/*      $NetBSD: mktime.c,v 1.6 2024/08/18 20:47:13 christos Exp $      */

/*
* Copyright (c) 1987, 1989 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Arthur David Olson of the National Cancer Institute.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.  */

/*static char *sccsid = "from: @(#)ctime.c      5.26 (Berkeley) 2/23/91";*/

/*
* This implementation of mktime is lifted straight from the NetBSD (BSD 4.4)
* version.  I modified it slightly to divorce it from the internals of the
* ctime library.  Thus this version can't use details of the internal
* timezone state file to figure out strange unnormalized struct tm values,
* as might result from someone doing date math on the tm struct then passing
* it to mktime.
*
* It just does as well as it can at normalizing the tm input, then does a
* binary search of the time space using the system's localtime() function.
*
* The original binary search was defective in that it didn't consider the
* setting of tm_isdst when comparing tm values, causing the search to be
* flubbed for times near the dst/standard time changeover.  The original
* code seems to make up for this by grubbing through the timezone info
* whenever the binary search barfed.  Since I don't have that luxury in
* portable code, I have to take care of tm_isdst in the comparison routine.
* This requires knowing how many minutes offset dst is from standard time.
*
* So, if you live somewhere in the world where dst is not 60 minutes offset,
* and your vendor doesn't supply mktime(), you'll have to edit this variable
* by hand.  Sorry about that.
*/

#include <config.h>
#include "ntp_types.h"

#if !defined(HAVE_MKTIME) || ( !defined(HAVE_TIMEGM) && defined(WANT_TIMEGM) )

#if SIZEOF_TIME_T >= 8
#error libntp supplied mktime()/timegm() do not support 64-bit time_t
#endif

#ifndef DSTMINUTES
#define DSTMINUTES 60
#endif

#define FALSE 0
#define TRUE 1

/* some constants from tzfile.h */
#define SECSPERMIN      60
#define MINSPERHOUR     60
#define HOURSPERDAY     24
#define DAYSPERWEEK     7
#define DAYSPERNYEAR    365
#define DAYSPERLYEAR    366
#define SECSPERHOUR     (SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY      ((long) SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR     12
#define TM_YEAR_BASE    1900
#define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)

static int      mon_lengths[2][MONSPERYEAR] = {
       { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
       { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};

static int      year_lengths[2] = {
       DAYSPERNYEAR, DAYSPERLYEAR
};

/*
** Adapted from code provided by Robert Elz, who writes:
**      The "best" way to do mktime I think is based on an idea of Bob
**      Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
**      It does a binary search of the time_t space.  Since time_t's are
**      just 32 bits, its a max of 32 iterations (even at 64 bits it
**      would still be very reasonable).
*/

#ifndef WRONG
#define WRONG   (-1)
#endif /* !defined WRONG */

static void
normalize(
       int * tensptr,
       int * unitsptr,
       int     base
       )
{
       if (*unitsptr >= base) {
               *tensptr += *unitsptr / base;
               *unitsptr %= base;
       } else if (*unitsptr < 0) {
               --*tensptr;
               *unitsptr += base;
               if (*unitsptr < 0) {
                       *tensptr -= 1 + (-*unitsptr) / base;
                       *unitsptr = base - (-*unitsptr) % base;
               }
       }
}

static struct tm *
mkdst(
       struct tm *     tmp
       )
{
   /* jds */
   static struct tm tmbuf;

   tmbuf = *tmp;
   tmbuf.tm_isdst = 1;
   tmbuf.tm_min += DSTMINUTES;
   normalize(&tmbuf.tm_hour, &tmbuf.tm_min, MINSPERHOUR);
   return &tmbuf;
}

static int
tmcomp(
       register struct tm * atmp,
       register struct tm * btmp
       )
{
       register int    result;

       /* compare down to the same day */

       if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
           (result = (atmp->tm_mon - btmp->tm_mon)) == 0)
           result = (atmp->tm_mday - btmp->tm_mday);

       if(result != 0)
           return result;

       /* get rid of one-sided dst bias */

       if(atmp->tm_isdst == 1 && !btmp->tm_isdst)
           btmp = mkdst(btmp);
       else if(btmp->tm_isdst == 1 && !atmp->tm_isdst)
           atmp = mkdst(atmp);

       /* compare the rest of the way */

       if ((result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
           (result = (atmp->tm_min - btmp->tm_min)) == 0)
           result = atmp->tm_sec - btmp->tm_sec;
       return result;
}


static time_t
time2(
       struct tm *     tmp,
       int *           okayp,
       int             usezn
       )
{
       register int                    dir;
       register int                    bits;
       register int                    i;
       register int                    saved_seconds;
       time_t                          t;
       struct tm                       yourtm, mytm;

       *okayp = FALSE;
       yourtm = *tmp;
       if (yourtm.tm_sec >= SECSPERMIN + 2 || yourtm.tm_sec < 0)
               normalize(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN);
       normalize(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR);
       normalize(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY);
       normalize(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR);
       while (yourtm.tm_mday <= 0) {
               --yourtm.tm_year;
               yourtm.tm_mday +=
                       year_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)];
       }
       for ( ; ; ) {
               i = mon_lengths[isleap(yourtm.tm_year +
                       TM_YEAR_BASE)][yourtm.tm_mon];
               if (yourtm.tm_mday <= i)
                       break;
               yourtm.tm_mday -= i;
               if (++yourtm.tm_mon >= MONSPERYEAR) {
                       yourtm.tm_mon = 0;
                       ++yourtm.tm_year;
               }
       }
       saved_seconds = yourtm.tm_sec;
       yourtm.tm_sec = 0;
       /*
       ** Calculate the number of magnitude bits in a time_t
       ** (this works regardless of whether time_t is
       ** signed or unsigned, though lint complains if unsigned).
       */
       for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
               ;
       /*
       ** If time_t is signed, then 0 is the median value,
       ** if time_t is unsigned, then 1 << bits is median.
       */
       t = (t < 0) ? 0 : ((time_t) 1 << bits);
       for ( ; ; ) {
               if (usezn)
                       mytm = *localtime(&t);
               else
                       mytm = *gmtime(&t);
               dir = tmcomp(&mytm, &yourtm);
               if (dir != 0) {
                       if (bits-- < 0)
                               return WRONG;
                       if (bits < 0)
                               --t;
                       else if (dir > 0)
                               t -= (time_t) 1 << bits;
                       else    t += (time_t) 1 << bits;
                       continue;
               }
               if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
                       break;

               return WRONG;
       }
       t += saved_seconds;
       if (usezn)
               *tmp = *localtime(&t);
       else
               *tmp = *gmtime(&t);
       *okayp = TRUE;
       return t;
}
#else
NONEMPTY_TRANSLATION_UNIT
#endif /* !HAVE_MKTIME || !HAVE_TIMEGM */

#ifndef HAVE_MKTIME
static time_t
time1(
       struct tm * tmp
       )
{
       register time_t                 t;
       int                             okay;

       if (tmp->tm_isdst > 1)
               tmp->tm_isdst = 1;
       t = time2(tmp, &okay, 1);
       if (okay || tmp->tm_isdst < 0)
               return t;

       return WRONG;
}

time_t
mktime(
       struct tm * tmp
       )
{
       return time1(tmp);
}
#endif /* !HAVE_MKTIME */

#ifdef WANT_TIMEGM
#ifndef HAVE_TIMEGM
time_t
timegm(
       struct tm * tmp
       )
{
       register time_t                 t;
       int                             okay;

       tmp->tm_isdst = 0;
       t = time2(tmp, &okay, 0);
       if (okay || tmp->tm_isdst < 0)
               return t;

       return WRONG;
}
#endif /* !HAVE_TIMEGM */
#endif /* WANT_TIMEGM */