSD, and some record
*   types are vital for the operation of the driver. This indicates a
*   problem on the protocol level.
*
*   When started on the command line with a debug level >= 2, the
*   driver dumps the raw received data and the parser input to
*   stdout. Since the debug level is global, NTPD starts to create a
*   *lot* of output. It makes sense to pipe it through '(f)grep
*   GPSD_JSON' before writing the result to disk.
*
*   A bit less intrusive is using netcat or telnet to connect to GPSD
*   and snoop what NTPD would get. If you try this, you have to send a
*   WATCH command to GPSD:
*
* ?WATCH={"device":"/dev/gps0","enable":true,"json":true,"pps":true};<CRLF>
*
*   should show you what GPSD has to say to NTPD. Replace "/dev/gps0"
*   with the device link used by GPSD, if necessary.
*/


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "ntp_types.h"

#if defined(REFCLOCK) && defined(CLOCK_GPSDJSON) && !defined(SYS_WINNT)

/* =====================================================================
* Get the little JSMN library directly into our guts. Use the 'parent
* link' feature for maximum speed.
*/
#define JSMN_PARENT_LINKS
#include "../libjsmn/jsmn.c"

/* =====================================================================
* JSON parsing stuff
*/

#define JSMN_MAXTOK     350
#define INVALID_TOKEN (-1)

typedef struct json_ctx {
       char        * buf;
       int           ntok;
       jsmntok_t     tok[JSMN_MAXTOK];
} json_ctx;

typedef int tok_ref;

/* Not all targets have 'long long', and not all of them have 'strtoll'.
* Sigh. We roll our own integer number parser.
*/
#ifdef HAVE_LONG_LONG
typedef signed   long long int json_int;
typedef unsigned long long int json_uint;
#define JSON_INT_MAX LLONG_MAX
#define JSON_INT_MIN LLONG_MIN
#else
typedef signed   long int json_int;
typedef unsigned long int json_uint;
#define JSON_INT_MAX LONG_MAX
#define JSON_INT_MIN LONG_MIN
#endif

/* =====================================================================
* header stuff we need
*/

#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <netinet/tcp.h>

#if defined(HAVE_SYS_POLL_H)
# include <sys/poll.h>
#elif defined(HAVE_SYS_SELECT_H)
# include <sys/select.h>
#else
# error need poll() or select()
#endif

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
#include "ntp_calendar.h"
#include "ntp_clockdev.h"
#include "timespecops.h"

/* get operation modes from mode word.

* + SERIAL (default) evaluates only serial time information ('STI') as
*   provided by TPV and TOFF records. TPV evaluation suffers from a
*   bigger jitter than TOFF, sine it does not contain the receive time
*   from GPSD and therefore the receive time of NTPD must be
*   substituted for it. The network latency makes this a second rate
*   guess.
*
*   If TOFF records are detected in the data stream, the timing
*   information is gleaned from this record -- it contains the local
*   receive time stamp from GPSD and therefore eliminates the
*   transmission latency between GPSD and NTPD. The timing information
*   from TPV is ignored once a TOFF is detected or expected.
*
*   TPV is still used to check the fix status, so the driver can stop
*   feeding samples when GPSD says that the time information is
*   effectively unreliable.
*
* + STRICT means only feed clock samples when a valid STI/PPS pair is
*   available. Combines the reference time from STI with the pulse time
*   from PPS. Masks the serial data jitter as long PPS is available,
*   but can rapidly deteriorate once PPS drops out.
*
* + AUTO tries to use STI/PPS pairs if available for some time, and if
*   this fails for too long switches back to STI only until the PPS
*   signal becomes available again. See the HTML docs for this driver
*   about the gotchas and why this is not the default.
*/
#define MODE_OP_MASK   0x03
#define MODE_OP_STI    0
#define MODE_OP_STRICT 1
#define MODE_OP_AUTO   2
#define MODE_OP_MAXVAL 2
#define MODE_OP_MODE(x)         ((x) & MODE_OP_MASK)

#define PRECISION       (-9)    /* precision assumed (about 2 ms) */
#define PPS_PRECISION   (-20)   /* precision assumed (about 1 us) */
#define REFID           "GPSD"  /* reference id */
#define DESCRIPTION     "GPSD JSON client clock" /* who we are */

#define MAX_PDU_LEN     8192    /* multi-GNSS reports can be HUGE */
#define TICKOVER_LOW    10
#define TICKOVER_HIGH   120
#define LOGTHROTTLE     3600

/* Primary channel PPS avilability dance:
* Every good PPS sample gets us a credit of PPS_INCCOUNT points, every
* bad/missing PPS sample costs us a debit of PPS_DECCOUNT points. When
* the account reaches the upper limit we change to a mode where only
* PPS-augmented samples are fed to the core; when the account drops to
* zero we switch to a mode where TPV-only timestamps are fed to the
* core.
* This reduces the chance of rapid alternation between raw and
* PPS-augmented time stamps.
*/
#define PPS_MAXCOUNT    60      /* upper limit of account  */
#define PPS_INCCOUNT     3      /* credit for good samples */
#define PPS_DECCOUNT     1      /* debit for bad samples   */

/* The secondary (PPS) channel uses a different strategy to avoid old
* PPS samples in the median filter.
*/
#define PPS2_MAXCOUNT 10

#ifndef BOOL
# define BOOL int
#endif
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif

#define PROTO_VERSION(hi,lo) \
           ((((uint32_t)(hi) << 16) & 0xFFFF0000u) | \
            ((uint32_t)(lo) & 0x0FFFFu))

/* some local typedefs: The NTPD formatting style cries for short type
* names, and we provide them locally. Note:the suffix '_t' is reserved
* for the standard; I use a capital T instead.
*/
typedef struct peer         peerT;
typedef struct refclockproc clockprocT;
typedef struct addrinfo     addrinfoT;

/* =====================================================================
* We use the same device name scheme as does the NMEA driver; since
* GPSD supports the same links, we can select devices by a fixed name.
*/
static const char * s_dev_stem = "/dev/gps";

/* =====================================================================
* forward declarations for transfer vector and the vector itself
*/

static  void    gpsd_init       (void);
static  int     gpsd_start      (int, peerT *);
static  void    gpsd_shutdown   (int, peerT *);
static  void    gpsd_receive    (struct recvbuf *);
static  void    gpsd_poll       (int, peerT *);
static  void    gpsd_control    (int, const struct refclockstat *,
                                struct refclockstat *, peerT *);
static  void    gpsd_timer      (int, peerT *);

static  int     myasprintf(char**, char const*, ...) NTP_PRINTF(2, 3);

static void     enter_opmode(peerT *peer, int mode);
static void     leave_opmode(peerT *peer, int mode);

struct refclock refclock_gpsdjson = {
       gpsd_start,             /* start up driver */
       gpsd_shutdown,          /* shut down driver */
       gpsd_poll,              /* transmit poll message */
       gpsd_control,           /* fudge control */
       gpsd_init,              /* initialize driver */
       noentry,                /* buginfo */
       gpsd_timer              /* called once per second */
};

/* =====================================================================
* our local clock unit and data
*/
struct gpsd_unit;
typedef struct gpsd_unit gpsd_unitT;

struct gpsd_unit {
       /* links for sharing between master/slave units */
       gpsd_unitT *next_unit;
       size_t      refcount;

       /* data for the secondary PPS channel */
       peerT      *pps_peer;

       /* unit and operation modes */
       int      unit;
       int      mode;
       char    *logname;       /* cached name for log/print */
       char    * device;       /* device name of unit */

       /* current line protocol version */
       uint32_t proto_version;

       /* PPS time stamps primary + secondary channel */
       l_fp pps_local; /* when we received the PPS message */
       l_fp pps_stamp; /* related reference time */
       l_fp pps_recvt; /* when GPSD detected the pulse */
       l_fp pps_stamp2;/* related reference time (secondary) */
       l_fp pps_recvt2;/* when GPSD detected the pulse (secondary)*/
       int  ppscount;  /* PPS counter (primary unit) */
       int  ppscount2; /* PPS counter (secondary unit) */

       /* TPV or TOFF serial time information */
       l_fp sti_local; /* when we received the TPV/TOFF message */
       l_fp sti_stamp; /* effective GPS time stamp */
       l_fp sti_recvt; /* when GPSD got the fix */

       /* precision estimates */
       int16_t     sti_prec;   /* serial precision based on EPT */
       int16_t     pps_prec;   /* PPS precision from GPSD or above */

       /* fudge values for correction, mirrored as 'l_fp' */
       l_fp pps_fudge;         /* PPS fudge primary channel */
       l_fp pps_fudge2;        /* PPS fudge secondary channel */
       l_fp sti_fudge;         /* TPV/TOFF serial data fudge */

       /* Flags to indicate available data */
       int fl_nosync: 1;       /* GPSD signals bad quality */
       int fl_sti   : 1;       /* valid TPV/TOFF seen (have time) */
       int fl_pps   : 1;       /* valid pulse seen */
       int fl_pps2  : 1;       /* valid pulse seen for PPS channel */
       int fl_rawsti: 1;       /* permit raw TPV/TOFF time stamps */
       int fl_vers  : 1;       /* have protocol version */
       int fl_watch : 1;       /* watch reply seen */
       /* protocol flags */
       int pf_nsec  : 1;       /* have nanosec PPS info */
       int pf_toff  : 1;       /* have TOFF record for timing */

       /* admin stuff for sockets and device selection */
       int         fdt;        /* current connecting socket */
       addrinfoT * addr;       /* next address to try */
       u_int       tickover;   /* timeout countdown */
       u_int       tickpres;   /* timeout preset */

       /* tallies for the various events */
       u_int       tc_recv;    /* received known records */
       u_int       tc_breply;  /* bad replies / parsing errors */
       u_int       tc_nosync;  /* TPV / sample cycles w/o fix */
       u_int       tc_sti_recv;/* received serial time info records */
       u_int       tc_sti_used;/* used        --^-- */
       u_int       tc_pps_recv;/* received PPS timing info records */
       u_int       tc_pps_used;/* used        --^-- */

       /* log bloat throttle */
       u_int       logthrottle;/* seconds to next log slot */

       /* The parse context for the current record */
       json_ctx    json_parse;

       /* record assemby buffer and saved length */
       int  buflen;
       char buffer[MAX_PDU_LEN];
};

/* =====================================================================
* static local helpers forward decls
*/
static void gpsd_init_socket(peerT * const peer);
static void gpsd_test_socket(peerT * const peer);
static void gpsd_stop_socket(peerT * const peer);

static void gpsd_parse(peerT * const peer,
                      const l_fp  * const rtime);
static BOOL convert_ascii_time(l_fp * fp, const char * gps_time);
static void save_ltc(clockprocT * const pp, const char * const tc);
static int  syslogok(clockprocT * const pp, gpsd_unitT * const up);
static void log_data(peerT *peer, int level, const char *what,
                    const char *buf, size_t len);
static int16_t clamped_precision(int rawprec);

/* =====================================================================
* local / static stuff
*/

static const char * const s_req_version =
   "?VERSION;\r\n";

/* We keep a static list of network addresses for 'localhost:gpsd' or a
* fallback alias of it, and we try to connect to them in round-robin
* fashion. The service lookup is done during the driver init
* function to minmise the impact of 'getaddrinfo()'.
*
* Alas, the init function is called even if there are no clocks
* configured for this driver. So it makes sense to defer the logging of
* any errors or other notifications until the first clock unit is
* started -- otherwise there might be syslog entries from a driver that
* is not used at all.
*/
static addrinfoT  *s_gpsd_addr;
static gpsd_unitT *s_clock_units;

/* list of service/socket names we want to resolve against */
static const char * const s_svctab[][2] = {
       { "localhost", "gpsd" },
       { "localhost", "2947" },
       { "127.0.0.1", "2947" },
       { NULL, NULL }
};

/* list of address resolution errors and index of service entry that
* finally worked.
*/
static int s_svcerr[sizeof(s_svctab)/sizeof(s_svctab[0])];
static int s_svcidx;

/* =====================================================================
* log throttling
*/
static int/*BOOL*/
syslogok(
       clockprocT * const pp,
       gpsd_unitT * const up)
{
       int res = (0 != (pp->sloppyclockflag & CLK_FLAG3))
              || (0           == up->logthrottle )
              || (LOGTHROTTLE == up->logthrottle );
       if (res)
               up->logthrottle = LOGTHROTTLE;
       return res;
}

/* =====================================================================
* the clock functions
*/

/* ---------------------------------------------------------------------
* Init: This currently just gets the socket address for the GPS daemon
*/
static void
gpsd_init(void)
{
       addrinfoT   hints;
       int         rc, idx;

       memset(s_svcerr, 0, sizeof(s_svcerr));
       memset(&hints, 0, sizeof(hints));
       hints.ai_family   = AF_UNSPEC;
       hints.ai_protocol = IPPROTO_TCP;
       hints.ai_socktype = SOCK_STREAM;

       for (idx = 0; s_svctab[idx][0] && !s_gpsd_addr; idx++) {
               rc = getaddrinfo(s_svctab[idx][0], s_svctab[idx][1],
                                &hints, &s_gpsd_addr);
               s_svcerr[idx] = rc;
               if (0 == rc)
                       break;
               s_gpsd_addr = NULL;
       }
       s_svcidx = idx;
}

/* ---------------------------------------------------------------------
* Init Check: flush pending log messages and check if we can proceed
*/
static int/*BOOL*/
gpsd_init_check(void)
{
       int idx;

       /* Check if there is something to log */
       if (s_svcidx == 0)
               return (s_gpsd_addr != NULL);

       /* spool out the resolver errors */
       for (idx = 0; idx < s_svcidx; ++idx) {
               msyslog(LOG_WARNING,
                       "GPSD_JSON: failed to resolve '%s:%s', rc=%d (%s)",
                       s_svctab[idx][0], s_svctab[idx][1],
                       s_svcerr[idx], gai_strerror(s_svcerr[idx]));
       }

       /* check if it was fatal, or if we can proceed */
       if (s_gpsd_addr == NULL)
               msyslog(LOG_ERR, "%s",
                       "GPSD_JSON: failed to get socket address, giving up.");
       else if (idx != 0)
               msyslog(LOG_WARNING,
                       "GPSD_JSON: using '%s:%s' instead of '%s:%s'",
                       s_svctab[idx][0], s_svctab[idx][1],
                       s_svctab[0][0], s_svctab[0][1]);

       /* make sure this gets logged only once and tell if we can
        * proceed or not
        */
       s_svcidx = 0;
       return (s_gpsd_addr != NULL);
}

/* ---------------------------------------------------------------------
* Start: allocate a unit pointer and set up the runtime data
*/
static int
gpsd_start(
       int     unit,
       peerT * peer)
{
       clockprocT  * const pp = peer->procptr;
       gpsd_unitT  * up;
       gpsd_unitT ** uscan    = &s_clock_units;
       const char  *tmpName;

       struct stat     sb;
       char *          devname = NULL;

       /* check if we can proceed at all or if init failed */
       if ( ! gpsd_init_check())
               return FALSE;

       /* search for matching unit */
       while ((up = *uscan) != NULL && up->unit != (unit & 0x7F))
               uscan = &up->next_unit;
       if (up == NULL) {
               /* alloc unit, add to list and increment use count ASAP. */
               up = emalloc_zero(sizeof(*up));
               *uscan = up;
               ++up->refcount;

               /* initialize the unit structure */
               up->logname  = estrdup(refnumtoa(&peer->srcadr));
               up->unit     = unit & 0x7F;
               up->fdt      = -1;
               up->addr     = s_gpsd_addr;
               up->tickpres = TICKOVER_LOW;

               /* Create the device name and check for a Character
                * Device. It's assumed that GPSD was started with the
                * same link, so the names match. (If this is not
                * practicable, we will have to read the symlink, if
                * any, so we can get the true device file.)
                */
               tmpName = clockdev_lookup(&peer->srcadr, 0);
               if (NULL != tmpName) {
                       up->device = estrdup(tmpName);
               } else if (-1 == myasprintf(&up->device, "%s%u", s_dev_stem, up->unit)) {
                       msyslog(LOG_ERR, "%s: clock device name too long",
                               up->logname);
                       goto dev_fail;
               }
               devname = up->device;
               up->device = ntp_realpath(devname);
               if (NULL == up->device) {
                       msyslog(LOG_ERR, "%s: '%s' has no absolute path",
                               up->logname, devname);
                       goto dev_fail;
               }
               free(devname);
               devname = NULL;
               if (-1 == lstat(up->device, &sb)) {
                       msyslog(LOG_ERR, "%s: '%s' not accessible",
                               up->logname, up->device);
                       goto dev_fail;
               }
               if (!S_ISCHR(sb.st_mode)) {
                       msyslog(LOG_ERR, "%s: '%s' is not a character device",
                               up->logname, up->device);
                       goto dev_fail;
               }
       } else {
               /* All set up, just increment use count. */
               ++up->refcount;
       }

       /* setup refclock processing */
       pp->unitptr = (caddr_t)up;
       pp->io.fd         = -1;
       pp->io.clock_recv = gpsd_receive;
       pp->io.srcclock   = peer;
       pp->io.datalen    = 0;
       pp->a_lastcode[0] = '\0';
       pp->lencode       = 0;
       pp->clockdesc     = DESCRIPTION;
       memcpy(&pp->refid, REFID, 4);

       /* Initialize miscellaneous variables */
       if (unit >= 128)
               peer->precision = PPS_PRECISION;
       else
               peer->precision = PRECISION;

       /* If the daemon name lookup failed, just give up now. */
       if (NULL == up->addr) {
               msyslog(LOG_ERR, "%s: no GPSD socket address, giving up",
                       up->logname);
               goto dev_fail;
       }

       LOGIF(CLOCKINFO,
             (LOG_NOTICE, "%s: startup, device is '%s'",
              refnumtoa(&peer->srcadr), up->device));
       up->mode = MODE_OP_MODE(peer->ttl);
       if (up->mode > MODE_OP_MAXVAL)
               up->mode = 0;
       if (unit >= 128)
               up->pps_peer = peer;
       else
               enter_opmode(peer, up->mode);
       return TRUE;

dev_fail:
       /* On failure, remove all UNIT ressources and declare defeat. */
       free(devname);
       INSIST (up);
       if (!--up->refcount) {
               *uscan = up->next_unit;
               free(up->device);
               free(up);
       }

       pp->unitptr = (caddr_t)NULL;
       return FALSE;
}

/* ------------------------------------------------------------------ */

static void
gpsd_shutdown(
       int     unit,
       peerT * peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
       gpsd_unitT ** uscan   = &s_clock_units;

       UNUSED_ARG(unit);

       /* The unit pointer might have been removed already. */
       if (up == NULL)
               return;

       /* now check if we must close IO resources */
       if (peer != up->pps_peer) {
               if (-1 != pp->io.fd) {
                       DPRINTF(1, ("%s: closing clock, fd=%d\n",
                                   up->logname, pp->io.fd));
                       io_closeclock(&pp->io);
                       pp->io.fd = -1;
               }
               if (up->fdt != -1)
                       close(up->fdt);
       }
       /* decrement use count and eventually remove this unit. */
       if (!--up->refcount) {
               /* unlink this unit */
               while (*uscan != NULL)
                       if (*uscan == up)
                               *uscan = up->next_unit;
                       else
                               uscan = &(*uscan)->next_unit;
               free(up->logname);
               free(up->device);
               free(up);
       }
       pp->unitptr = (caddr_t)NULL;
       LOGIF(CLOCKINFO,
             (LOG_NOTICE, "%s: shutdown", refnumtoa(&peer->srcadr)));
}

/* ------------------------------------------------------------------ */

static void
gpsd_receive(
       struct recvbuf * rbufp)
{
       /* declare & init control structure ptrs */
       peerT      * const peer = rbufp->recv_peer;
       clockprocT * const pp   = peer->procptr;
       gpsd_unitT * const up   = (gpsd_unitT *)pp->unitptr;

       const char *psrc, *esrc;
       char       *pdst, *edst, ch;

       /* log the data stream, if this is enabled */
       log_data(peer, 3, "recv", (const char*)rbufp->recv_buffer,
                (size_t)rbufp->recv_length);


       /* Since we're getting a raw stream data, we must assemble lines
        * in our receive buffer. We can't use neither 'refclock_gtraw'
        * not 'refclock_gtlin' here...  We process chars until we reach
        * an EoL (that is, line feed) but we truncate the message if it
        * does not fit the buffer.  GPSD might truncate messages, too,
        * so dealing with truncated buffers is necessary anyway.
        */
       psrc = (const char*)rbufp->recv_buffer;
       esrc = psrc + rbufp->recv_length;

       pdst = up->buffer + up->buflen;
       edst = up->buffer + sizeof(up->buffer) - 1; /* for trailing NUL */

       while (psrc != esrc) {
               ch = *psrc++;
               if (ch == '\n') {
                       /* trim trailing whitespace & terminate buffer */
                       while (pdst != up->buffer && pdst[-1] <= ' ')
                               --pdst;
                       *pdst = '\0';
                       /* process data and reset buffer */
                       up->buflen = pdst - up->buffer;
                       gpsd_parse(peer, &rbufp->recv_time);
                       pdst = up->buffer;
               } else if (pdst != edst) {
                       /* add next char, ignoring leading whitespace */
                       if (ch > ' ' || pdst != up->buffer)
                               *pdst++ = ch;
               }
       }
       up->buflen   = pdst - up->buffer;
       up->tickover = TICKOVER_LOW;
}

/* ------------------------------------------------------------------ */

static void
poll_primary(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       if (pp->coderecv != pp->codeproc) {
               /* all is well */
               pp->lastref = pp->lastrec;
               refclock_report(peer, CEVNT_NOMINAL);
               refclock_receive(peer);
       } else {
               /* Not working properly, admit to it. If we have no
                * connection to GPSD, declare the clock as faulty. If
                * there were bad replies, this is handled as the major
                * cause, and everything else is just a timeout.
                */
               peer->precision = PRECISION;
               if (-1 == pp->io.fd)
                       refclock_report(peer, CEVNT_FAULT);
               else if (0 != up->tc_breply)
                       refclock_report(peer, CEVNT_BADREPLY);
               else
                       refclock_report(peer, CEVNT_TIMEOUT);
       }

       if (pp->sloppyclockflag & CLK_FLAG4)
               mprintf_clock_stats(
                       &peer->srcadr,"%u %u %u %u %u %u %u",
                       up->tc_recv,
                       up->tc_breply, up->tc_nosync,
                       up->tc_sti_recv, up->tc_sti_used,
                       up->tc_pps_recv, up->tc_pps_used);

       /* clear tallies for next round */
       up->tc_breply   = 0;
       up->tc_recv     = 0;
       up->tc_nosync   = 0;
       up->tc_sti_recv = 0;
       up->tc_sti_used = 0;
       up->tc_pps_recv = 0;
       up->tc_pps_used = 0;
}

static void
poll_secondary(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       if (pp->coderecv != pp->codeproc) {
               /* all is well */
               pp->lastref = pp->lastrec;
               refclock_report(peer, CEVNT_NOMINAL);
               refclock_receive(peer);
       } else {
               peer->precision = PPS_PRECISION;
               peer->flags &= ~FLAG_PPS;
               refclock_report(peer, CEVNT_TIMEOUT);
       }
}

static void
gpsd_poll(
       int     unit,
       peerT * peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       ++pp->polls;
       if (peer == up->pps_peer)
               poll_secondary(peer, pp, up);
       else
               poll_primary(peer, pp, up);
}

/* ------------------------------------------------------------------ */

static void
gpsd_control(
       int                         unit,
       const struct refclockstat * in_st,
       struct refclockstat       * out_st,
       peerT                     * peer  )
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       if (peer == up->pps_peer) {
               DTOLFP(pp->fudgetime1, &up->pps_fudge2);
               if ( ! (pp->sloppyclockflag & CLK_FLAG1))
                       peer->flags &= ~FLAG_PPS;
       } else {
               /* save preprocessed fudge times */
               DTOLFP(pp->fudgetime1, &up->pps_fudge);
               DTOLFP(pp->fudgetime2, &up->sti_fudge);

               if (MODE_OP_MODE(up->mode ^ peer->ttl)) {
                       leave_opmode(peer, up->mode);
                       up->mode = MODE_OP_MODE(peer->ttl);
                       enter_opmode(peer, up->mode);
               }
       }
}

/* ------------------------------------------------------------------ */

static void
timer_primary(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       int rc;

       /* This is used for timeout handling. Nothing that needs
        * sub-second precison happens here, so receive/connect/retry
        * timeouts are simply handled by a count down, and then we
        * decide what to do by the socket values.
        *
        * Note that the timer stays at zero here, unless some of the
        * functions set it to another value.
        */
       if (up->logthrottle)
               --up->logthrottle;
       if (up->tickover)
               --up->tickover;
       switch (up->tickover) {
       case 4:
               /* If we are connected to GPSD, try to get a live signal
                * by querying the version. Otherwise just check the
                * socket to become ready.
                */
               if (-1 != pp->io.fd) {
                       size_t rlen = strlen(s_req_version);
                       DPRINTF(2, ("%s: timer livecheck: '%s'\n",
                                   up->logname, s_req_version));
                       log_data(peer, 2, "send", s_req_version, rlen);
                       rc = write(pp->io.fd, s_req_version, rlen);
                       (void)rc;
               } else if (-1 != up->fdt) {
                       gpsd_test_socket(peer);
               }
               break;

       case 0:
               if (-1 != pp->io.fd)
                       gpsd_stop_socket(peer);
               else if (-1 != up->fdt)
                       gpsd_test_socket(peer);
               else if (NULL != s_gpsd_addr)
                       gpsd_init_socket(peer);
               break;

       default:
               if (-1 == pp->io.fd && -1 != up->fdt)
                       gpsd_test_socket(peer);
       }
}

static void
timer_secondary(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       /* Reduce the count by one. Flush sample buffer and clear PPS
        * flag when this happens.
        */
       up->ppscount2 = max(0, (up->ppscount2 - 1));
       if (0 == up->ppscount2) {
               if (pp->coderecv != pp->codeproc) {
                       refclock_report(peer, CEVNT_TIMEOUT);
                       pp->coderecv = pp->codeproc;
               }
               peer->flags &= ~FLAG_PPS;
       }
}

static void
gpsd_timer(
       int     unit,
       peerT * peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       if (peer == up->pps_peer)
               timer_secondary(peer, pp, up);
       else
               timer_primary(peer, pp, up);
}

/* =====================================================================
* handle opmode switches
*/

static void
enter_opmode(
       peerT *peer,
       int    mode)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       DPRINTF(1, ("%s: enter operation mode %d\n",
                   up->logname, MODE_OP_MODE(mode)));

       if (MODE_OP_MODE(mode) == MODE_OP_AUTO) {
               up->fl_rawsti = 0;
               up->ppscount  = PPS_MAXCOUNT / 2;
       }
       up->fl_pps = 0;
       up->fl_sti = 0;
}

/* ------------------------------------------------------------------ */

static void
leave_opmode(
       peerT *peer,
       int    mode)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       DPRINTF(1, ("%s: leaving operation mode %d\n",
                   up->logname, MODE_OP_MODE(mode)));

       if (MODE_OP_MODE(mode) == MODE_OP_AUTO) {
               up->fl_rawsti = 0;
               up->ppscount  = 0;
       }
       up->fl_pps = 0;
       up->fl_sti = 0;
}

/* =====================================================================
* operation mode specific evaluation
*/

static void
add_clock_sample(
       peerT      * const peer ,
       clockprocT * const pp   ,
       l_fp               stamp,
       l_fp               recvt)
{
       pp->lastref = stamp;
       if (pp->coderecv == pp->codeproc)
               refclock_report(peer, CEVNT_NOMINAL);
       refclock_process_offset(pp, stamp, recvt, 0.0);
}

/* ------------------------------------------------------------------ */

static void
eval_strict(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       if (up->fl_sti && up->fl_pps) {
               /* use TPV reference time + PPS receive time */
               add_clock_sample(peer, pp, up->sti_stamp, up->pps_recvt);
               peer->precision = up->pps_prec;
               /* both packets consumed now... */
               up->fl_pps = 0;
               up->fl_sti = 0;
               ++up->tc_sti_used;
       }
}

/* ------------------------------------------------------------------ */
/* PPS processing for the secondary channel. GPSD provides us with full
* timing information, so there's no danger of PLL-locking to the wrong
* second. The belts and suspenders needed for the raw ATOM clock are
* unnecessary here.
*/
static void
eval_pps_secondary(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       if (up->fl_pps2) {
               /* feed data */
               add_clock_sample(peer, pp, up->pps_stamp2, up->pps_recvt2);
               peer->precision = up->pps_prec;
               /* PPS peer flag logic */
               up->ppscount2 = min(PPS2_MAXCOUNT, (up->ppscount2 + 2));
               if ((PPS2_MAXCOUNT == up->ppscount2) &&
                   (pp->sloppyclockflag & CLK_FLAG1) )
                       peer->flags |= FLAG_PPS;
               /* mark time stamp as burned... */
               up->fl_pps2 = 0;
               ++up->tc_pps_used;
       }
}

/* ------------------------------------------------------------------ */

static void
eval_serial(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       if (up->fl_sti) {
               add_clock_sample(peer, pp, up->sti_stamp, up->sti_recvt);
               peer->precision = up->sti_prec;
               /* mark time stamp as burned... */
               up->fl_sti = 0;
               ++up->tc_sti_used;
       }
}

/* ------------------------------------------------------------------ */
static void
eval_auto(
       peerT      * const peer ,
       clockprocT * const pp   ,
       gpsd_unitT * const up   )
{
       /* If there's no TPV available, stop working here... */
       if (!up->fl_sti)
               return;

       /* check how to handle STI+PPS: Can PPS be used to augment STI
        * (or vice versae), do we drop the sample because there is a
        * temporary missing PPS signal, or do we feed on STI time
        * stamps alone?
        *
        * Do a counter/threshold dance to decide how to proceed.
        */
       if (up->fl_pps) {
               up->ppscount = min(PPS_MAXCOUNT,
                                  (up->ppscount + PPS_INCCOUNT));
               if ((PPS_MAXCOUNT == up->ppscount) && up->fl_rawsti) {
                       up->fl_rawsti = 0;
                       msyslog(LOG_INFO,
                               "%s: expect valid PPS from now",
                               up->logname);
               }
       } else {
               up->ppscount = max(0, (up->ppscount - PPS_DECCOUNT));
               if ((0 == up->ppscount) && !up->fl_rawsti) {
                       up->fl_rawsti = -1;
                       msyslog(LOG_WARNING,
                               "%s: use TPV alone from now",
                               up->logname);
               }
       }

       /* now eventually feed the sample */
       if (up->fl_rawsti)
               eval_serial(peer, pp, up);
       else
               eval_strict(peer, pp, up);
}

/* =====================================================================
* JSON parsing stuff
*/

/* ------------------------------------------------------------------ */
/* Parse a decimal integer with a possible sign. Works like 'strtoll()'
* or 'strtol()', but with a fixed base of 10 and without eating away
* leading whitespace. For the error codes, the handling of the end
* pointer and the return values see 'strtol()'.
*/
static json_int
strtojint(
       const char *cp, char **ep)
{
       json_uint     accu, limit_lo, limit_hi;
       int           flags; /* bit 0: overflow; bit 1: sign */
       const char  * hold;

       /* pointer union to circumvent a tricky/sticky const issue */
       union { const char * c; char * v; } vep;

       /* store initial value of 'cp' -- see 'strtol()' */
       vep.c = cp;

       /* Eat away an optional sign and set the limits accordingly: The
        * high limit is the maximum absolute value that can be returned,
        * and the low limit is the biggest value that does not cause an
        * overflow when multiplied with 10. Avoid negation overflows.
        */
       if (*cp == '-') {
               cp += 1;
               flags    = 2;
               limit_hi = (json_uint)-(JSON_INT_MIN + 1) + 1;
       } else {
               cp += (*cp == '+');
               flags    = 0;
               limit_hi = (json_uint)JSON_INT_MAX;
       }
       limit_lo = limit_hi / 10;

       /* Now try to convert a sequence of digits. */
       hold = cp;
       accu = 0;
       while (isdigit(*(const u_char*)cp)) {
               flags |= (accu > limit_lo);
               accu = accu * 10 + (*(const u_char*)cp++ - '0');
               flags |= (accu > limit_hi);
       }
       /* Check for empty conversion (no digits seen). */
       if (hold != cp)
               vep.c = cp;
       else
               errno = EINVAL; /* accu is still zero */
       /* Check for range overflow */
       if (flags & 1) {
               errno = ERANGE;
               accu  = limit_hi;
       }
       /* If possible, store back the end-of-conversion pointer */
       if (ep)
               *ep = vep.v;
       /* If negative, return the negated result if the accu is not
        * zero. Avoid negation overflows.
        */
       if ((flags & 2) && accu)
               return -(json_int)(accu - 1) - 1;
       else
               return (json_int)accu;
}

/* ------------------------------------------------------------------ */

static tok_ref
json_token_skip(
       const json_ctx * ctx,
       tok_ref          tid)
{
       if (tid >= 0 && tid < ctx->ntok) {
               int len = ctx->tok[tid].size;
               /* For arrays and objects, the size is the number of
                * ITEMS in the compound. Thats the number of objects in
                * the array, and the number of key/value pairs for
                * objects. In theory, the key must be a string, and we
                * could simply skip one token before skipping the
                * value, which can be anything. We're a bit paranoid
                * and lazy at the same time: We simply double the
                * number of tokens to skip and fall through into the
                * array processing when encountering an object.
                */
               switch (ctx->tok[tid].type) {
               case JSMN_OBJECT:
                       len *= 2;
                       /* FALLTHROUGH */
               case JSMN_ARRAY:
                       for (++tid; len; --len)
                               tid = json_token_skip(ctx, tid);
                       break;

               default:
                       ++tid;
                       break;
               }
               /* The next condition should never be true, but paranoia
                * prevails...
                */
               if (tid < 0 || tid > ctx->ntok)
                       tid = ctx->ntok;
       }
       return tid;
}

/* ------------------------------------------------------------------ */

static int
json_object_lookup(
       const json_ctx * ctx ,
       tok_ref          tid ,
       const char     * key ,
       int              what)
{
       int len;

       if (tid < 0 || tid >= ctx->ntok ||
           ctx->tok[tid].type != JSMN_OBJECT)
               return INVALID_TOKEN;

       len = ctx->tok[tid].size;
       for (++tid; len && tid+1 < ctx->ntok; --len) {
               if (ctx->tok[tid].type != JSMN_STRING) { /* Blooper! */
                       tid = json_token_skip(ctx, tid); /* skip key */
                       tid = json_token_skip(ctx, tid); /* skip val */
               } else if (strcmp(key, ctx->buf + ctx->tok[tid].start)) {
                       tid = json_token_skip(ctx, tid+1); /* skip key+val */
               } else if (what < 0 || (u_int)what == ctx->tok[tid+1].type) {
                       return tid + 1;
               } else {
                       break;
               }
               /* if skipping ahead returned an error, bail out here. */
               if (tid < 0)
                       break;
       }
       return INVALID_TOKEN;
}

/* ------------------------------------------------------------------ */

static const char*
json_object_lookup_primitive(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key)
{
       tid = json_object_lookup(ctx, tid, key, JSMN_PRIMITIVE);
       if (INVALID_TOKEN  != tid)
               return ctx->buf + ctx->tok[tid].start;
       else
               return NULL;
}
/* ------------------------------------------------------------------ */
/* look up a boolean value. This essentially returns a tribool:
* 0->false, 1->true, (-1)->error/undefined
*/
static int
json_object_lookup_bool(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key)
{
       const char *cp;
       cp  = json_object_lookup_primitive(ctx, tid, key);
       switch ( cp ? *cp : '\0') {
       case 't': return  1;
       case 'f': return  0;
       default : return -1;
       }
}

/* ------------------------------------------------------------------ */

static const char*
json_object_lookup_string(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key)
{
       tid = json_object_lookup(ctx, tid, key, JSMN_STRING);
       if (INVALID_TOKEN != tid)
               return ctx->buf + ctx->tok[tid].start;
       return NULL;
}

static const char*
json_object_lookup_string_default(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key,
       const char     * def)
{
       tid = json_object_lookup(ctx, tid, key, JSMN_STRING);
       if (INVALID_TOKEN != tid)
               return ctx->buf + ctx->tok[tid].start;
       return def;
}

/* ------------------------------------------------------------------ */

static json_int
json_object_lookup_int(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key)
{
       json_int     ret;
       const char * cp;
       char       * ep;

       cp = json_object_lookup_primitive(ctx, tid, key);
       if (NULL != cp) {
               ret = strtojint(cp, &ep);
               if (cp != ep && '\0' == *ep)
                       return ret;
       } else {
               errno = EINVAL;
       }
       return 0;
}

static json_int
json_object_lookup_int_default(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key,
       json_int         def)
{
       json_int     ret;
       const char * cp;
       char       * ep;

       cp = json_object_lookup_primitive(ctx, tid, key);
       if (NULL != cp) {
               ret = strtojint(cp, &ep);
               if (cp != ep && '\0' == *ep)
                       return ret;
       }
       return def;
}

/* ------------------------------------------------------------------ */
#if 0 /* currently unused */
static double
json_object_lookup_float(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key)
{
       double       ret;
       const char * cp;
       char       * ep;

       cp = json_object_lookup_primitive(ctx, tid, key);
       if (NULL != cp) {
               ret = strtod(cp, &ep);
               if (cp != ep && '\0' == *ep)
                       return ret;
       } else {
               errno = EINVAL;
       }
       return 0.0;
}
#endif

static double
json_object_lookup_float_default(
       const json_ctx * ctx,
       tok_ref          tid,
       const char     * key,
       double           def)
{
       double       ret;
       const char * cp;
       char       * ep;

       cp = json_object_lookup_primitive(ctx, tid, key);
       if (NULL != cp) {
               ret = strtod(cp, &ep);
               if (cp != ep && '\0' == *ep)
                       return ret;
       }
       return def;
}

/* ------------------------------------------------------------------ */

static BOOL
json_parse_record(
       json_ctx * ctx,
       char     * buf,
       size_t     len)
{
       jsmn_parser jsm;
       int         idx, rc;

       jsmn_init(&jsm);
       rc = jsmn_parse(&jsm, buf, len, ctx->tok, JSMN_MAXTOK);
       if (rc <= 0)
               return FALSE;
       ctx->buf  = buf;
       ctx->ntok = rc;

       if (JSMN_OBJECT != ctx->tok[0].type)
               return FALSE; /* not object!?! */

       /* Make all tokens NUL terminated by overwriting the
        * terminator symbol. Makes string compares and number parsing a
        * lot easier!
        */
       for (idx = 0; idx < ctx->ntok; ++idx)
               if (ctx->tok[idx].end > ctx->tok[idx].start)
                       ctx->buf[ctx->tok[idx].end] = '\0';
       return TRUE;
}


/* =====================================================================
* static local helpers
*/
static BOOL
get_binary_time(
       l_fp       * const dest     ,
       json_ctx   * const jctx     ,
       const char * const time_name,
       const char * const frac_name,
       long               fscale   )
{
       BOOL            retv = FALSE;
       struct timespec ts;

       errno = 0;
       ts.tv_sec  = (time_t)json_object_lookup_int(jctx, 0, time_name);
       ts.tv_nsec = (long  )json_object_lookup_int(jctx, 0, frac_name);
       if (0 == errno) {
               ts.tv_nsec *= fscale;
               *dest = tspec_stamp_to_lfp(ts);
               retv  = TRUE;
       }
       return retv;
}

/* ------------------------------------------------------------------ */
/* Process a WATCH record
*
* Currently this is only used to recognise that the device is present
* and that we're listed subscribers.
*/
static void
process_watch(
       peerT      * const peer ,
       json_ctx   * const jctx ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       const char * path;

       path = json_object_lookup_string(jctx, 0, "device");
       if (NULL == path || strcmp(path, up->device))
               return;

       if (json_object_lookup_bool(jctx, 0, "enable") > 0 &&
           json_object_lookup_bool(jctx, 0, "json"  ) > 0  )
               up->fl_watch = -1;
       else
               up->fl_watch = 0;
       DPRINTF(2, ("%s: process_watch, enabled=%d\n",
                   up->logname, (up->fl_watch & 1)));
}

/* ------------------------------------------------------------------ */

static void
process_version(
       peerT      * const peer ,
       json_ctx   * const jctx ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       int    len;
       char * buf;
       const char *revision;
       const char *release;
       uint16_t    pvhi, pvlo;

       /* get protocol version number */
       revision = json_object_lookup_string_default(
               jctx, 0, "rev", "(unknown)");
       release  = json_object_lookup_string_default(
               jctx, 0, "release", "(unknown)");
       errno = 0;
       pvhi = (uint16_t)json_object_lookup_int(jctx, 0, "proto_major");
       pvlo = (uint16_t)json_object_lookup_int(jctx, 0, "proto_minor");

       if (0 == errno) {
               if ( ! up->fl_vers)
                       msyslog(LOG_INFO,
                               "%s: GPSD revision=%s release=%s protocol=%u.%u",
                               up->logname, revision, release,
                               pvhi, pvlo);
               up->proto_version = PROTO_VERSION(pvhi, pvlo);
               up->fl_vers = -1;
       } else {
               if (syslogok(pp, up))
                       msyslog(LOG_INFO,
                               "%s: could not evaluate version data",
                               up->logname);
               return;
       }
       /* With the 3.9 GPSD protocol, '*_musec' vanished from the PPS
        * record and was replace by '*_nsec'.
        */
       up->pf_nsec = -(up->proto_version >= PROTO_VERSION(3,9));

       /* With the 3.10 protocol we can get TOFF records for better
        * timing information.
        */
       up->pf_toff = -(up->proto_version >= PROTO_VERSION(3,10));

       /* request watch for our GPS device if not yet watched.
        *
        * The version string is also sent as a life signal, if we have
        * seen useable data. So if we're already watching the device,
        * skip the request.
        *
        * Reuse the input buffer, which is no longer needed in the
        * current cycle. Also assume that we can write the watch
        * request in one sweep into the socket; since we do not do
        * output otherwise, this should always work.  (Unless the
        * TCP/IP window size gets lower than the length of the
        * request. We handle that when it happens.)
        */
       if (up->fl_watch)
               return;

       /* The logon string is actually the ?WATCH command of GPSD,
        * using JSON data and selecting the GPS device name we created
        * from our unit number. We have an old and a newer version that
        * request PPS (and TOFF) transmission.
        */
       snprintf(up->buffer, sizeof(up->buffer),
                "?WATCH={\"device\":\"%s\",\"enable\":true,\"json\":true%s};\r\n",
                up->device, (up->pf_toff ? ",\"pps\":true" : ""));
       buf = up->buffer;
       len = strlen(buf);
       log_data(peer, 2, "send", buf, len);
       if (len != write(pp->io.fd, buf, len) && (syslogok(pp, up))) {
               /* Note: if the server fails to read our request, the
                * resulting data timeout will take care of the
                * connection!
                */
               msyslog(LOG_ERR, "%s: failed to write watch request (%m)",
                       up->logname);
       }
}

/* ------------------------------------------------------------------ */

static void
process_tpv(
       peerT      * const peer ,
       json_ctx   * const jctx ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       const char * gps_time;
       int          gps_mode;
       double       ept;
       int          xlog2;

       gps_mode = (int)json_object_lookup_int_default(
               jctx, 0, "mode", 0);

       gps_time = json_object_lookup_string(
               jctx, 0, "time");

       /* accept time stamps only in 2d or 3d fix */
       if (gps_mode < 2 || NULL == gps_time) {
               /* receiver has no fix; tell about and avoid stale data */
               if ( ! up->pf_toff)
                       ++up->tc_sti_recv;
               ++up->tc_nosync;
               up->fl_sti    = 0;
               up->fl_pps    = 0;
               up->fl_nosync = -1;
               return;
       }
       up->fl_nosync = 0;

       /* convert clock and set resulting ref time, but only if the
        * TOFF sentence is *not* available
        */
       if ( ! up->pf_toff) {
               ++up->tc_sti_recv;
               /* save last time code to clock data */
               save_ltc(pp, gps_time);
               /* now parse the time string */
               if (convert_ascii_time(&up->sti_stamp, gps_time)) {
                       DPRINTF(2, ("%s: process_tpv, stamp='%s',"
                                   " recvt='%s' mode=%u\n",
                                   up->logname,
                                   gmprettydate(&up->sti_stamp),
                                   gmprettydate(&up->sti_recvt),
                                   gps_mode));

                       /* have to use local receive time as substitute
                        * for the real receive time: TPV does not tell
                        * us.
                        */
                       up->sti_local = *rtime;
                       up->sti_recvt = *rtime;
                       L_SUB(&up->sti_recvt, &up->sti_fudge);
                       up->fl_sti = -1;
               } else {
                       ++up->tc_breply;
                       up->fl_sti = 0;
               }
       }

       /* Set the precision from the GPSD data
        * Use the ETP field for an estimation of the precision of the
        * serial data. If ETP is not available, use the default serial
        * data presion instead. (Note: The PPS branch has a different
        * precision estimation, since it gets the proper value directly
        * from GPSD!)
        */
       ept = json_object_lookup_float_default(jctx, 0, "ept", 2.0e-3);
       ept = frexp(fabs(ept)*0.70710678, &xlog2); /* ~ sqrt(0.5) */
       if (ept < 0.25)
               xlog2 = INT_MIN;
       if (ept > 2.0)
               xlog2 = INT_MAX;
       up->sti_prec = clamped_precision(xlog2);
}

/* ------------------------------------------------------------------ */

static void
process_pps(
       peerT      * const peer ,
       json_ctx   * const jctx ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       int xlog2;

       ++up->tc_pps_recv;

       /* Bail out if there's indication that time sync is bad or
        * if we're explicitely requested to ignore PPS data.
        */
       if (up->fl_nosync)
               return;

       up->pps_local = *rtime;
       /* Now grab the time values. 'clock_*' is the event time of the
        * pulse measured on the local system clock; 'real_*' is the GPS
        * reference time GPSD associated with the pulse.
        */
       if (up->pf_nsec) {
               if ( ! get_binary_time(&up->pps_recvt2, jctx,
                                      "clock_sec", "clock_nsec", 1))
                       goto fail;
               if ( ! get_binary_time(&up->pps_stamp2, jctx,
                                      "real_sec", "real_nsec", 1))
                       goto fail;
       } else {
               if ( ! get_binary_time(&up->pps_recvt2, jctx,
                                      "clock_sec", "clock_musec", 1000))
                       goto fail;
               if ( ! get_binary_time(&up->pps_stamp2, jctx,
                                      "real_sec", "real_musec", 1000))
                       goto fail;
       }

       /* Try to read the precision field from the PPS record. If it's
        * not there, take the precision from the serial data.
        */
       xlog2 = json_object_lookup_int_default(
                       jctx, 0, "precision", up->sti_prec);
       up->pps_prec = clamped_precision(xlog2);

       /* Get fudged receive times for primary & secondary unit */
       up->pps_recvt = up->pps_recvt2;
       L_SUB(&up->pps_recvt , &up->pps_fudge );
       L_SUB(&up->pps_recvt2, &up->pps_fudge2);
       pp->lastrec = up->pps_recvt;

       /* Map to nearest full second as reference time stamp for the
        * primary channel. Sanity checks are done in evaluation step.
        */
       up->pps_stamp = up->pps_recvt;
       L_ADDUF(&up->pps_stamp, 0x80000000u);
       up->pps_stamp.l_uf = 0;

       if (NULL != up->pps_peer)
               save_ltc(up->pps_peer->procptr,
                        gmprettydate(&up->pps_stamp2));
       DPRINTF(2, ("%s: PPS record processed,"
                   " stamp='%s', recvt='%s'\n",
                   up->logname,
                   gmprettydate(&up->pps_stamp2),
                   gmprettydate(&up->pps_recvt2)));

       up->fl_pps  = (0 != (pp->sloppyclockflag & CLK_FLAG2)) - 1;
       up->fl_pps2 = -1;
       return;

 fail:
       DPRINTF(1, ("%s: PPS record processing FAILED\n",
                   up->logname));
       ++up->tc_breply;
}

/* ------------------------------------------------------------------ */

static void
process_toff(
       peerT      * const peer ,
       json_ctx   * const jctx ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       ++up->tc_sti_recv;

       /* remember this! */
       up->pf_toff = -1;

       /* bail out if there's indication that time sync is bad */
       if (up->fl_nosync)
               return;

       if ( ! get_binary_time(&up->sti_recvt, jctx,
                              "clock_sec", "clock_nsec", 1))
                       goto fail;
       if ( ! get_binary_time(&up->sti_stamp, jctx,
                              "real_sec", "real_nsec", 1))
                       goto fail;
       L_SUB(&up->sti_recvt, &up->sti_fudge);
       up->sti_local = *rtime;
       up->fl_sti    = -1;

       save_ltc(pp, gmprettydate(&up->sti_stamp));
       DPRINTF(2, ("%s: TOFF record processed,"
                   " stamp='%s', recvt='%s'\n",
                   up->logname,
                   gmprettydate(&up->sti_stamp),
                   gmprettydate(&up->sti_recvt)));
       return;

 fail:
       DPRINTF(1, ("%s: TOFF record processing FAILED\n",
                   up->logname));
       ++up->tc_breply;
}

/* ------------------------------------------------------------------ */

static void
gpsd_parse(
       peerT      * const peer ,
       const l_fp * const rtime)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       const char * clsid;

       DPRINTF(2, ("%s: gpsd_parse: time %s '%.*s'\n",
                   up->logname, ulfptoa(rtime, 6),
                   up->buflen, up->buffer));

       /* See if we can grab anything potentially useful. JSMN does not
        * need a trailing NUL, but it needs the number of bytes to
        * process. */
       if (!json_parse_record(&up->json_parse, up->buffer, up->buflen)) {
               ++up->tc_breply;
               return;
       }

       /* Now dispatch over the objects we know */
       clsid = json_object_lookup_string(&up->json_parse, 0, "class");
       if (NULL == clsid) {
               ++up->tc_breply;
               return;
       }

       if      (!strcmp("TPV", clsid))
               process_tpv(peer, &up->json_parse, rtime);
       else if (!strcmp("PPS", clsid))
               process_pps(peer, &up->json_parse, rtime);
       else if (!strcmp("TOFF", clsid))
               process_toff(peer, &up->json_parse, rtime);
       else if (!strcmp("VERSION", clsid))
               process_version(peer, &up->json_parse, rtime);
       else if (!strcmp("WATCH", clsid))
               process_watch(peer, &up->json_parse, rtime);
       else
               return; /* nothing we know about... */
       ++up->tc_recv;

       /* if possible, feed the PPS side channel */
       if (up->pps_peer)
               eval_pps_secondary(
                       up->pps_peer, up->pps_peer->procptr, up);

       /* check PPS vs. STI receive times:
        * If STI is before PPS, then clearly the STI is too old. If PPS
        * is before STI by more than one second, then PPS is too old.
        * Weed out stale time stamps & flags.
        */
       if (up->fl_pps && up->fl_sti) {
               l_fp diff;
               diff = up->sti_local;
               L_SUB(&diff, &up->pps_local);
               if (diff.l_i > 0)
                       up->fl_pps = 0; /* pps too old */
               else if (diff.l_i < 0)
                       up->fl_sti = 0; /* serial data too old */
       }

       /* dispatch to the mode-dependent processing functions */
       switch (up->mode) {
       default:
       case MODE_OP_STI:
               eval_serial(peer, pp, up);
               break;

       case MODE_OP_STRICT:
               eval_strict(peer, pp, up);
               break;

       case MODE_OP_AUTO:
               eval_auto(peer, pp, up);
               break;
       }
}

/* ------------------------------------------------------------------ */

static void
gpsd_stop_socket(
       peerT * const peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       if (-1 != pp->io.fd) {
               if (syslogok(pp, up))
                       msyslog(LOG_INFO,
                               "%s: closing socket to GPSD, fd=%d",
                               up->logname, pp->io.fd);
               else
                       DPRINTF(1, ("%s: closing socket to GPSD, fd=%d\n",
                                   up->logname, pp->io.fd));
               io_closeclock(&pp->io);
               pp->io.fd = -1;
       }
       up->tickover = up->tickpres;
       up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
       up->fl_vers  = 0;
       up->fl_sti   = 0;
       up->fl_pps   = 0;
       up->fl_watch = 0;
}

/* ------------------------------------------------------------------ */

static void
gpsd_init_socket(
       peerT * const peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;
       addrinfoT  * ai;
       int          rc;
       int          ov;

       /* draw next address to try */
       if (NULL == up->addr)
               up->addr = s_gpsd_addr;
       ai = up->addr;
       up->addr = ai->ai_next;

       /* try to create a matching socket */
       up->fdt = socket(
               ai->ai_family, ai->ai_socktype, ai->ai_protocol);
       if (-1 == up->fdt) {
               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: cannot create GPSD socket: %m",
                               up->logname);
               goto no_socket;
       }

       /* Make sure the socket is non-blocking. Connect/reconnect and
        * IO happen in an event-driven environment, and synchronous
        * operations wreak havoc on that.
        */
       rc = fcntl(up->fdt, F_SETFL, O_NONBLOCK, 1);
       if (-1 == rc) {
               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: cannot set GPSD socket to non-blocking: %m",
                               up->logname);
               goto no_socket;
       }
       /* Disable nagling. The way both GPSD and NTPD handle the
        * protocol makes it record-oriented, and in most cases
        * complete records (JSON serialised objects) will be sent in
        * one sweep. Nagling gives not much advantage but adds another
        * delay, which can worsen the situation for some packets.
        */
       ov = 1;
       rc = setsockopt(up->fdt, IPPROTO_TCP, TCP_NODELAY,
                       (void *)&ov, sizeof(ov));
       if (-1 == rc) {
               if (syslogok(pp, up))
                       msyslog(LOG_INFO,
                               "%s: cannot disable TCP nagle: %m",
                               up->logname);
       }

       /* Start a non-blocking connect. There might be a synchronous
        * connection result we have to handle.
        */
       rc = connect(up->fdt, ai->ai_addr, ai->ai_addrlen);
       if (-1 == rc) {
               if (errno == EINPROGRESS) {
                       DPRINTF(1, ("%s: async connect pending, fd=%d\n",
                                   up->logname, up->fdt));
                       return;
               }

               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: cannot connect GPSD socket: %m",
                               up->logname);
               goto no_socket;
       }

       /* We had a successful synchronous connect, so we add the
        * refclock processing ASAP. We still have to wait for the
        * version string and apply the watch command later on, but we
        * might as well get the show on the road now.
        */
       DPRINTF(1, ("%s: new socket connection, fd=%d\n",
                   up->logname, up->fdt));

       pp->io.fd = up->fdt;
       up->fdt   = -1;
       if (0 == io_addclock(&pp->io)) {
               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: failed to register with I/O engine",
                               up->logname);
               goto no_socket;
       }

       return;

 no_socket:
       if (-1 != pp->io.fd)
               close(pp->io.fd);
       if (-1 != up->fdt)
               close(up->fdt);
       pp->io.fd    = -1;
       up->fdt      = -1;
       up->tickover = up->tickpres;
       up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
}

/* ------------------------------------------------------------------ */

static void
gpsd_test_socket(
       peerT * const peer)
{
       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       int       ec, rc;
       socklen_t lc;

       /* Check if the non-blocking connect was finished by testing the
        * socket for writeability. Use the 'poll()' API if available
        * and 'select()' otherwise.
        */
       DPRINTF(2, ("%s: check connect, fd=%d\n",
                   up->logname, up->fdt));

#if defined(HAVE_SYS_POLL_H)
       {
               struct pollfd pfd;

               pfd.events = POLLOUT;
               pfd.fd     = up->fdt;
               rc = poll(&pfd, 1, 0);
               if (1 != rc || !(pfd.revents & POLLOUT))
                       return;
       }
#elif defined(HAVE_SYS_SELECT_H)
       {
               struct timeval tout;
               fd_set         wset;

               memset(&tout, 0, sizeof(tout));
               FD_ZERO(&wset);
               FD_SET(up->fdt, &wset);
               rc = select(up->fdt+1, NULL, &wset, NULL, &tout);
               if (0 == rc || !(FD_ISSET(up->fdt, &wset)))
                       return;
       }
#else
# error Blooper! That should have been found earlier!
#endif

       /* next timeout is a full one... */
       up->tickover = TICKOVER_LOW;

       /* check for socket error */
       ec = 0;
       lc = sizeof(ec);
       rc = getsockopt(up->fdt, SOL_SOCKET, SO_ERROR, (void *)&ec, &lc);
       if (-1 == rc || 0 != ec) {
               const char *errtxt;
               if (0 == ec)
                       ec = errno;
               errtxt = strerror(ec);
               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: async connect to GPSD failed,"
                               " fd=%d, ec=%d(%s)",
                               up->logname, up->fdt, ec, errtxt);
               else
                       DPRINTF(1, ("%s: async connect to GPSD failed,"
                               " fd=%d, ec=%d(%s)\n",
                                   up->logname, up->fdt, ec, errtxt));
               goto no_socket;
       } else {
               DPRINTF(1, ("%s: async connect to GPSD succeeded, fd=%d\n",
                           up->logname, up->fdt));
       }

       /* swap socket FDs, and make sure the clock was added */
       pp->io.fd = up->fdt;
       up->fdt   = -1;
       if (0 == io_addclock(&pp->io)) {
               if (syslogok(pp, up))
                       msyslog(LOG_ERR,
                               "%s: failed to register with I/O engine",
                               up->logname);
               goto no_socket;
       }
       return;

 no_socket:
       if (-1 != up->fdt) {
               DPRINTF(1, ("%s: closing socket, fd=%d\n",
                           up->logname, up->fdt));
               close(up->fdt);
       }
       up->fdt      = -1;
       up->tickover = up->tickpres;
       up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH);
}

/* =====================================================================
* helper stuff
*/

/* -------------------------------------------------------------------
* store a properly clamped precision value
*/
static int16_t
clamped_precision(
       int rawprec)
{
       if (rawprec > 0)
               rawprec = 0;
       if (rawprec < -32)
               rawprec = -32;
       return (int16_t)rawprec;
}

/* -------------------------------------------------------------------
* Convert a GPSD timestamp (ISO8601 Format) to an l_fp
*/
static BOOL
convert_ascii_time(
       l_fp       * fp      ,
       const char * gps_time)
{
       char           *ep;
       struct tm       gd;
       struct timespec ts;
       uint32_t        dw;

       /* Use 'strptime' to take the brunt of the work, then parse
        * the fractional part manually, starting with a digit weight of
        * 10^8 nanoseconds.
        */
       ts.tv_nsec = 0;
       ep = strptime(gps_time, "%Y-%m-%dT%H:%M:%S", &gd);
       if (NULL == ep)
               return FALSE; /* could not parse the mandatory stuff! */
       if (*ep == '.') {
               dw = 100000000u;
               while (isdigit(*(u_char*)++ep)) {
                       ts.tv_nsec += (*(u_char*)ep - '0') * dw;
                       dw /= 10u;
               }
       }
       if (ep[0] != 'Z' || ep[1] != '\0')
               return FALSE; /* trailing garbage */

       /* Now convert the whole thing into a 'l_fp'. We do not use
        * 'mkgmtime()' since its not standard and going through the
        * calendar routines is not much effort, either.
        */
       ts.tv_sec = (ntpcal_tm_to_rd(&gd) - DAY_NTP_STARTS) * SECSPERDAY
                 + ntpcal_tm_to_daysec(&gd);
       *fp = tspec_intv_to_lfp(ts);

       return TRUE;
}

/* -------------------------------------------------------------------
* Save the last timecode string, making sure it's properly truncated
* if necessary and NUL terminated in any case.
*/
static void
save_ltc(
       clockprocT * const pp,
       const char * const tc)
{
       size_t len = 0;

       if (tc) {
               len = strlen(tc);
               if (len >= sizeof(pp->a_lastcode))
                       len = sizeof(pp->a_lastcode) - 1;
               memcpy(pp->a_lastcode, tc, len);
       }
       pp->lencode = (u_short)len;
       pp->a_lastcode[len] = '\0';
}

/* -------------------------------------------------------------------
* asprintf replacement... it's not available everywhere...
*/
static int
myasprintf(
       char      ** spp,
       char const * fmt,
       ...             )
{
       size_t alen, plen;

       alen = 32;
       *spp = NULL;
       do {
               va_list va;

               alen += alen;
               free(*spp);
               *spp = (char*)malloc(alen);
               if (NULL == *spp)
                       return -1;

               va_start(va, fmt);
               plen = (size_t)vsnprintf(*spp, alen, fmt, va);
               va_end(va);
       } while (plen >= alen);

       return (int)plen;
}

/* -------------------------------------------------------------------
* dump a raw data buffer
*/

static char *
add_string(
       char *dp,
       char *ep,
       const char *sp)
{
       while (dp != ep && *sp)
               *dp++ = *sp++;
       return dp;
}

static void
log_data(
       peerT      *peer,
       int         level,
       const char *what,
       const char *buf ,
       size_t      len )
{
       /* we're running single threaded with regards to the clocks. */
       static char s_lbuf[2048];

       clockprocT * const pp = peer->procptr;
       gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr;

       if (debug >= level) {
               const char *sptr = buf;
               const char *stop = buf + len;
               char       *dptr = s_lbuf;
               char       *dtop = s_lbuf + sizeof(s_lbuf) - 1; /* for NUL */

               while (sptr != stop && dptr != dtop) {
                       u_char uch = (u_char)*sptr++;
                       if (uch == '\\') {
                               dptr = add_string(dptr, dtop, "\\\\");
                       } else if (isprint(uch)) {
                               *dptr++ = (char)uch;
                       } else {
                               char fbuf[6];
                               snprintf(fbuf, sizeof(fbuf), "\\%03o", uch);
                               dptr = add_string(dptr, dtop, fbuf);
                       }
               }
               *dptr = '\0';
               mprintf("%s[%s]: '%s'\n", up->logname, what, s_lbuf);
       }
}


#else
NONEMPTY_TRANSLATION_UNIT
#endif /* REFCLOCK && CLOCK_GPSDJSON */