/*      $NetBSD: clk_rawdcf.c,v 1.9 2024/08/18 20:47:17 christos Exp $  */

/*
* /src/NTP/REPOSITORY/ntp4-dev/libparse/clk_rawdcf.c,v 4.18 2006/06/22 18:40:01 kardel RELEASE_20060622_A
*
* clk_rawdcf.c,v 4.18 2006/06/22 18:40:01 kardel RELEASE_20060622_A
*
* Raw DCF77 pulse clock support
*
* Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org>
* Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#if defined(REFCLOCK) && defined(CLOCK_PARSE) && defined(CLOCK_RAWDCF)

#include "ntp_fp.h"
#include "timevalops.h"
#include "ntp_unixtime.h"
#include "ntp_calendar.h"

#include "parse.h"
#ifdef PARSESTREAM
# include <sys/parsestreams.h>
#endif

#ifndef PARSEKERNEL
# include "ntp_stdlib.h"
#endif

/*
* DCF77 raw time code
*
* From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
* und Berlin, Maerz 1989
*
* Timecode transmission:
* AM:
*      time marks are send every second except for the second before the
*      next minute mark
*      time marks consist of a reduction of transmitter power to 25%
*      of the nominal level
*      the falling edge is the time indication (on time)
*      time marks of a 100ms duration constitute a logical 0
*      time marks of a 200ms duration constitute a logical 1
* FM:
*      see the spec. (basically a (non-)inverted psuedo random phase shift)
*
* Encoding:
* Second       Contents
* 0  - 10      AM: free, FM: 0
* 11 - 14      free
* 15           R     - "call bit" used to signalize irregularities in the control facilities
*                      (until 2003 indicated transmission via alternate antenna)
* 16           A1    - expect zone change (1 hour before)
* 17 - 18      Z1,Z2 - time zone
*               0  0 illegal
*               0  1 MEZ  (MET)
*               1  0 MESZ (MED, MET DST)
*               1  1 illegal
* 19           A2    - expect leap insertion/deletion (1 hour before)
* 20           S     - start of time code (1)
* 21 - 24      M1    - BCD (lsb first) Minutes
* 25 - 27      M10   - BCD (lsb first) 10 Minutes
* 28           P1    - Minute Parity (even)
* 29 - 32      H1    - BCD (lsb first) Hours
* 33 - 34      H10   - BCD (lsb first) 10 Hours
* 35           P2    - Hour Parity (even)
* 36 - 39      D1    - BCD (lsb first) Days
* 40 - 41      D10   - BCD (lsb first) 10 Days
* 42 - 44      DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
* 45 - 49      MO    - BCD (lsb first) Month
* 50           MO0   - 10 Months
* 51 - 53      Y1    - BCD (lsb first) Years
* 54 - 57      Y10   - BCD (lsb first) 10 Years
* 58           P3    - Date Parity (even)
* 59                 - usually missing (minute indication), except for leap insertion
*/

static parse_pps_fnc_t pps_rawdcf;
static parse_cvt_fnc_t cvt_rawdcf;
static parse_inp_fnc_t inp_rawdcf;

typedef struct last_tcode {
       time_t      tcode;      /* last converted time code */
       timestamp_t tminute;    /* sample time for minute start */
       timestamp_t timeout;    /* last timeout timestamp */
} last_tcode_t;

#define BUFFER_MAX      61

clockformat_t clock_rawdcf =
{
 inp_rawdcf,                   /* DCF77 input handling */
 cvt_rawdcf,                   /* raw dcf input conversion */
 pps_rawdcf,                   /* examining PPS information */
 0,                            /* no private configuration data */
 "RAW DCF77 Timecode",         /* direct decoding / time synthesis */

 BUFFER_MAX,                   /* bit buffer */
 sizeof(last_tcode_t)
};

static struct dcfparam
{
       const unsigned char *onebits;
       const unsigned char *zerobits;
} dcfparameter =
{
       (const unsigned char *)"###############RADMLS1248124P124812P1248121241248112481248P??", /* 'ONE' representation */
       (const unsigned char *)"--------------------s-------p------p----------------------p__"  /* 'ZERO' representation */
};

static struct rawdcfcode
{
       char offset;                    /* start bit */
} rawdcfcode[] =
{
       {  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
       { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
};

#define DCF_M   0
#define DCF_R   1
#define DCF_A1  2
#define DCF_Z   3
#define DCF_A2  4
#define DCF_S   5
#define DCF_M1  6
#define DCF_M10 7
#define DCF_P1  8
#define DCF_H1  9
#define DCF_H10 10
#define DCF_P2  11
#define DCF_D1  12
#define DCF_D10 13
#define DCF_DW  14
#define DCF_MO  15
#define DCF_MO0 16
#define DCF_Y1  17
#define DCF_Y10 18
#define DCF_P3  19

static struct partab
{
       char offset;                    /* start bit of parity field */
} partab[] =
{
       { 21 }, { 29 }, { 36 }, { 59 }
};

#define DCF_P_P1        0
#define DCF_P_P2        1
#define DCF_P_P3        2

#define DCF_Z_MET 0x2
#define DCF_Z_MED 0x1

static u_long
ext_bf(
       unsigned char *buf,
       int   idx,
       const unsigned char *zero
       )
{
       u_long sum = 0;
       int i, first;

       first = rawdcfcode[idx].offset;

       for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
       {
               sum <<= 1;
               sum |= (buf[i] != zero[i]);
       }
       return sum;
}

static unsigned
pcheck(
      unsigned char *buf,
      int   idx,
      const unsigned char *zero
      )
{
       int i,last;
       unsigned psum = 1;

       last = partab[idx+1].offset;

       for (i = partab[idx].offset; i < last; i++)
           psum ^= (buf[i] != zero[i]);

       return psum;
}

static int/*BOOL*/
zeller_expand(
       clocktime_t     *clock_time,
       unsigned int    wd
       )
{
       unsigned int  y = (unsigned int)clock_time->year;
       unsigned int  m = (unsigned int)clock_time->month - 1u;
       unsigned int  d = (unsigned int)clock_time->day - 1u;
       unsigned int  c;

       /* Check basic constraints first. */
       if ((y >= 100u) || (m >= 12u) || (d >= 31u) || (--wd >= 7u))
               return FALSE;

       /* Get weekday of date in 1st century by a variation on Zeller's
        * congruence. All operands are non-negative, and the month
        * formula is adjusted to use a divider of 32, so we can do a
        * shift instead of a 'true' division:
        */
       if ((m += 10u) >= 12u)          /* shift base to 0000-03-01 */
               m -= 12u;
       else if (--y >= 100u)
               y += 100;
       d += y + (y >> 2) + 2u;         /* year-related share */
       d += (m * 83u + 16u) >> 5;      /* month-related share */

       /* The next step combines the exact division by modular inverse
        * with the (mod 7) step in such way that no true division and
        * only one multiplication is needed. The multiplier is
        *      M <- ceil((3*8)/7 * 2**29)
        * and combines multiplication by invmod(5, 7) -> 3 and modulus
        * by 7 transformation to (mod 8) in one step.
        *   Note that 252 == 0 (mod 7) and that 'd' is less than 185,
        * so the number to invert and reduce is strictly positive. In
        * the end, 'c' is number of centuries since start of a great
        * cycle and must be in [0..3] or we had bad input.
        */
       c = (((252u + wd - d) * 0x6db6db6eU) >> 29) & 7u;
       if (c >= 4)
               return FALSE;
       /* undo calendar base shift now */
       if ((m > 9u) && (++y >= 100u)) {
               y -= 100u;
               c = (c + 1u) & 3u;
       }
       /* combine year with centuries & map to [1970..2369] */
       y += (c * 100u);
       clock_time->year = (int)y + ((y < 370u) ? 2000 : 1600);
       return TRUE;
}

static u_long
convert_rawdcf(
              unsigned char   *buffer,
              int              size,
              struct dcfparam *dcfprm,
              clocktime_t     *clock_time
              )
{
       unsigned char *s = buffer;
       const unsigned char *b = dcfprm->onebits;
       const unsigned char *c = dcfprm->zerobits;
       int i;

       parseprintf(DD_RAWDCF,("parse: convert_rawdcf: \"%.*s\"\n", size, buffer));

       if (size < 57)
       {
#ifndef PARSEKERNEL
               msyslog(LOG_ERR, "parse: convert_rawdcf: INCOMPLETE DATA - time code only has %d bits", size);
#endif
               return CVT_FAIL|CVT_BADFMT;
       }

       for (i = 0; i < size; i++)
       {
               if ((*s != *b) && (*s != *c))
               {
                       /*
                        * we only have two types of bytes (ones and zeros)
                        */
#ifndef PARSEKERNEL
                       msyslog(LOG_ERR, "parse: convert_rawdcf: BAD DATA - no conversion");
#endif
                       return CVT_FAIL|CVT_BADFMT;
               }
               if (*b) b++;
               if (*c) c++;
               s++;
       }

       /*
        * check Start and Parity bits
        */
       if ((ext_bf(buffer, DCF_S, dcfprm->zerobits) == 1) &&
           pcheck(buffer, DCF_P_P1, dcfprm->zerobits) &&
           pcheck(buffer, DCF_P_P2, dcfprm->zerobits) &&
           pcheck(buffer, DCF_P_P3, dcfprm->zerobits))
       {
               /*
                * buffer OK
                */
               parseprintf(DD_RAWDCF,("parse: convert_rawdcf: parity check passed\n"));

               clock_time->flags  = PARSEB_S_CALLBIT|PARSEB_S_LEAP;
               clock_time->utctime= 0;
               clock_time->usecond= 0;
               clock_time->second = 0;
               clock_time->minute = ext_bf(buffer, DCF_M10, dcfprm->zerobits);
               clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1, dcfprm->zerobits);
               clock_time->hour   = ext_bf(buffer, DCF_H10, dcfprm->zerobits);
               clock_time->hour   = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1, dcfprm->zerobits);
               clock_time->day    = ext_bf(buffer, DCF_D10, dcfprm->zerobits);
               clock_time->day    = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1, dcfprm->zerobits);
               clock_time->month  = ext_bf(buffer, DCF_MO0, dcfprm->zerobits);
               clock_time->month  = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO, dcfprm->zerobits);
               clock_time->year   = ext_bf(buffer, DCF_Y10, dcfprm->zerobits);
               clock_time->year   = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1, dcfprm->zerobits);

               if (!zeller_expand(clock_time, ext_bf(buffer, DCF_DW, dcfprm->zerobits)))
                   return CVT_FAIL|CVT_BADFMT;

               switch (ext_bf(buffer, DCF_Z, dcfprm->zerobits))
               {
                   case DCF_Z_MET:
                       clock_time->utcoffset = -1*60*60;
                       break;

                   case DCF_Z_MED:
                       clock_time->flags     |= PARSEB_DST;
                       clock_time->utcoffset  = -2*60*60;
                       break;

                   default:
                       parseprintf(DD_RAWDCF,("parse: convert_rawdcf: BAD TIME ZONE\n"));
                       return CVT_FAIL|CVT_BADFMT;
               }

               if (ext_bf(buffer, DCF_A1, dcfprm->zerobits))
                   clock_time->flags |= PARSEB_ANNOUNCE;

               if (ext_bf(buffer, DCF_A2, dcfprm->zerobits))
                   clock_time->flags |= PARSEB_LEAPADD; /* default: DCF77 data format deficiency */

               if (ext_bf(buffer, DCF_R, dcfprm->zerobits))
                   clock_time->flags |= PARSEB_CALLBIT;

               parseprintf(DD_RAWDCF,("parse: convert_rawdcf: TIME CODE OK: %02d:%02d, %02d.%02d.%02d, flags 0x%lx\n",
                                      (int)clock_time->hour, (int)clock_time->minute, (int)clock_time->day, (int)clock_time->month,(int) clock_time->year,
                                      (u_long)clock_time->flags));
               return CVT_OK;
       }
       else
       {
               /*
                * bad format - not for us
                */
#ifndef PARSEKERNEL
               msyslog(LOG_ERR, "parse: convert_rawdcf: start bit / parity check FAILED for \"%.*s\"", size, buffer);
#endif
               return CVT_FAIL|CVT_BADFMT;
       }
}

/*
* parse_cvt_fnc_t cvt_rawdcf
* raw dcf input routine - needs to fix up 50 baud
* characters for 1/0 decision
*/
static u_long
cvt_rawdcf(
          unsigned char   *buffer,
          int              size,
          struct format   *param,
          clocktime_t     *clock_time,
          void            *local
          )
{
       last_tcode_t  *t = (last_tcode_t *)local;
       unsigned char *s = (unsigned char *)buffer;
       unsigned char *e = s + size;
       const unsigned char *b = dcfparameter.onebits;
       const unsigned char *c = dcfparameter.zerobits;
       u_long       rtc = CVT_NONE;
       unsigned int i, lowmax, highmax, cutoff, span;
#define BITS 9
       unsigned char     histbuf[BITS];
       /*
        * the input buffer contains characters with runs of consecutive
        * bits set. These set bits are an indication of the DCF77 pulse
        * length. We assume that we receive the pulse at 50 Baud. Thus
        * a 100ms pulse would generate a 4 bit train (20ms per bit and
        * start bit)
        * a 200ms pulse would create all zeroes (and probably a frame error)
        */

       for (i = 0; i < BITS; i++)
       {
               histbuf[i] = 0;
       }

       cutoff = 0;
       lowmax = 0;

       while (s < e)
       {
               unsigned int ch = *s ^ 0xFF;
               /*
                * these lines are left as an excercise to the reader 8-)
                */
               if (!((ch+1) & ch) || !*s)
               {

                       for (i = 0; ch; i++)
                       {
                               ch >>= 1;
                       }

                       *s = (unsigned char) i;
                       histbuf[i]++;
                       cutoff += i;
                       lowmax++;
               }
               else
               {
                       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, (int)(s - (unsigned char *)buffer)));
                       *s = (unsigned char)~0;
                       rtc = CVT_FAIL|CVT_BADFMT;
               }
               s++;
       }

       if (lowmax)
       {
               cutoff /= lowmax;
       }
       else
       {
               cutoff = 4;     /* doesn't really matter - it'll fail anyway, but gives error output */
       }

       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: average bit count: %d\n", cutoff));

       lowmax = 0;
       highmax = 0;

       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: histogram:"));
       for (i = 0; i <= cutoff; i++)
       {
               lowmax+=histbuf[i] * i;
               highmax += histbuf[i];
               parseprintf(DD_RAWDCF,(" %d", histbuf[i]));
       }
       parseprintf(DD_RAWDCF, (" <M>"));

       lowmax += highmax / 2;

       if (highmax)
       {
               lowmax /= highmax;
       }
       else
       {
               lowmax = 0;
       }

       highmax = 0;
       cutoff = 0;

       for (; i < BITS; i++)
       {
               highmax+=histbuf[i] * i;
               cutoff +=histbuf[i];
               parseprintf(DD_RAWDCF,(" %d", histbuf[i]));
       }
       parseprintf(DD_RAWDCF,("\n"));

       if (cutoff)
       {
               highmax /= cutoff;
       }
       else
       {
               highmax = BITS-1;
       }

       span = cutoff = lowmax;
       for (i = lowmax; i <= highmax; i++)
       {
               if (histbuf[cutoff] > histbuf[i])
               {
                       cutoff = i;
                       span = i;
               }
               else
                   if (histbuf[cutoff] == histbuf[i])
                   {
                           span = i;
                   }
       }

       cutoff = (cutoff + span) / 2;

       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));

       s = (unsigned char *)buffer;
       while (s < e)
       {
               if (*s == (unsigned char)~0)
               {
                       *s = '?';
               }
               else
               {
                       *s = (*s >= cutoff) ? *b : *c;
               }
               s++;
               if (*b) b++;
               if (*c) c++;
       }

       *s = '\0';

       if (rtc == CVT_NONE)
       {
              rtc = convert_rawdcf(buffer, size, &dcfparameter, clock_time);
              if (rtc == CVT_OK)
              {
                       time_t newtime;

                       newtime = parse_to_unixtime(clock_time, &rtc);
                       if ((rtc == CVT_OK) && t)
                       {
                               if ((newtime - t->tcode) <= 600) /* require a successful telegram within last 10 minutes */
                               {
                                       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: recent timestamp check OK\n"));
                                       clock_time->utctime = newtime;
                               }
                               else
                               {
                                       parseprintf(DD_RAWDCF,("parse: cvt_rawdcf: recent timestamp check FAIL - ignore timestamp\n"));
                                       rtc = CVT_SKIP;
                               }
                               t->tcode            = newtime;
                       }
              }
       }

       return rtc;
}

/*
* parse_pps_fnc_t pps_rawdcf
*
* currently a very stupid version - should be extended to decode
* also ones and zeros (which is easy)
*/
/*ARGSUSED*/
static u_long
pps_rawdcf(
       parse_t *parseio,
       int status,
       timestamp_t *ptime
       )
{
       if (!status)            /* negative edge for simpler wiring (Rx->DCD) */
       {
               parseio->parse_dtime.parse_ptime  = *ptime;
               parseio->parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
       }

       return CVT_NONE;
}

static long
calc_usecdiff(
       timestamp_t *ref,
       timestamp_t *base,
       long         offset
       )
{
       struct timeval delta;
       long delta_usec = 0;

#ifdef PARSEKERNEL
       delta.tv_sec = ref->tv.tv_sec - offset - base->tv.tv_sec;
       delta.tv_usec = ref->tv.tv_usec - base->tv.tv_usec;
       if (delta.tv_usec < 0)
       {
               delta.tv_sec  -= 1;
               delta.tv_usec += 1000000;
       }
#else
       l_fp delt;

       delt = ref->fp;
       delt.l_i -= offset;
       L_SUB(&delt, &base->fp);
       TSTOTV(&delt, &delta);
#endif

       delta_usec = 1000000 * (int32_t)delta.tv_sec + delta.tv_usec;
       return delta_usec;
}

static u_long
snt_rawdcf(
       parse_t *parseio,
       timestamp_t *ptime
       )
{
       /*
        * only synthesize if all of following conditions are met:
        * - CVT_OK parse_status (we have a time stamp base)
        * - ABS(ptime - tminute - (parse_index - 1) sec) < 500ms (spaced by 1 sec +- 500ms)
        * - minute marker is available (confirms minute raster as base)
        */
       last_tcode_t  *t = (last_tcode_t *)parseio->parse_pdata;
       long delta_usec = -1;

       if (t != NULL && t->tminute.tv.tv_sec != 0) {
               delta_usec = calc_usecdiff(ptime, &t->tminute, parseio->parse_index - 1);
               if (delta_usec < 0)
                       delta_usec = -delta_usec;
       }

       parseprintf(DD_RAWDCF,("parse: snt_rawdcf: synth for offset %d seconds - absolute usec error %ld\n",
                              parseio->parse_index - 1, delta_usec));

       if (((parseio->parse_dtime.parse_status & CVT_MASK) == CVT_OK) &&
           (delta_usec < 500000 && delta_usec >= 0)) /* only if minute marker is available */
       {
               parseio->parse_dtime.parse_stime = *ptime;

#ifdef PARSEKERNEL
               parseio->parse_dtime.parse_time.tv.tv_sec++;
#else
               parseio->parse_dtime.parse_time.fp.l_ui++;
#endif

               parseprintf(DD_RAWDCF,("parse: snt_rawdcf: time stamp synthesized offset %d seconds\n", parseio->parse_index - 1));

               return updatetimeinfo(parseio, parseio->parse_lstate);
       }
       return CVT_NONE;
}

/*
* parse_inp_fnc_t inp_rawdcf
*
* grab DCF77 data from input stream
*/
static u_long
inp_rawdcf(
         parse_t      *parseio,
         char         ch,
         timestamp_t  *tstamp
         )
{
       static struct timeval timeout = { 1, 500000 }; /* 1.5 secongs denote second #60 */

       parseprintf(DD_PARSE, ("inp_rawdcf(0x%p, 0x%x, ...)\n", (void*)parseio, ch));

       parseio->parse_dtime.parse_stime = *tstamp; /* collect timestamp */

       if (parse_timedout(parseio, tstamp, &timeout))
       {
               last_tcode_t *t = (last_tcode_t *)parseio->parse_pdata;
               long delta_usec;

               parseprintf(DD_RAWDCF, ("inp_rawdcf: time out seen\n"));
               /* finish collection */
               (void) parse_end(parseio);

               if (t != NULL)
               {
                       /* remember minute start sample time if timeouts occur in minute raster */
                       if (t->timeout.tv.tv_sec != 0)
                       {
                               delta_usec = calc_usecdiff(tstamp, &t->timeout, 60);
                               if (delta_usec < 0)
                                       delta_usec = -delta_usec;
                       }
                       else
                       {
                               delta_usec = -1;
                       }

                       if (delta_usec < 500000 && delta_usec >= 0)
                       {
                               parseprintf(DD_RAWDCF, ("inp_rawdcf: timeout time difference %ld usec - minute marker set\n", delta_usec));
                               /* collect minute markers only if spaced by 60 seconds */
                               t->tminute = *tstamp;
                       }
                       else
                       {
                               parseprintf(DD_RAWDCF, ("inp_rawdcf: timeout time difference %ld usec - minute marker cleared\n", delta_usec));
                               memset((char *)&t->tminute, 0, sizeof(t->tminute));
                       }
                       t->timeout = *tstamp;
               }
               (void) parse_addchar(parseio, ch);

               /* pass up to higher layers */
               return PARSE_INP_TIME;
       }
       else
       {
               unsigned int rtc;

               rtc = parse_addchar(parseio, ch);
               if (rtc == PARSE_INP_SKIP)
               {
                       if (snt_rawdcf(parseio, tstamp) == CVT_OK)
                               return PARSE_INP_SYNTH;
               }
               return rtc;
       }
}

#else /* not (REFCLOCK && CLOCK_PARSE && CLOCK_RAWDCF) */
NONEMPTY_TRANSLATION_UNIT
#endif /* not (REFCLOCK && CLOCK_PARSE && CLOCK_RAWDCF) */

/*
* History:
*
* clk_rawdcf.c,v
* Revision 4.18  2006/06/22 18:40:01  kardel
* clean up signedness (gcc 4)
*
* Revision 4.17  2006/01/22 16:01:55  kardel
* update version information
*
* Revision 4.16  2006/01/22 15:51:22  kardel
* generate reasonable timecode output on invalid input
*
* Revision 4.15  2005/08/06 19:17:06  kardel
* clean log output
*
* Revision 4.14  2005/08/06 17:39:40  kardel
* cleanup size handling wrt/ to buffer boundaries
*
* Revision 4.13  2005/04/16 17:32:10  kardel
* update copyright
*
* Revision 4.12  2004/11/14 15:29:41  kardel
* support PPSAPI, upgrade Copyright to Berkeley style
*
* Revision 4.9  1999/12/06 13:42:23  kardel
* transfer correctly converted time codes always into tcode
*
* Revision 4.8  1999/11/28 09:13:50  kardel
* RECON_4_0_98F
*
* Revision 4.7  1999/04/01 20:07:20  kardel
* added checking for minutie increment of timestamps in clk_rawdcf.c
*
* Revision 4.6  1998/06/14 21:09:37  kardel
* Sun acc cleanup
*
* Revision 4.5  1998/06/13 12:04:16  kardel
* fix SYSV clock name clash
*
* Revision 4.4  1998/06/12 15:22:28  kardel
* fix prototypes
*
* Revision 4.3  1998/06/06 18:33:36  kardel
* simplified condidional compile expression
*
* Revision 4.2  1998/05/24 11:04:18  kardel
* triggering PPS on negative edge for simpler wiring (Rx->DCD)
*
* Revision 4.1  1998/05/24 09:39:53  kardel
* implementation of the new IO handling model
*
* Revision 4.0  1998/04/10 19:45:30  kardel
* Start 4.0 release version numbering
*
* from V3 3.24 log info deleted 1998/04/11 kardel
*
*/