/*      $NetBSD: timespecops.c,v 1.2 2020/05/25 20:47:24 christos Exp $ */

/*
* timespecops.c -- calculations on 'struct timespec' values
*
* Written by Juergen Perlinger ([email protected]) for the NTP project.
* The contents of 'html/copyright.html' apply.
*
*/

#include "config.h"

#include <sys/types.h>
#include <stdio.h>
#include <math.h>

#include "ntp.h"
#include "timetoa.h"
#include "timespecops.h"


/* nanoseconds per second */
#define NANOSECONDS 1000000000

/* conversion between l_fp fractions and nanoseconds */
#ifdef HAVE_U_INT64
# define FTOTVN(tsf)                                            \
       ((int32)                                                \
        (((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32))
# define TVNTOF(tvu)                                            \
       ((u_int32)                                              \
        ((((u_int64)(tvu) << 32) + NANOSECONDS / 2) /          \
         NANOSECONDS))
#else
# define NSECFRAC       (FRAC / NANOSECONDS)
# define FTOTVN(tsf)                                            \
       ((int32)((tsf) / NSECFRAC + 0.5))
# define TVNTOF(tvu)                                            \
       ((u_int32)((tvu) * NSECFRAC + 0.5))
#endif



/* make sure nanoseconds are in nominal range */
struct timespec
normalize_tspec(
       struct timespec x
       )
{
#if SIZEOF_LONG > 4
       long    z;

       /*
        * tv_nsec is of type 'long', and on a 64-bit machine using only
        * loops becomes prohibitive once the upper 32 bits get
        * involved. On the other hand, division by constant should be
        * fast enough; so we do a division of the nanoseconds in that
        * case. The floor adjustment step follows with the standard
        * normalisation loops. And labs() is intentionally not used
        * here: it has implementation-defined behaviour when applied
        * to LONG_MIN.
        */
       if (x.tv_nsec < -3l * NANOSECONDS ||
           x.tv_nsec > 3l * NANOSECONDS) {
               z = x.tv_nsec / NANOSECONDS;
               x.tv_nsec -= z * NANOSECONDS;
               x.tv_sec += z;
       }
#endif
       /* since 10**9 is close to 2**32, we don't divide but do a
        * normalisation in a loop; this takes 3 steps max, and should
        * outperform a division even if the mul-by-inverse trick is
        * employed. */
       if (x.tv_nsec < 0)
               do {
                       x.tv_nsec += NANOSECONDS;
                       x.tv_sec--;
               } while (x.tv_nsec < 0);
       else if (x.tv_nsec >= NANOSECONDS)
               do {
                       x.tv_nsec -= NANOSECONDS;
                       x.tv_sec++;
               } while (x.tv_nsec >= NANOSECONDS);

       return x;
}

/* x = abs(a) */
struct timespec
abs_tspec(
       struct timespec a
       )
{
       struct timespec c;

       c = normalize_tspec(a);
       if (c.tv_sec < 0) {
               if (c.tv_nsec != 0) {
                       c.tv_sec = -c.tv_sec - 1;
                       c.tv_nsec = NANOSECONDS - c.tv_nsec;
               } else {
                       c.tv_sec = -c.tv_sec;
               }
       }

       return c;
}

/*
* compare previously-normalised a and b
* return 1 / 0 / -1 if a < / == / > b
*/
int
cmp_tspec(
       struct timespec a,
       struct timespec b
       )
{
       int r;

       r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
       if (0 == r)
               r = (a.tv_nsec > b.tv_nsec) -
                   (a.tv_nsec < b.tv_nsec);

       return r;
}

/*
* test previously-normalised a
* return 1 / 0 / -1 if a < / == / > 0
*/
int
test_tspec(
       struct timespec a
       )
{
       int             r;

       r = (a.tv_sec > 0) - (a.tv_sec < 0);
       if (r == 0)
               r = (a.tv_nsec > 0);

       return r;
}

/*
*  convert to l_fp type, relative and absolute
*/

/* convert from timespec duration to l_fp duration */
l_fp
tspec_intv_to_lfp(
       struct timespec x
       )
{
       struct timespec v;
       l_fp            y;

       v = normalize_tspec(x);
       y.l_uf = TVNTOF(v.tv_nsec);
       y.l_i = (int32)v.tv_sec;

       return y;
}

/* convert from l_fp type, relative signed/unsigned and absolute */
struct timespec
lfp_intv_to_tspec(
       l_fp            x
       )
{
       struct timespec out;
       l_fp            absx;
       int             neg;

       neg = L_ISNEG(&x);
       absx = x;
       if (neg) {
               L_NEG(&absx);
       }
       out.tv_nsec = FTOTVN(absx.l_uf);
       out.tv_sec = absx.l_i;
       if (neg) {
               out.tv_sec = -out.tv_sec;
               out.tv_nsec = -out.tv_nsec;
               out = normalize_tspec(out);
       }

       return out;
}

struct timespec
lfp_uintv_to_tspec(
       l_fp            x
       )
{
       struct timespec out;

       out.tv_nsec = FTOTVN(x.l_uf);
       out.tv_sec = x.l_ui;

       return out;
}

/*
* absolute (timestamp) conversion. Input is time in NTP epoch, output
* is in UN*X epoch. The NTP time stamp will be expanded around the
* pivot time *p or the current time, if p is NULL.
*/
struct timespec
lfp_stamp_to_tspec(
       l_fp            x,
       const time_t *  p
       )
{
       struct timespec out;
       vint64          sec;

       sec = ntpcal_ntp_to_time(x.l_ui, p);
       out.tv_nsec = FTOTVN(x.l_uf);

       /* copying a vint64 to a time_t needs some care... */
#if SIZEOF_TIME_T <= 4
       out.tv_sec = (time_t)sec.d_s.lo;
#elif defined(HAVE_INT64)
       out.tv_sec = (time_t)sec.q_s;
#else
       out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo;
#endif

       return out;
}

/* -*-EOF-*- */