/*      $NetBSD: gencode.c,v 1.14 2024/09/02 15:33:36 christos Exp $    */

/*
* Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: gencode.c,v 1.14 2024/09/02 15:33:36 christos Exp $");

#include <config.h>

#ifdef _WIN32
 #include <ws2tcpip.h>
#else
 #include <sys/socket.h>

 #ifdef __NetBSD__
   #include <sys/param.h>
 #endif

 #include <netinet/in.h>
 #include <arpa/inet.h>
#endif /* _WIN32 */

#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdio.h>

#ifdef MSDOS
#include "pcap-dos.h"
#endif

#include "pcap-int.h"

#include "extract.h"

#include "ethertype.h"
#include "nlpid.h"
#include "llc.h"
#include "gencode.h"
#include "ieee80211.h"
#include "atmuni31.h"
#include "sunatmpos.h"
#include "pflog.h"
#include "ppp.h"
#include "pcap/sll.h"
#include "pcap/ipnet.h"
#include "arcnet.h"
#include "diag-control.h"

#include "scanner.h"

#if defined(__linux__)
#include <linux/types.h>
#include <linux/if_packet.h>
#include <linux/filter.h>
#endif

#ifndef offsetof
#define offsetof(s, e) ((size_t)&((s *)0)->e)
#endif

#ifdef _WIN32
 #ifdef INET6
   #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
/* IPv6 address */
struct in6_addr
 {
   union
     {
       uint8_t         u6_addr8[16];
       uint16_t        u6_addr16[8];
       uint32_t        u6_addr32[4];
     } in6_u;
#define s6_addr                 in6_u.u6_addr8
#define s6_addr16               in6_u.u6_addr16
#define s6_addr32               in6_u.u6_addr32
#define s6_addr64               in6_u.u6_addr64
 };

typedef unsigned short  sa_family_t;

#define __SOCKADDR_COMMON(sa_prefix) \
 sa_family_t sa_prefix##family

/* Ditto, for IPv6.  */
struct sockaddr_in6
 {
   __SOCKADDR_COMMON (sin6_);
   uint16_t sin6_port;         /* Transport layer port # */
   uint32_t sin6_flowinfo;     /* IPv6 flow information */
   struct in6_addr sin6_addr;  /* IPv6 address */
 };

     #ifndef EAI_ADDRFAMILY
struct addrinfo {
       int     ai_flags;       /* AI_PASSIVE, AI_CANONNAME */
       int     ai_family;      /* PF_xxx */
       int     ai_socktype;    /* SOCK_xxx */
       int     ai_protocol;    /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
       size_t  ai_addrlen;     /* length of ai_addr */
       char    *ai_canonname;  /* canonical name for hostname */
       struct sockaddr *ai_addr;       /* binary address */
       struct addrinfo *ai_next;       /* next structure in linked list */
};
     #endif /* EAI_ADDRFAMILY */
   #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
 #endif /* INET6 */
#else /* _WIN32 */
 #include <netdb.h>    /* for "struct addrinfo" */
#endif /* _WIN32 */
#include <pcap/namedb.h>

#include "nametoaddr.h"

#define ETHERMTU        1500

#ifndef IPPROTO_HOPOPTS
#define IPPROTO_HOPOPTS 0
#endif
#ifndef IPPROTO_ROUTING
#define IPPROTO_ROUTING 43
#endif
#ifndef IPPROTO_FRAGMENT
#define IPPROTO_FRAGMENT 44
#endif
#ifndef IPPROTO_DSTOPTS
#define IPPROTO_DSTOPTS 60
#endif
#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif

#define GENEVE_PORT 6081

#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif

#define JMP(c) ((c)|BPF_JMP|BPF_K)

/*
* "Push" the current value of the link-layer header type and link-layer
* header offset onto a "stack", and set a new value.  (It's not a
* full-blown stack; we keep only the top two items.)
*/
#define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
{ \
       (cs)->prevlinktype = (cs)->linktype; \
       (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
       (cs)->linktype = (new_linktype); \
       (cs)->off_linkhdr.is_variable = (new_is_variable); \
       (cs)->off_linkhdr.constant_part = (new_constant_part); \
       (cs)->off_linkhdr.reg = (new_reg); \
       (cs)->is_geneve = 0; \
}

/*
* Offset "not set" value.
*/
#define OFFSET_NOT_SET  0xffffffffU

/*
* Absolute offsets, which are offsets from the beginning of the raw
* packet data, are, in the general case, the sum of a variable value
* and a constant value; the variable value may be absent, in which
* case the offset is only the constant value, and the constant value
* may be zero, in which case the offset is only the variable value.
*
* bpf_abs_offset is a structure containing all that information:
*
*   is_variable is 1 if there's a variable part.
*
*   constant_part is the constant part of the value, possibly zero;
*
*   if is_variable is 1, reg is the register number for a register
*   containing the variable value if the register has been assigned,
*   and -1 otherwise.
*/
typedef struct {
       int     is_variable;
       u_int   constant_part;
       int     reg;
} bpf_abs_offset;

/*
* Value passed to gen_load_a() to indicate what the offset argument
* is relative to the beginning of.
*/
enum e_offrel {
       OR_PACKET,              /* full packet data */
       OR_LINKHDR,             /* link-layer header */
       OR_PREVLINKHDR,         /* previous link-layer header */
       OR_LLC,                 /* 802.2 LLC header */
       OR_PREVMPLSHDR,         /* previous MPLS header */
       OR_LINKTYPE,            /* link-layer type */
       OR_LINKPL,              /* link-layer payload */
       OR_LINKPL_NOSNAP,       /* link-layer payload, with no SNAP header at the link layer */
       OR_TRAN_IPV4,           /* transport-layer header, with IPv4 network layer */
       OR_TRAN_IPV6            /* transport-layer header, with IPv6 network layer */
};

/*
* We divvy out chunks of memory rather than call malloc each time so
* we don't have to worry about leaking memory.  It's probably
* not a big deal if all this memory was wasted but if this ever
* goes into a library that would probably not be a good idea.
*
* XXX - this *is* in a library....
*/
#define NCHUNKS 16
#define CHUNK0SIZE 1024
struct chunk {
       size_t n_left;
       void *m;
};

/* Code generator state */

struct _compiler_state {
       jmp_buf top_ctx;
       pcap_t *bpf_pcap;
       int error_set;

       struct icode ic;

       int snaplen;

       int linktype;
       int prevlinktype;
       int outermostlinktype;

       bpf_u_int32 netmask;
       int no_optimize;

       /* Hack for handling VLAN and MPLS stacks. */
       u_int label_stack_depth;
       u_int vlan_stack_depth;

       /* XXX */
       u_int pcap_fddipad;

       /*
        * As errors are handled by a longjmp, anything allocated must
        * be freed in the longjmp handler, so it must be reachable
        * from that handler.
        *
        * One thing that's allocated is the result of pcap_nametoaddrinfo();
        * it must be freed with freeaddrinfo().  This variable points to
        * any addrinfo structure that would need to be freed.
        */
       struct addrinfo *ai;

       /*
        * Another thing that's allocated is the result of pcap_ether_aton();
        * it must be freed with free().  This variable points to any
        * address that would need to be freed.
        */
       u_char *e;

       /*
        * Various code constructs need to know the layout of the packet.
        * These values give the necessary offsets from the beginning
        * of the packet data.
        */

       /*
        * Absolute offset of the beginning of the link-layer header.
        */
       bpf_abs_offset off_linkhdr;

       /*
        * If we're checking a link-layer header for a packet encapsulated
        * in another protocol layer, this is the equivalent information
        * for the previous layers' link-layer header from the beginning
        * of the raw packet data.
        */
       bpf_abs_offset off_prevlinkhdr;

       /*
        * This is the equivalent information for the outermost layers'
        * link-layer header.
        */
       bpf_abs_offset off_outermostlinkhdr;

       /*
        * Absolute offset of the beginning of the link-layer payload.
        */
       bpf_abs_offset off_linkpl;

       /*
        * "off_linktype" is the offset to information in the link-layer
        * header giving the packet type. This is an absolute offset
        * from the beginning of the packet.
        *
        * For Ethernet, it's the offset of the Ethernet type field; this
        * means that it must have a value that skips VLAN tags.
        *
        * For link-layer types that always use 802.2 headers, it's the
        * offset of the LLC header; this means that it must have a value
        * that skips VLAN tags.
        *
        * For PPP, it's the offset of the PPP type field.
        *
        * For Cisco HDLC, it's the offset of the CHDLC type field.
        *
        * For BSD loopback, it's the offset of the AF_ value.
        *
        * For Linux cooked sockets, it's the offset of the type field.
        *
        * off_linktype.constant_part is set to OFFSET_NOT_SET for no
        * encapsulation, in which case, IP is assumed.
        */
       bpf_abs_offset off_linktype;

       /*
        * TRUE if the link layer includes an ATM pseudo-header.
        */
       int is_atm;

       /*
        * TRUE if "geneve" appeared in the filter; it causes us to
        * generate code that checks for a Geneve header and assume
        * that later filters apply to the encapsulated payload.
        */
       int is_geneve;

       /*
        * TRUE if we need variable length part of VLAN offset
        */
       int is_vlan_vloffset;

       /*
        * These are offsets for the ATM pseudo-header.
        */
       u_int off_vpi;
       u_int off_vci;
       u_int off_proto;

       /*
        * These are offsets for the MTP2 fields.
        */
       u_int off_li;
       u_int off_li_hsl;

       /*
        * These are offsets for the MTP3 fields.
        */
       u_int off_sio;
       u_int off_opc;
       u_int off_dpc;
       u_int off_sls;

       /*
        * This is the offset of the first byte after the ATM pseudo_header,
        * or -1 if there is no ATM pseudo-header.
        */
       u_int off_payload;

       /*
        * These are offsets to the beginning of the network-layer header.
        * They are relative to the beginning of the link-layer payload
        * (i.e., they don't include off_linkhdr.constant_part or
        * off_linkpl.constant_part).
        *
        * If the link layer never uses 802.2 LLC:
        *
        *      "off_nl" and "off_nl_nosnap" are the same.
        *
        * If the link layer always uses 802.2 LLC:
        *
        *      "off_nl" is the offset if there's a SNAP header following
        *      the 802.2 header;
        *
        *      "off_nl_nosnap" is the offset if there's no SNAP header.
        *
        * If the link layer is Ethernet:
        *
        *      "off_nl" is the offset if the packet is an Ethernet II packet
        *      (we assume no 802.3+802.2+SNAP);
        *
        *      "off_nl_nosnap" is the offset if the packet is an 802.3 packet
        *      with an 802.2 header following it.
        */
       u_int off_nl;
       u_int off_nl_nosnap;

       /*
        * Here we handle simple allocation of the scratch registers.
        * If too many registers are alloc'd, the allocator punts.
        */
       int regused[BPF_MEMWORDS];
       int curreg;

       /*
        * Memory chunks.
        */
       struct chunk chunks[NCHUNKS];
       int cur_chunk;
};

/*
* For use by routines outside this file.
*/
/* VARARGS */
void
bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
{
       va_list ap;

       /*
        * If we've already set an error, don't override it.
        * The lexical analyzer reports some errors by setting
        * the error and then returning a LEX_ERROR token, which
        * is not recognized by any grammar rule, and thus forces
        * the parse to stop.  We don't want the error reported
        * by the lexical analyzer to be overwritten by the syntax
        * error.
        */
       if (!cstate->error_set) {
               va_start(ap, fmt);
               (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
                   fmt, ap);
               va_end(ap);
               cstate->error_set = 1;
       }
}

/*
* For use *ONLY* in routines in this file.
*/
static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
   PCAP_PRINTFLIKE(2, 3);

/* VARARGS */
static void PCAP_NORETURN
bpf_error(compiler_state_t *cstate, const char *fmt, ...)
{
       va_list ap;

       va_start(ap, fmt);
       (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
           fmt, ap);
       va_end(ap);
       longjmp(cstate->top_ctx, 1);
       /*NOTREACHED*/
#ifdef _AIX
       PCAP_UNREACHABLE
#endif /* _AIX */
}

static int init_linktype(compiler_state_t *, pcap_t *);

static void init_regs(compiler_state_t *);
static int alloc_reg(compiler_state_t *);
static void free_reg(compiler_state_t *, int);

static void initchunks(compiler_state_t *cstate);
static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
static void *newchunk(compiler_state_t *cstate, size_t);
static void freechunks(compiler_state_t *cstate);
static inline struct block *new_block(compiler_state_t *cstate, int);
static inline struct slist *new_stmt(compiler_state_t *cstate, int);
static struct block *gen_retblk(compiler_state_t *cstate, int);
static inline void syntax(compiler_state_t *cstate);

static void backpatch(struct block *, struct block *);
static void merge(struct block *, struct block *);
static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32);
static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32);
static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32);
static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32);
static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32);
static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32, bpf_u_int32);
static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
   u_int, const u_char *);
static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
   u_int, bpf_u_int32, int, int, bpf_u_int32);
static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
   u_int, u_int);
static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
   u_int);
static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
static struct block *gen_uncond(compiler_state_t *, int);
static inline struct block *gen_true(compiler_state_t *);
static inline struct block *gen_false(compiler_state_t *);
static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
static void insert_compute_vloffsets(compiler_state_t *, struct block *);
static struct slist *gen_abs_offset_varpart(compiler_state_t *,
   bpf_abs_offset *);
static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
   int, bpf_u_int32, u_int, u_int);
#ifdef INET6
static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
   struct in6_addr *, int, bpf_u_int32, u_int, u_int);
#endif
static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
   int, int, int);
#ifdef INET6
static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
   struct in6_addr *, int, int, int);
#endif
#ifndef INET6
static struct block *gen_gateway(compiler_state_t *, const u_char *,
   struct addrinfo *, int, int);
#endif
static struct block *gen_ipfrag(compiler_state_t *);
static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
   bpf_u_int32);
static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
   bpf_u_int32);
static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
static struct block *gen_port(compiler_state_t *, u_int, int, int);
static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
   bpf_u_int32, int);
static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
static struct block *gen_port6(compiler_state_t *, u_int, int, int);
static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
   bpf_u_int32, int);
static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
static int lookup_proto(compiler_state_t *, const char *, int);
#if !defined(NO_PROTOCHAIN)
static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
#endif /* !defined(NO_PROTOCHAIN) */
static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
static struct block *gen_mac_multicast(compiler_state_t *, int);
static struct block *gen_len(compiler_state_t *, int, int);
static struct block *gen_check_802_11_data_frame(compiler_state_t *);
static struct block *gen_geneve_ll_check(compiler_state_t *cstate);

static struct block *gen_ppi_dlt_check(compiler_state_t *);
static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
   bpf_u_int32, int, int);
static struct block *gen_atmtype_llc(compiler_state_t *);
static struct block *gen_msg_abbrev(compiler_state_t *, int type);

static void
initchunks(compiler_state_t *cstate)
{
       int i;

       for (i = 0; i < NCHUNKS; i++) {
               cstate->chunks[i].n_left = 0;
               cstate->chunks[i].m = NULL;
       }
       cstate->cur_chunk = 0;
}

static void *
newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
{
       struct chunk *cp;
       int k;
       size_t size;

#ifndef __NetBSD__
       /* XXX Round up to nearest long. */
       n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
#else
       /* XXX Round up to structure boundary. */
       n = ALIGN(n);
#endif

       cp = &cstate->chunks[cstate->cur_chunk];
       if (n > cp->n_left) {
               ++cp;
               k = ++cstate->cur_chunk;
               if (k >= NCHUNKS) {
                       bpf_set_error(cstate, "out of memory");
                       return (NULL);
               }
               size = CHUNK0SIZE << k;
               cp->m = (void *)malloc(size);
               if (cp->m == NULL) {
                       bpf_set_error(cstate, "out of memory");
                       return (NULL);
               }
               memset((char *)cp->m, 0, size);
               cp->n_left = size;
               if (n > size) {
                       bpf_set_error(cstate, "out of memory");
                       return (NULL);
               }
       }
       cp->n_left -= n;
       return (void *)((char *)cp->m + cp->n_left);
}

static void *
newchunk(compiler_state_t *cstate, size_t n)
{
       void *p;

       p = newchunk_nolongjmp(cstate, n);
       if (p == NULL) {
               longjmp(cstate->top_ctx, 1);
               /*NOTREACHED*/
       }
       return (p);
}

static void
freechunks(compiler_state_t *cstate)
{
       int i;

       for (i = 0; i < NCHUNKS; ++i)
               if (cstate->chunks[i].m != NULL)
                       free(cstate->chunks[i].m);
}

/*
* A strdup whose allocations are freed after code generation is over.
* This is used by the lexical analyzer, so it can't longjmp; it just
* returns NULL on an allocation error, and the callers must check
* for it.
*/
char *
sdup(compiler_state_t *cstate, const char *s)
{
       size_t n = strlen(s) + 1;
       char *cp = newchunk_nolongjmp(cstate, n);

       if (cp == NULL)
               return (NULL);
       pcapint_strlcpy(cp, s, n);
       return (cp);
}

static inline struct block *
new_block(compiler_state_t *cstate, int code)
{
       struct block *p;

       p = (struct block *)newchunk(cstate, sizeof(*p));
       p->s.code = code;
       p->head = p;

       return p;
}

static inline struct slist *
new_stmt(compiler_state_t *cstate, int code)
{
       struct slist *p;

       p = (struct slist *)newchunk(cstate, sizeof(*p));
       p->s.code = code;

       return p;
}

static struct block *
gen_retblk(compiler_state_t *cstate, int v)
{
       struct block *b = new_block(cstate, BPF_RET|BPF_K);

       b->s.k = v;
       return b;
}

static inline PCAP_NORETURN_DEF void
syntax(compiler_state_t *cstate)
{
       bpf_error(cstate, "syntax error in filter expression");
}

int
pcap_compile(pcap_t *p, struct bpf_program *program,
            const char *buf, int optimize, bpf_u_int32 mask)
{
#ifdef _WIN32
       static int done = 0;
#endif
       compiler_state_t cstate;
       const char * volatile xbuf = buf;
       yyscan_t scanner = NULL;
       volatile YY_BUFFER_STATE in_buffer = NULL;
       u_int len;
       int rc;

       /*
        * If this pcap_t hasn't been activated, it doesn't have a
        * link-layer type, so we can't use it.
        */
       if (!p->activated) {
               (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
                   "not-yet-activated pcap_t passed to pcap_compile");
               return (PCAP_ERROR);
       }

#ifdef _WIN32
       if (!done) {
               pcap_wsockinit();
               done = 1;
       }
#endif

#ifdef ENABLE_REMOTE
       /*
        * If the device on which we're capturing need to be notified
        * that a new filter is being compiled, do so.
        *
        * This allows them to save a copy of it, in case, for example,
        * they're implementing a form of remote packet capture, and
        * want the remote machine to filter out the packets in which
        * it's sending the packets it's captured.
        *
        * XXX - the fact that we happen to be compiling a filter
        * doesn't necessarily mean we'll be installing it as the
        * filter for this pcap_t; we might be running it from userland
        * on captured packets to do packet classification.  We really
        * need a better way of handling this, but this is all that
        * the WinPcap remote capture code did.
        */
       if (p->save_current_filter_op != NULL)
               (p->save_current_filter_op)(p, buf);
#endif

       initchunks(&cstate);
       cstate.no_optimize = 0;
#ifdef INET6
       cstate.ai = NULL;
#endif
       cstate.e = NULL;
       cstate.ic.root = NULL;
       cstate.ic.cur_mark = 0;
       cstate.bpf_pcap = p;
       cstate.error_set = 0;
       init_regs(&cstate);

       cstate.netmask = mask;

       cstate.snaplen = pcap_snapshot(p);
       if (cstate.snaplen == 0) {
               (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
                        "snaplen of 0 rejects all packets");
               rc = PCAP_ERROR;
               goto quit;
       }

       if (pcap_lex_init(&scanner) != 0) {
               pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
                   errno, "can't initialize scanner");
               rc = PCAP_ERROR;
               goto quit;
       }
       in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);

       /*
        * Associate the compiler state with the lexical analyzer
        * state.
        */
       pcap_set_extra(&cstate, scanner);

       if (init_linktype(&cstate, p) == -1) {
               rc = PCAP_ERROR;
               goto quit;
       }
       if (pcap_parse(scanner, &cstate) != 0) {
#ifdef INET6
               if (cstate.ai != NULL)
                       freeaddrinfo(cstate.ai);
#endif
               if (cstate.e != NULL)
                       free(cstate.e);
               rc = PCAP_ERROR;
               goto quit;
       }

       if (cstate.ic.root == NULL) {
               /*
                * Catch errors reported by gen_retblk().
                */
               if (setjmp(cstate.top_ctx)) {
                       rc = PCAP_ERROR;
                       goto quit;
               }
               cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
       }

       if (optimize && !cstate.no_optimize) {
               if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
                       /* Failure */
                       rc = PCAP_ERROR;
                       goto quit;
               }
               if (cstate.ic.root == NULL ||
                   (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
                       (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
                           "expression rejects all packets");
                       rc = PCAP_ERROR;
                       goto quit;
               }
       }
       program->bf_insns = icode_to_fcode(&cstate.ic,
           cstate.ic.root, &len, p->errbuf);
       if (program->bf_insns == NULL) {
               /* Failure */
               rc = PCAP_ERROR;
               goto quit;
       }
       program->bf_len = len;

       rc = 0;  /* We're all okay */

quit:
       /*
        * Clean up everything for the lexical analyzer.
        */
       if (in_buffer != NULL)
               pcap__delete_buffer(in_buffer, scanner);
       if (scanner != NULL)
               pcap_lex_destroy(scanner);

       /*
        * Clean up our own allocated memory.
        */
       freechunks(&cstate);

       return (rc);
}

/*
* entry point for using the compiler with no pcap open
* pass in all the stuff that is needed explicitly instead.
*/
int
pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
                   struct bpf_program *program,
                   const char *buf, int optimize, bpf_u_int32 mask)
{
       pcap_t *p;
       int ret;

       p = pcap_open_dead(linktype_arg, snaplen_arg);
       if (p == NULL)
               return (PCAP_ERROR);
       ret = pcap_compile(p, program, buf, optimize, mask);
       pcap_close(p);
       return (ret);
}

/*
* Clean up a "struct bpf_program" by freeing all the memory allocated
* in it.
*/
void
pcap_freecode(struct bpf_program *program)
{
       program->bf_len = 0;
       if (program->bf_insns != NULL) {
               free((char *)program->bf_insns);
               program->bf_insns = NULL;
       }
}

/*
* Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
* which of the jt and jf fields has been resolved and which is a pointer
* back to another unresolved block (or nil).  At least one of the fields
* in each block is already resolved.
*/
static void
backpatch(struct block *list, struct block *target)
{
       struct block *next;

       while (list) {
               if (!list->sense) {
                       next = JT(list);
                       JT(list) = target;
               } else {
                       next = JF(list);
                       JF(list) = target;
               }
               list = next;
       }
}

/*
* Merge the lists in b0 and b1, using the 'sense' field to indicate
* which of jt and jf is the link.
*/
static void
merge(struct block *b0, struct block *b1)
{
       register struct block **p = &b0;

       /* Find end of list. */
       while (*p)
               p = !((*p)->sense) ? &JT(*p) : &JF(*p);

       /* Concatenate the lists. */
       *p = b1;
}

int
finish_parse(compiler_state_t *cstate, struct block *p)
{
       struct block *ppi_dlt_check;

       /*
        * Catch errors reported by us and routines below us, and return -1
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (-1);

       /*
        * Insert before the statements of the first (root) block any
        * statements needed to load the lengths of any variable-length
        * headers into registers.
        *
        * XXX - a fancier strategy would be to insert those before the
        * statements of all blocks that use those lengths and that
        * have no predecessors that use them, so that we only compute
        * the lengths if we need them.  There might be even better
        * approaches than that.
        *
        * However, those strategies would be more complicated, and
        * as we don't generate code to compute a length if the
        * program has no tests that use the length, and as most
        * tests will probably use those lengths, we would just
        * postpone computing the lengths so that it's not done
        * for tests that fail early, and it's not clear that's
        * worth the effort.
        */
       insert_compute_vloffsets(cstate, p->head);

       /*
        * For DLT_PPI captures, generate a check of the per-packet
        * DLT value to make sure it's DLT_IEEE802_11.
        *
        * XXX - TurboCap cards use DLT_PPI for Ethernet.
        * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
        * with appropriate Ethernet information and use that rather
        * than using something such as DLT_PPI where you don't know
        * the link-layer header type until runtime, which, in the
        * general case, would force us to generate both Ethernet *and*
        * 802.11 code (*and* anything else for which PPI is used)
        * and choose between them early in the BPF program?
        */
       ppi_dlt_check = gen_ppi_dlt_check(cstate);
       if (ppi_dlt_check != NULL)
               gen_and(ppi_dlt_check, p);

       backpatch(p, gen_retblk(cstate, cstate->snaplen));
       p->sense = !p->sense;
       backpatch(p, gen_retblk(cstate, 0));
       cstate->ic.root = p->head;
       return (0);
}

void
gen_and(struct block *b0, struct block *b1)
{
       backpatch(b0, b1->head);
       b0->sense = !b0->sense;
       b1->sense = !b1->sense;
       merge(b1, b0);
       b1->sense = !b1->sense;
       b1->head = b0->head;
}

void
gen_or(struct block *b0, struct block *b1)
{
       b0->sense = !b0->sense;
       backpatch(b0, b1->head);
       b0->sense = !b0->sense;
       merge(b1, b0);
       b1->head = b0->head;
}

void
gen_not(struct block *b)
{
       b->sense = !b->sense;
}

static struct block *
gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v)
{
       return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
}

static struct block *
gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v)
{
       return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
}

static struct block *
gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v)
{
       return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
}

static struct block *
gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v)
{
       return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
}

static struct block *
gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v)
{
       return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
}

static struct block *
gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 v, bpf_u_int32 mask)
{
       return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
}

static struct block *
gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, const u_char *v)
{
       register struct block *b, *tmp;

       b = NULL;
       while (size >= 4) {
               register const u_char *p = &v[size - 4];

               tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
                   EXTRACT_BE_U_4(p));
               if (b != NULL)
                       gen_and(b, tmp);
               b = tmp;
               size -= 4;
       }
       while (size >= 2) {
               register const u_char *p = &v[size - 2];

               tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
                   EXTRACT_BE_U_2(p));
               if (b != NULL)
                       gen_and(b, tmp);
               b = tmp;
               size -= 2;
       }
       if (size > 0) {
               tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
               if (b != NULL)
                       gen_and(b, tmp);
               b = tmp;
       }
       return b;
}

/*
* AND the field of size "size" at offset "offset" relative to the header
* specified by "offrel" with "mask", and compare it with the value "v"
* with the test specified by "jtype"; if "reverse" is true, the test
* should test the opposite of "jtype".
*/
static struct block *
gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size, bpf_u_int32 mask, int jtype, int reverse,
   bpf_u_int32 v)
{
       struct slist *s, *s2;
       struct block *b;

       s = gen_load_a(cstate, offrel, offset, size);

       if (mask != 0xffffffff) {
               s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
               s2->s.k = mask;
               sappend(s, s2);
       }

       b = new_block(cstate, JMP(jtype));
       b->stmts = s;
       b->s.k = v;
       if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
               gen_not(b);
       return b;
}

static int
init_linktype(compiler_state_t *cstate, pcap_t *p)
{
       cstate->pcap_fddipad = p->fddipad;

       /*
        * We start out with only one link-layer header.
        */
       cstate->outermostlinktype = pcap_datalink(p);
       cstate->off_outermostlinkhdr.constant_part = 0;
       cstate->off_outermostlinkhdr.is_variable = 0;
       cstate->off_outermostlinkhdr.reg = -1;

       cstate->prevlinktype = cstate->outermostlinktype;
       cstate->off_prevlinkhdr.constant_part = 0;
       cstate->off_prevlinkhdr.is_variable = 0;
       cstate->off_prevlinkhdr.reg = -1;

       cstate->linktype = cstate->outermostlinktype;
       cstate->off_linkhdr.constant_part = 0;
       cstate->off_linkhdr.is_variable = 0;
       cstate->off_linkhdr.reg = -1;

       /*
        * XXX
        */
       cstate->off_linkpl.constant_part = 0;
       cstate->off_linkpl.is_variable = 0;
       cstate->off_linkpl.reg = -1;

       cstate->off_linktype.constant_part = 0;
       cstate->off_linktype.is_variable = 0;
       cstate->off_linktype.reg = -1;

       /*
        * Assume it's not raw ATM with a pseudo-header, for now.
        */
       cstate->is_atm = 0;
       cstate->off_vpi = OFFSET_NOT_SET;
       cstate->off_vci = OFFSET_NOT_SET;
       cstate->off_proto = OFFSET_NOT_SET;
       cstate->off_payload = OFFSET_NOT_SET;

       /*
        * And not Geneve.
        */
       cstate->is_geneve = 0;

       /*
        * No variable length VLAN offset by default
        */
       cstate->is_vlan_vloffset = 0;

       /*
        * And assume we're not doing SS7.
        */
       cstate->off_li = OFFSET_NOT_SET;
       cstate->off_li_hsl = OFFSET_NOT_SET;
       cstate->off_sio = OFFSET_NOT_SET;
       cstate->off_opc = OFFSET_NOT_SET;
       cstate->off_dpc = OFFSET_NOT_SET;
       cstate->off_sls = OFFSET_NOT_SET;

       cstate->label_stack_depth = 0;
       cstate->vlan_stack_depth = 0;

       switch (cstate->linktype) {

       case DLT_ARCNET:
               cstate->off_linktype.constant_part = 2;
               cstate->off_linkpl.constant_part = 6;
               cstate->off_nl = 0;             /* XXX in reality, variable! */
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_ARCNET_LINUX:
               cstate->off_linktype.constant_part = 4;
               cstate->off_linkpl.constant_part = 8;
               cstate->off_nl = 0;             /* XXX in reality, variable! */
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_EN10MB:
               cstate->off_linktype.constant_part = 12;
               cstate->off_linkpl.constant_part = 14;  /* Ethernet header length */
               cstate->off_nl = 0;             /* Ethernet II */
               cstate->off_nl_nosnap = 3;      /* 802.3+802.2 */
               break;

       case DLT_SLIP:
               /*
                * SLIP doesn't have a link level type.  The 16 byte
                * header is hacked into our SLIP driver.
                */
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 16;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_SLIP_BSDOS:
               /* XXX this may be the same as the DLT_PPP_BSDOS case */
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               /* XXX end */
               cstate->off_linkpl.constant_part = 24;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_NULL:
       case DLT_LOOP:
               cstate->off_linktype.constant_part = 0;
               cstate->off_linkpl.constant_part = 4;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_ENC:
               cstate->off_linktype.constant_part = 0;
               cstate->off_linkpl.constant_part = 12;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_PPP:
       case DLT_PPP_PPPD:
       case DLT_C_HDLC:                /* BSD/OS Cisco HDLC */
       case DLT_HDLC:                  /* NetBSD (Cisco) HDLC */
       case DLT_PPP_SERIAL:            /* NetBSD sync/async serial PPP */
               cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
               cstate->off_linkpl.constant_part = 4;   /* skip HDLC-like framing and protocol field */
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_PPP_ETHER:
               /*
                * This does no include the Ethernet header, and
                * only covers session state.
                */
               cstate->off_linktype.constant_part = 6;
               cstate->off_linkpl.constant_part = 8;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_PPP_BSDOS:
               cstate->off_linktype.constant_part = 5;
               cstate->off_linkpl.constant_part = 24;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_FDDI:
               /*
                * FDDI doesn't really have a link-level type field.
                * We set "off_linktype" to the offset of the LLC header.
                *
                * To check for Ethernet types, we assume that SSAP = SNAP
                * is being used and pick out the encapsulated Ethernet type.
                * XXX - should we generate code to check for SNAP?
                */
               cstate->off_linktype.constant_part = 13;
               cstate->off_linktype.constant_part += cstate->pcap_fddipad;
               cstate->off_linkpl.constant_part = 13;  /* FDDI MAC header length */
               cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_IEEE802:
               /*
                * Token Ring doesn't really have a link-level type field.
                * We set "off_linktype" to the offset of the LLC header.
                *
                * To check for Ethernet types, we assume that SSAP = SNAP
                * is being used and pick out the encapsulated Ethernet type.
                * XXX - should we generate code to check for SNAP?
                *
                * XXX - the header is actually variable-length.
                * Some various Linux patched versions gave 38
                * as "off_linktype" and 40 as "off_nl"; however,
                * if a token ring packet has *no* routing
                * information, i.e. is not source-routed, the correct
                * values are 20 and 22, as they are in the vanilla code.
                *
                * A packet is source-routed iff the uppermost bit
                * of the first byte of the source address, at an
                * offset of 8, has the uppermost bit set.  If the
                * packet is source-routed, the total number of bytes
                * of routing information is 2 plus bits 0x1F00 of
                * the 16-bit value at an offset of 14 (shifted right
                * 8 - figure out which byte that is).
                */
               cstate->off_linktype.constant_part = 14;
               cstate->off_linkpl.constant_part = 14;  /* Token Ring MAC header length */
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
               cstate->off_linkhdr.is_variable = 1;
               /* Fall through, 802.11 doesn't have a variable link
                * prefix but is otherwise the same. */
               /* FALLTHROUGH */

       case DLT_IEEE802_11:
               /*
                * 802.11 doesn't really have a link-level type field.
                * We set "off_linktype.constant_part" to the offset of
                * the LLC header.
                *
                * To check for Ethernet types, we assume that SSAP = SNAP
                * is being used and pick out the encapsulated Ethernet type.
                * XXX - should we generate code to check for SNAP?
                *
                * We also handle variable-length radio headers here.
                * The Prism header is in theory variable-length, but in
                * practice it's always 144 bytes long.  However, some
                * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
                * sometimes or always supply an AVS header, so we
                * have to check whether the radio header is a Prism
                * header or an AVS header, so, in practice, it's
                * variable-length.
                */
               cstate->off_linktype.constant_part = 24;
               cstate->off_linkpl.constant_part = 0;   /* link-layer header is variable-length */
               cstate->off_linkpl.is_variable = 1;
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_PPI:
               /*
                * At the moment we treat PPI the same way that we treat
                * normal Radiotap encoded packets. The difference is in
                * the function that generates the code at the beginning
                * to compute the header length.  Since this code generator
                * of PPI supports bare 802.11 encapsulation only (i.e.
                * the encapsulated DLT should be DLT_IEEE802_11) we
                * generate code to check for this too.
                */
               cstate->off_linktype.constant_part = 24;
               cstate->off_linkpl.constant_part = 0;   /* link-layer header is variable-length */
               cstate->off_linkpl.is_variable = 1;
               cstate->off_linkhdr.is_variable = 1;
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_ATM_RFC1483:
       case DLT_ATM_CLIP:      /* Linux ATM defines this */
               /*
                * assume routed, non-ISO PDUs
                * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
                *
                * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
                * or PPP with the PPP NLPID (e.g., PPPoA)?  The
                * latter would presumably be treated the way PPPoE
                * should be, so you can do "pppoe and udp port 2049"
                * or "pppoa and tcp port 80" and have it check for
                * PPPo{A,E} and a PPP protocol of IP and....
                */
               cstate->off_linktype.constant_part = 0;
               cstate->off_linkpl.constant_part = 0;   /* packet begins with LLC header */
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_SUNATM:
               /*
                * Full Frontal ATM; you get AALn PDUs with an ATM
                * pseudo-header.
                */
               cstate->is_atm = 1;
               cstate->off_vpi = SUNATM_VPI_POS;
               cstate->off_vci = SUNATM_VCI_POS;
               cstate->off_proto = PROTO_POS;
               cstate->off_payload = SUNATM_PKT_BEGIN_POS;
               cstate->off_linktype.constant_part = cstate->off_payload;
               cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_RAW:
       case DLT_IPV4:
       case DLT_IPV6:
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 0;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_LINUX_SLL:     /* fake header for Linux cooked socket v1 */
               cstate->off_linktype.constant_part = 14;
               cstate->off_linkpl.constant_part = 16;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_LINUX_SLL2:    /* fake header for Linux cooked socket v2 */
               cstate->off_linktype.constant_part = 0;
               cstate->off_linkpl.constant_part = 20;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_LTALK:
               /*
                * LocalTalk does have a 1-byte type field in the LLAP header,
                * but really it just indicates whether there is a "short" or
                * "long" DDP packet following.
                */
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 0;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_IP_OVER_FC:
               /*
                * RFC 2625 IP-over-Fibre-Channel doesn't really have a
                * link-level type field.  We set "off_linktype" to the
                * offset of the LLC header.
                *
                * To check for Ethernet types, we assume that SSAP = SNAP
                * is being used and pick out the encapsulated Ethernet type.
                * XXX - should we generate code to check for SNAP? RFC
                * 2625 says SNAP should be used.
                */
               cstate->off_linktype.constant_part = 16;
               cstate->off_linkpl.constant_part = 16;
               cstate->off_nl = 8;             /* 802.2+SNAP */
               cstate->off_nl_nosnap = 3;      /* 802.2 */
               break;

       case DLT_FRELAY:
               /*
                * XXX - we should set this to handle SNAP-encapsulated
                * frames (NLPID of 0x80).
                */
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 0;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

               /*
                * the only BPF-interesting FRF.16 frames are non-control frames;
                * Frame Relay has a variable length link-layer
                * so lets start with offset 4 for now and increments later on (FIXME);
                */
       case DLT_MFR:
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 0;
               cstate->off_nl = 4;
               cstate->off_nl_nosnap = 0;      /* XXX - for now -> no 802.2 LLC */
               break;

       case DLT_APPLE_IP_OVER_IEEE1394:
               cstate->off_linktype.constant_part = 16;
               cstate->off_linkpl.constant_part = 18;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_SYMANTEC_FIREWALL:
               cstate->off_linktype.constant_part = 6;
               cstate->off_linkpl.constant_part = 44;
               cstate->off_nl = 0;             /* Ethernet II */
               cstate->off_nl_nosnap = 0;      /* XXX - what does it do with 802.3 packets? */
               break;

       case DLT_PFLOG:
               cstate->off_linktype.constant_part = 0;
               cstate->off_linkpl.constant_part = 0;   /* link-layer header is variable-length */
               cstate->off_linkpl.is_variable = 1;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_MFR:
       case DLT_JUNIPER_MLFR:
       case DLT_JUNIPER_MLPPP:
       case DLT_JUNIPER_PPP:
       case DLT_JUNIPER_CHDLC:
       case DLT_JUNIPER_FRELAY:
               cstate->off_linktype.constant_part = 4;
               cstate->off_linkpl.constant_part = 4;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_ATM1:
               cstate->off_linktype.constant_part = 4;         /* in reality variable between 4-8 */
               cstate->off_linkpl.constant_part = 4;   /* in reality variable between 4-8 */
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 10;
               break;

       case DLT_JUNIPER_ATM2:
               cstate->off_linktype.constant_part = 8;         /* in reality variable between 8-12 */
               cstate->off_linkpl.constant_part = 8;   /* in reality variable between 8-12 */
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 10;
               break;

               /* frames captured on a Juniper PPPoE service PIC
                * contain raw ethernet frames */
       case DLT_JUNIPER_PPPOE:
       case DLT_JUNIPER_ETHER:
               cstate->off_linkpl.constant_part = 14;
               cstate->off_linktype.constant_part = 16;
               cstate->off_nl = 18;            /* Ethernet II */
               cstate->off_nl_nosnap = 21;     /* 802.3+802.2 */
               break;

       case DLT_JUNIPER_PPPOE_ATM:
               cstate->off_linktype.constant_part = 4;
               cstate->off_linkpl.constant_part = 6;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_GGSN:
               cstate->off_linktype.constant_part = 6;
               cstate->off_linkpl.constant_part = 12;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_ES:
               cstate->off_linktype.constant_part = 6;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;      /* not really a network layer but raw IP addresses */
               cstate->off_nl = OFFSET_NOT_SET;        /* not really a network layer but raw IP addresses */
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_MONITOR:
               cstate->off_linktype.constant_part = 12;
               cstate->off_linkpl.constant_part = 12;
               cstate->off_nl = 0;                     /* raw IP/IP6 header */
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_BACNET_MS_TP:
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_JUNIPER_SERVICES:
               cstate->off_linktype.constant_part = 12;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;      /* L3 proto location dep. on cookie type */
               cstate->off_nl = OFFSET_NOT_SET;        /* L3 proto location dep. on cookie type */
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_JUNIPER_VP:
               cstate->off_linktype.constant_part = 18;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_JUNIPER_ST:
               cstate->off_linktype.constant_part = 18;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_JUNIPER_ISM:
               cstate->off_linktype.constant_part = 8;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_JUNIPER_VS:
       case DLT_JUNIPER_SRX_E2E:
       case DLT_JUNIPER_FIBRECHANNEL:
       case DLT_JUNIPER_ATM_CEMIC:
               cstate->off_linktype.constant_part = 8;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_MTP2:
               cstate->off_li = 2;
               cstate->off_li_hsl = 4;
               cstate->off_sio = 3;
               cstate->off_opc = 4;
               cstate->off_dpc = 4;
               cstate->off_sls = 7;
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_MTP2_WITH_PHDR:
               cstate->off_li = 6;
               cstate->off_li_hsl = 8;
               cstate->off_sio = 7;
               cstate->off_opc = 8;
               cstate->off_dpc = 8;
               cstate->off_sls = 11;
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_ERF:
               cstate->off_li = 22;
               cstate->off_li_hsl = 24;
               cstate->off_sio = 23;
               cstate->off_opc = 24;
               cstate->off_dpc = 24;
               cstate->off_sls = 27;
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_PFSYNC:
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;
               cstate->off_linkpl.constant_part = 4;
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = 0;
               break;

       case DLT_AX25_KISS:
               /*
                * Currently, only raw "link[N:M]" filtering is supported.
                */
               cstate->off_linktype.constant_part = OFFSET_NOT_SET;    /* variable, min 15, max 71 steps of 7 */
               cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
               cstate->off_nl = OFFSET_NOT_SET;        /* variable, min 16, max 71 steps of 7 */
               cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
               break;

       case DLT_IPNET:
               cstate->off_linktype.constant_part = 1;
               cstate->off_linkpl.constant_part = 24;  /* ipnet header length */
               cstate->off_nl = 0;
               cstate->off_nl_nosnap = OFFSET_NOT_SET;
               break;

       case DLT_NETANALYZER:
               cstate->off_linkhdr.constant_part = 4;  /* Ethernet header is past 4-byte pseudo-header */
               cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
               cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;      /* pseudo-header+Ethernet header length */
               cstate->off_nl = 0;             /* Ethernet II */
               cstate->off_nl_nosnap = 3;      /* 802.3+802.2 */
               break;

       case DLT_NETANALYZER_TRANSPARENT:
               cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
               cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
               cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;      /* pseudo-header+preamble+SFD+Ethernet header length */
               cstate->off_nl = 0;             /* Ethernet II */
               cstate->off_nl_nosnap = 3;      /* 802.3+802.2 */
               break;

       default:
               /*
                * For values in the range in which we've assigned new
                * DLT_ values, only raw "link[N:M]" filtering is supported.
                */
               if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
                   cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
                       cstate->off_linktype.constant_part = OFFSET_NOT_SET;
                       cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
                       cstate->off_nl = OFFSET_NOT_SET;
                       cstate->off_nl_nosnap = OFFSET_NOT_SET;
               } else {
                       bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
                           cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
                       return (-1);
               }
               break;
       }

       cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
       return (0);
}

/*
* Load a value relative to the specified absolute offset.
*/
static struct slist *
gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
   u_int offset, u_int size)
{
       struct slist *s, *s2;

       s = gen_abs_offset_varpart(cstate, abs_offset);

       /*
        * If "s" is non-null, it has code to arrange that the X register
        * contains the variable part of the absolute offset, so we
        * generate a load relative to that, with an offset of
        * abs_offset->constant_part + offset.
        *
        * Otherwise, we can do an absolute load with an offset of
        * abs_offset->constant_part + offset.
        */
       if (s != NULL) {
               /*
                * "s" points to a list of statements that puts the
                * variable part of the absolute offset into the X register.
                * Do an indirect load, to use the X register as an offset.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
               s2->s.k = abs_offset->constant_part + offset;
               sappend(s, s2);
       } else {
               /*
                * There is no variable part of the absolute offset, so
                * just do an absolute load.
                */
               s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
               s->s.k = abs_offset->constant_part + offset;
       }
       return s;
}

/*
* Load a value relative to the beginning of the specified header.
*/
static struct slist *
gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
   u_int size)
{
       struct slist *s, *s2;

       /*
        * Squelch warnings from compilers that *don't* assume that
        * offrel always has a valid enum value and therefore don't
        * assume that we'll always go through one of the case arms.
        *
        * If we have a default case, compilers that *do* assume that
        * will then complain about the default case code being
        * unreachable.
        *
        * Damned if you do, damned if you don't.
        */
       s = NULL;

       switch (offrel) {

       case OR_PACKET:
               s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
               s->s.k = offset;
               break;

       case OR_LINKHDR:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
               break;

       case OR_PREVLINKHDR:
               s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
               break;

       case OR_LLC:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
               break;

       case OR_PREVMPLSHDR:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
               break;

       case OR_LINKPL:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
               break;

       case OR_LINKPL_NOSNAP:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
               break;

       case OR_LINKTYPE:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
               break;

       case OR_TRAN_IPV4:
               /*
                * Load the X register with the length of the IPv4 header
                * (plus the offset of the link-layer header, if it's
                * preceded by a variable-length header such as a radio
                * header), in bytes.
                */
               s = gen_loadx_iphdrlen(cstate);

               /*
                * Load the item at {offset of the link-layer payload} +
                * {offset, relative to the start of the link-layer
                * payload, of the IPv4 header} + {length of the IPv4 header} +
                * {specified offset}.
                *
                * If the offset of the link-layer payload is variable,
                * the variable part of that offset is included in the
                * value in the X register, and we include the constant
                * part in the offset of the load.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
               s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
               sappend(s, s2);
               break;

       case OR_TRAN_IPV6:
               s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
               break;
       }
       return s;
}

/*
* Generate code to load into the X register the sum of the length of
* the IPv4 header and the variable part of the offset of the link-layer
* payload.
*/
static struct slist *
gen_loadx_iphdrlen(compiler_state_t *cstate)
{
       struct slist *s, *s2;

       s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
       if (s != NULL) {
               /*
                * The offset of the link-layer payload has a variable
                * part.  "s" points to a list of statements that put
                * the variable part of that offset into the X register.
                *
                * The 4*([k]&0xf) addressing mode can't be used, as we
                * don't have a constant offset, so we have to load the
                * value in question into the A register and add to it
                * the value from the X register.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
               s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
               sappend(s, s2);
               s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
               s2->s.k = 0xf;
               sappend(s, s2);
               s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
               s2->s.k = 2;
               sappend(s, s2);

               /*
                * The A register now contains the length of the IP header.
                * We need to add to it the variable part of the offset of
                * the link-layer payload, which is still in the X
                * register, and move the result into the X register.
                */
               sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
               sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
       } else {
               /*
                * The offset of the link-layer payload is a constant,
                * so no code was generated to load the (nonexistent)
                * variable part of that offset.
                *
                * This means we can use the 4*([k]&0xf) addressing
                * mode.  Load the length of the IPv4 header, which
                * is at an offset of cstate->off_nl from the beginning of
                * the link-layer payload, and thus at an offset of
                * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
                * of the raw packet data, using that addressing mode.
                */
               s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
               s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
       }
       return s;
}


static struct block *
gen_uncond(compiler_state_t *cstate, int rsense)
{
       struct block *b;
       struct slist *s;

       s = new_stmt(cstate, BPF_LD|BPF_IMM);
       s->s.k = !rsense;
       b = new_block(cstate, JMP(BPF_JEQ));
       b->stmts = s;

       return b;
}

static inline struct block *
gen_true(compiler_state_t *cstate)
{
       return gen_uncond(cstate, 1);
}

static inline struct block *
gen_false(compiler_state_t *cstate)
{
       return gen_uncond(cstate, 0);
}

/*
* Byte-swap a 32-bit number.
* ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
* big-endian platforms.)
*/
#define SWAPLONG(y) \
((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))

/*
* Generate code to match a particular packet type.
*
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
* value, if <= ETHERMTU.  We use that to determine whether to
* match the type/length field or to check the type/length field for
* a value <= ETHERMTU to see whether it's a type field and then do
* the appropriate test.
*/
static struct block *
gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       struct block *b0, *b1;

       switch (ll_proto) {

       case LLCSAP_ISONS:
       case LLCSAP_IP:
       case LLCSAP_NETBEUI:
               /*
                * OSI protocols and NetBEUI always use 802.2 encapsulation,
                * so we check the DSAP and SSAP.
                *
                * LLCSAP_IP checks for IP-over-802.2, rather
                * than IP-over-Ethernet or IP-over-SNAP.
                *
                * XXX - should we check both the DSAP and the
                * SSAP, like this, or should we check just the
                * DSAP, as we do for other types <= ETHERMTU
                * (i.e., other SAP values)?
                */
               b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
               gen_not(b0);
               b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
               gen_and(b0, b1);
               return b1;

       case LLCSAP_IPX:
               /*
                * Check for;
                *
                *      Ethernet_II frames, which are Ethernet
                *      frames with a frame type of ETHERTYPE_IPX;
                *
                *      Ethernet_802.3 frames, which are 802.3
                *      frames (i.e., the type/length field is
                *      a length field, <= ETHERMTU, rather than
                *      a type field) with the first two bytes
                *      after the Ethernet/802.3 header being
                *      0xFFFF;
                *
                *      Ethernet_802.2 frames, which are 802.3
                *      frames with an 802.2 LLC header and
                *      with the IPX LSAP as the DSAP in the LLC
                *      header;
                *
                *      Ethernet_SNAP frames, which are 802.3
                *      frames with an LLC header and a SNAP
                *      header and with an OUI of 0x000000
                *      (encapsulated Ethernet) and a protocol
                *      ID of ETHERTYPE_IPX in the SNAP header.
                *
                * XXX - should we generate the same code both
                * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
                */

               /*
                * This generates code to check both for the
                * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
                */
               b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
               b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
               gen_or(b0, b1);

               /*
                * Now we add code to check for SNAP frames with
                * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
                */
               b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
               gen_or(b0, b1);

               /*
                * Now we generate code to check for 802.3
                * frames in general.
                */
               b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
               gen_not(b0);

               /*
                * Now add the check for 802.3 frames before the
                * check for Ethernet_802.2 and Ethernet_802.3,
                * as those checks should only be done on 802.3
                * frames, not on Ethernet frames.
                */
               gen_and(b0, b1);

               /*
                * Now add the check for Ethernet_II frames, and
                * do that before checking for the other frame
                * types.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
               gen_or(b0, b1);
               return b1;

       case ETHERTYPE_ATALK:
       case ETHERTYPE_AARP:
               /*
                * EtherTalk (AppleTalk protocols on Ethernet link
                * layer) may use 802.2 encapsulation.
                */

               /*
                * Check for 802.2 encapsulation (EtherTalk phase 2?);
                * we check for an Ethernet type field less than
                * 1500, which means it's an 802.3 length field.
                */
               b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
               gen_not(b0);

               /*
                * 802.2-encapsulated ETHERTYPE_ATALK packets are
                * SNAP packets with an organization code of
                * 0x080007 (Apple, for Appletalk) and a protocol
                * type of ETHERTYPE_ATALK (Appletalk).
                *
                * 802.2-encapsulated ETHERTYPE_AARP packets are
                * SNAP packets with an organization code of
                * 0x000000 (encapsulated Ethernet) and a protocol
                * type of ETHERTYPE_AARP (Appletalk ARP).
                */
               if (ll_proto == ETHERTYPE_ATALK)
                       b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
               else    /* ll_proto == ETHERTYPE_AARP */
                       b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
               gen_and(b0, b1);

               /*
                * Check for Ethernet encapsulation (Ethertalk
                * phase 1?); we just check for the Ethernet
                * protocol type.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);

               gen_or(b0, b1);
               return b1;

       default:
               if (ll_proto <= ETHERMTU) {
                       /*
                        * This is an LLC SAP value, so the frames
                        * that match would be 802.2 frames.
                        * Check that the frame is an 802.2 frame
                        * (i.e., that the length/type field is
                        * a length field, <= ETHERMTU) and
                        * then check the DSAP.
                        */
                       b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
                       gen_not(b0);
                       b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
                       gen_and(b0, b1);
                       return b1;
               } else {
                       /*
                        * This is an Ethernet type, so compare
                        * the length/type field with it (if
                        * the frame is an 802.2 frame, the length
                        * field will be <= ETHERMTU, and, as
                        * "ll_proto" is > ETHERMTU, this test
                        * will fail and the frame won't match,
                        * which is what we want).
                        */
                       return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
               }
       }
}

static struct block *
gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       /*
        * For DLT_NULL, the link-layer header is a 32-bit word
        * containing an AF_ value in *host* byte order, and for
        * DLT_ENC, the link-layer header begins with a 32-bit
        * word containing an AF_ value in host byte order.
        *
        * In addition, if we're reading a saved capture file,
        * the host byte order in the capture may not be the
        * same as the host byte order on this machine.
        *
        * For DLT_LOOP, the link-layer header is a 32-bit
        * word containing an AF_ value in *network* byte order.
        */
       if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
               /*
                * The AF_ value is in host byte order, but the BPF
                * interpreter will convert it to network byte order.
                *
                * If this is a save file, and it's from a machine
                * with the opposite byte order to ours, we byte-swap
                * the AF_ value.
                *
                * Then we run it through "htonl()", and generate
                * code to compare against the result.
                */
               if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
                       ll_proto = SWAPLONG(ll_proto);
               ll_proto = htonl(ll_proto);
       }
       return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
}

/*
* "proto" is an Ethernet type value and for IPNET, if it is not IPv4
* or IPv6 then we have an error.
*/
static struct block *
gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       switch (ll_proto) {

       case ETHERTYPE_IP:
               return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
               /*NOTREACHED*/

       case ETHERTYPE_IPV6:
               return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
               /*NOTREACHED*/

       default:
               break;
       }

       return gen_false(cstate);
}

/*
* Generate code to match a particular packet type.
*
* "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
* value, if <= ETHERMTU.  We use that to determine whether to
* match the type field or to check the type field for the special
* LINUX_SLL_P_802_2 value and then do the appropriate test.
*/
static struct block *
gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       struct block *b0, *b1;

       switch (ll_proto) {

       case LLCSAP_ISONS:
       case LLCSAP_IP:
       case LLCSAP_NETBEUI:
               /*
                * OSI protocols and NetBEUI always use 802.2 encapsulation,
                * so we check the DSAP and SSAP.
                *
                * LLCSAP_IP checks for IP-over-802.2, rather
                * than IP-over-Ethernet or IP-over-SNAP.
                *
                * XXX - should we check both the DSAP and the
                * SSAP, like this, or should we check just the
                * DSAP, as we do for other types <= ETHERMTU
                * (i.e., other SAP values)?
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
               b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
               gen_and(b0, b1);
               return b1;

       case LLCSAP_IPX:
               /*
                *      Ethernet_II frames, which are Ethernet
                *      frames with a frame type of ETHERTYPE_IPX;
                *
                *      Ethernet_802.3 frames, which have a frame
                *      type of LINUX_SLL_P_802_3;
                *
                *      Ethernet_802.2 frames, which are 802.3
                *      frames with an 802.2 LLC header (i.e, have
                *      a frame type of LINUX_SLL_P_802_2) and
                *      with the IPX LSAP as the DSAP in the LLC
                *      header;
                *
                *      Ethernet_SNAP frames, which are 802.3
                *      frames with an LLC header and a SNAP
                *      header and with an OUI of 0x000000
                *      (encapsulated Ethernet) and a protocol
                *      ID of ETHERTYPE_IPX in the SNAP header.
                *
                * First, do the checks on LINUX_SLL_P_802_2
                * frames; generate the check for either
                * Ethernet_802.2 or Ethernet_SNAP frames, and
                * then put a check for LINUX_SLL_P_802_2 frames
                * before it.
                */
               b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
               b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
               gen_or(b0, b1);
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
               gen_and(b0, b1);

               /*
                * Now check for 802.3 frames and OR that with
                * the previous test.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
               gen_or(b0, b1);

               /*
                * Now add the check for Ethernet_II frames, and
                * do that before checking for the other frame
                * types.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
               gen_or(b0, b1);
               return b1;

       case ETHERTYPE_ATALK:
       case ETHERTYPE_AARP:
               /*
                * EtherTalk (AppleTalk protocols on Ethernet link
                * layer) may use 802.2 encapsulation.
                */

               /*
                * Check for 802.2 encapsulation (EtherTalk phase 2?);
                * we check for the 802.2 protocol type in the
                * "Ethernet type" field.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);

               /*
                * 802.2-encapsulated ETHERTYPE_ATALK packets are
                * SNAP packets with an organization code of
                * 0x080007 (Apple, for Appletalk) and a protocol
                * type of ETHERTYPE_ATALK (Appletalk).
                *
                * 802.2-encapsulated ETHERTYPE_AARP packets are
                * SNAP packets with an organization code of
                * 0x000000 (encapsulated Ethernet) and a protocol
                * type of ETHERTYPE_AARP (Appletalk ARP).
                */
               if (ll_proto == ETHERTYPE_ATALK)
                       b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
               else    /* ll_proto == ETHERTYPE_AARP */
                       b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
               gen_and(b0, b1);

               /*
                * Check for Ethernet encapsulation (Ethertalk
                * phase 1?); we just check for the Ethernet
                * protocol type.
                */
               b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);

               gen_or(b0, b1);
               return b1;

       default:
               if (ll_proto <= ETHERMTU) {
                       /*
                        * This is an LLC SAP value, so the frames
                        * that match would be 802.2 frames.
                        * Check for the 802.2 protocol type
                        * in the "Ethernet type" field, and
                        * then check the DSAP.
                        */
                       b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
                       b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
                            ll_proto);
                       gen_and(b0, b1);
                       return b1;
               } else {
                       /*
                        * This is an Ethernet type, so compare
                        * the length/type field with it (if
                        * the frame is an 802.2 frame, the length
                        * field will be <= ETHERMTU, and, as
                        * "ll_proto" is > ETHERMTU, this test
                        * will fail and the frame won't match,
                        * which is what we want).
                        */
                       return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
               }
       }
}

/*
* Load a value relative to the beginning of the link-layer header after the
* pflog header.
*/
static struct slist *
gen_load_pflog_llprefixlen(compiler_state_t *cstate)
{
       struct slist *s1, *s2;

       /*
        * Generate code to load the length of the pflog header into
        * the register assigned to hold that length, if one has been
        * assigned.  (If one hasn't been assigned, no code we've
        * generated uses that prefix, so we don't need to generate any
        * code to load it.)
        */
       if (cstate->off_linkpl.reg != -1) {
               /*
                * The length is in the first byte of the header.
                */
               s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
               s1->s.k = 0;

               /*
                * Round it up to a multiple of 4.
                * Add 3, and clear the lower 2 bits.
                */
               s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
               s2->s.k = 3;
               sappend(s1, s2);
               s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
               s2->s.k = 0xfffffffc;
               sappend(s1, s2);

               /*
                * Now allocate a register to hold that value and store
                * it.
                */
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkpl.reg;
               sappend(s1, s2);

               /*
                * Now move it into the X register.
                */
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               return (s1);
       } else
               return (NULL);
}

static struct slist *
gen_load_prism_llprefixlen(compiler_state_t *cstate)
{
       struct slist *s1, *s2;
       struct slist *sjeq_avs_cookie;
       struct slist *sjcommon;

       /*
        * This code is not compatible with the optimizer, as
        * we are generating jmp instructions within a normal
        * slist of instructions
        */
       cstate->no_optimize = 1;

       /*
        * Generate code to load the length of the radio header into
        * the register assigned to hold that length, if one has been
        * assigned.  (If one hasn't been assigned, no code we've
        * generated uses that prefix, so we don't need to generate any
        * code to load it.)
        *
        * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
        * or always use the AVS header rather than the Prism header.
        * We load a 4-byte big-endian value at the beginning of the
        * raw packet data, and see whether, when masked with 0xFFFFF000,
        * it's equal to 0x80211000.  If so, that indicates that it's
        * an AVS header (the masked-out bits are the version number).
        * Otherwise, it's a Prism header.
        *
        * XXX - the Prism header is also, in theory, variable-length,
        * but no known software generates headers that aren't 144
        * bytes long.
        */
       if (cstate->off_linkhdr.reg != -1) {
               /*
                * Load the cookie.
                */
               s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
               s1->s.k = 0;

               /*
                * AND it with 0xFFFFF000.
                */
               s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
               s2->s.k = 0xFFFFF000;
               sappend(s1, s2);

               /*
                * Compare with 0x80211000.
                */
               sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
               sjeq_avs_cookie->s.k = 0x80211000;
               sappend(s1, sjeq_avs_cookie);

               /*
                * If it's AVS:
                *
                * The 4 bytes at an offset of 4 from the beginning of
                * the AVS header are the length of the AVS header.
                * That field is big-endian.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
               s2->s.k = 4;
               sappend(s1, s2);
               sjeq_avs_cookie->s.jt = s2;

               /*
                * Now jump to the code to allocate a register
                * into which to save the header length and
                * store the length there.  (The "jump always"
                * instruction needs to have the k field set;
                * it's added to the PC, so, as we're jumping
                * over a single instruction, it should be 1.)
                */
               sjcommon = new_stmt(cstate, JMP(BPF_JA));
               sjcommon->s.k = 1;
               sappend(s1, sjcommon);

               /*
                * Now for the code that handles the Prism header.
                * Just load the length of the Prism header (144)
                * into the A register.  Have the test for an AVS
                * header branch here if we don't have an AVS header.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
               s2->s.k = 144;
               sappend(s1, s2);
               sjeq_avs_cookie->s.jf = s2;

               /*
                * Now allocate a register to hold that value and store
                * it.  The code for the AVS header will jump here after
                * loading the length of the AVS header.
                */
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkhdr.reg;
               sappend(s1, s2);
               sjcommon->s.jf = s2;

               /*
                * Now move it into the X register.
                */
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               return (s1);
       } else
               return (NULL);
}

static struct slist *
gen_load_avs_llprefixlen(compiler_state_t *cstate)
{
       struct slist *s1, *s2;

       /*
        * Generate code to load the length of the AVS header into
        * the register assigned to hold that length, if one has been
        * assigned.  (If one hasn't been assigned, no code we've
        * generated uses that prefix, so we don't need to generate any
        * code to load it.)
        */
       if (cstate->off_linkhdr.reg != -1) {
               /*
                * The 4 bytes at an offset of 4 from the beginning of
                * the AVS header are the length of the AVS header.
                * That field is big-endian.
                */
               s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
               s1->s.k = 4;

               /*
                * Now allocate a register to hold that value and store
                * it.
                */
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkhdr.reg;
               sappend(s1, s2);

               /*
                * Now move it into the X register.
                */
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               return (s1);
       } else
               return (NULL);
}

static struct slist *
gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
{
       struct slist *s1, *s2;

       /*
        * Generate code to load the length of the radiotap header into
        * the register assigned to hold that length, if one has been
        * assigned.  (If one hasn't been assigned, no code we've
        * generated uses that prefix, so we don't need to generate any
        * code to load it.)
        */
       if (cstate->off_linkhdr.reg != -1) {
               /*
                * The 2 bytes at offsets of 2 and 3 from the beginning
                * of the radiotap header are the length of the radiotap
                * header; unfortunately, it's little-endian, so we have
                * to load it a byte at a time and construct the value.
                */

               /*
                * Load the high-order byte, at an offset of 3, shift it
                * left a byte, and put the result in the X register.
                */
               s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
               s1->s.k = 3;
               s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
               sappend(s1, s2);
               s2->s.k = 8;
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               /*
                * Load the next byte, at an offset of 2, and OR the
                * value from the X register into it.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
               sappend(s1, s2);
               s2->s.k = 2;
               s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
               sappend(s1, s2);

               /*
                * Now allocate a register to hold that value and store
                * it.
                */
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkhdr.reg;
               sappend(s1, s2);

               /*
                * Now move it into the X register.
                */
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               return (s1);
       } else
               return (NULL);
}

/*
* At the moment we treat PPI as normal Radiotap encoded
* packets. The difference is in the function that generates
* the code at the beginning to compute the header length.
* Since this code generator of PPI supports bare 802.11
* encapsulation only (i.e. the encapsulated DLT should be
* DLT_IEEE802_11) we generate code to check for this too;
* that's done in finish_parse().
*/
static struct slist *
gen_load_ppi_llprefixlen(compiler_state_t *cstate)
{
       struct slist *s1, *s2;

       /*
        * Generate code to load the length of the radiotap header
        * into the register assigned to hold that length, if one has
        * been assigned.
        */
       if (cstate->off_linkhdr.reg != -1) {
               /*
                * The 2 bytes at offsets of 2 and 3 from the beginning
                * of the radiotap header are the length of the radiotap
                * header; unfortunately, it's little-endian, so we have
                * to load it a byte at a time and construct the value.
                */

               /*
                * Load the high-order byte, at an offset of 3, shift it
                * left a byte, and put the result in the X register.
                */
               s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
               s1->s.k = 3;
               s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
               sappend(s1, s2);
               s2->s.k = 8;
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               /*
                * Load the next byte, at an offset of 2, and OR the
                * value from the X register into it.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
               sappend(s1, s2);
               s2->s.k = 2;
               s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
               sappend(s1, s2);

               /*
                * Now allocate a register to hold that value and store
                * it.
                */
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkhdr.reg;
               sappend(s1, s2);

               /*
                * Now move it into the X register.
                */
               s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
               sappend(s1, s2);

               return (s1);
       } else
               return (NULL);
}

/*
* Load a value relative to the beginning of the link-layer header after the 802.11
* header, i.e. LLC_SNAP.
* The link-layer header doesn't necessarily begin at the beginning
* of the packet data; there might be a variable-length prefix containing
* radio information.
*/
static struct slist *
gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
{
       struct slist *s2;
       struct slist *sjset_data_frame_1;
       struct slist *sjset_data_frame_2;
       struct slist *sjset_qos;
       struct slist *sjset_radiotap_flags_present;
       struct slist *sjset_radiotap_ext_present;
       struct slist *sjset_radiotap_tsft_present;
       struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
       struct slist *s_roundup;

       if (cstate->off_linkpl.reg == -1) {
               /*
                * No register has been assigned to the offset of
                * the link-layer payload, which means nobody needs
                * it; don't bother computing it - just return
                * what we already have.
                */
               return (s);
       }

       /*
        * This code is not compatible with the optimizer, as
        * we are generating jmp instructions within a normal
        * slist of instructions
        */
       cstate->no_optimize = 1;

       /*
        * If "s" is non-null, it has code to arrange that the X register
        * contains the length of the prefix preceding the link-layer
        * header.
        *
        * Otherwise, the length of the prefix preceding the link-layer
        * header is "off_outermostlinkhdr.constant_part".
        */
       if (s == NULL) {
               /*
                * There is no variable-length header preceding the
                * link-layer header.
                *
                * Load the length of the fixed-length prefix preceding
                * the link-layer header (if any) into the X register,
                * and store it in the cstate->off_linkpl.reg register.
                * That length is off_outermostlinkhdr.constant_part.
                */
               s = new_stmt(cstate, BPF_LDX|BPF_IMM);
               s->s.k = cstate->off_outermostlinkhdr.constant_part;
       }

       /*
        * The X register contains the offset of the beginning of the
        * link-layer header; add 24, which is the minimum length
        * of the MAC header for a data frame, to that, and store it
        * in cstate->off_linkpl.reg, and then load the Frame Control field,
        * which is at the offset in the X register, with an indexed load.
        */
       s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s2->s.k = 24;
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ST);
       s2->s.k = cstate->off_linkpl.reg;
       sappend(s, s2);

       s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
       s2->s.k = 0;
       sappend(s, s2);

       /*
        * Check the Frame Control field to see if this is a data frame;
        * a data frame has the 0x08 bit (b3) in that field set and the
        * 0x04 bit (b2) clear.
        */
       sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
       sjset_data_frame_1->s.k = 0x08;
       sappend(s, sjset_data_frame_1);

       /*
        * If b3 is set, test b2, otherwise go to the first statement of
        * the rest of the program.
        */
       sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
       sjset_data_frame_2->s.k = 0x04;
       sappend(s, sjset_data_frame_2);
       sjset_data_frame_1->s.jf = snext;

       /*
        * If b2 is not set, this is a data frame; test the QoS bit.
        * Otherwise, go to the first statement of the rest of the
        * program.
        */
       sjset_data_frame_2->s.jt = snext;
       sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
       sjset_qos->s.k = 0x80;  /* QoS bit */
       sappend(s, sjset_qos);

       /*
        * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
        * field.
        * Otherwise, go to the first statement of the rest of the
        * program.
        */
       sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
       s2->s.k = cstate->off_linkpl.reg;
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
       s2->s.k = 2;
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ST);
       s2->s.k = cstate->off_linkpl.reg;
       sappend(s, s2);

       /*
        * If we have a radiotap header, look at it to see whether
        * there's Atheros padding between the MAC-layer header
        * and the payload.
        *
        * Note: all of the fields in the radiotap header are
        * little-endian, so we byte-swap all of the values
        * we test against, as they will be loaded as big-endian
        * values.
        *
        * XXX - in the general case, we would have to scan through
        * *all* the presence bits, if there's more than one word of
        * presence bits.  That would require a loop, meaning that
        * we wouldn't be able to run the filter in the kernel.
        *
        * We assume here that the Atheros adapters that insert the
        * annoying padding don't have multiple antennae and therefore
        * do not generate radiotap headers with multiple presence words.
        */
       if (cstate->linktype == DLT_IEEE802_11_RADIO) {
               /*
                * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
                * in the first presence flag word?
                */
               sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
               s2->s.k = 4;
               sappend(s, s2);

               sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
               sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
               sappend(s, sjset_radiotap_flags_present);

               /*
                * If not, skip all of this.
                */
               sjset_radiotap_flags_present->s.jf = snext;

               /*
                * Otherwise, is the "extension" bit set in that word?
                */
               sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
               sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
               sappend(s, sjset_radiotap_ext_present);
               sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;

               /*
                * If so, skip all of this.
                */
               sjset_radiotap_ext_present->s.jt = snext;

               /*
                * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
                */
               sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
               sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
               sappend(s, sjset_radiotap_tsft_present);
               sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;

               /*
                * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
                * at an offset of 16 from the beginning of the raw packet
                * data (8 bytes for the radiotap header and 8 bytes for
                * the TSFT field).
                *
                * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
                * is set.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
               s2->s.k = 16;
               sappend(s, s2);
               sjset_radiotap_tsft_present->s.jt = s2;

               sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
               sjset_tsft_datapad->s.k = 0x20;
               sappend(s, sjset_tsft_datapad);

               /*
                * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
                * at an offset of 8 from the beginning of the raw packet
                * data (8 bytes for the radiotap header).
                *
                * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
                * is set.
                */
               s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
               s2->s.k = 8;
               sappend(s, s2);
               sjset_radiotap_tsft_present->s.jf = s2;

               sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
               sjset_notsft_datapad->s.k = 0x20;
               sappend(s, sjset_notsft_datapad);

               /*
                * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
                * set, round the length of the 802.11 header to
                * a multiple of 4.  Do that by adding 3 and then
                * dividing by and multiplying by 4, which we do by
                * ANDing with ~3.
                */
               s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
               s_roundup->s.k = cstate->off_linkpl.reg;
               sappend(s, s_roundup);
               s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
               s2->s.k = 3;
               sappend(s, s2);
               s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
               s2->s.k = (bpf_u_int32)~3;
               sappend(s, s2);
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkpl.reg;
               sappend(s, s2);

               sjset_tsft_datapad->s.jt = s_roundup;
               sjset_tsft_datapad->s.jf = snext;
               sjset_notsft_datapad->s.jt = s_roundup;
               sjset_notsft_datapad->s.jf = snext;
       } else
               sjset_qos->s.jf = snext;

       return s;
}

static void
insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
{
       struct slist *s;

       /* There is an implicit dependency between the link
        * payload and link header since the payload computation
        * includes the variable part of the header. Therefore,
        * if nobody else has allocated a register for the link
        * header and we need it, do it now. */
       if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
           cstate->off_linkhdr.reg == -1)
               cstate->off_linkhdr.reg = alloc_reg(cstate);

       /*
        * For link-layer types that have a variable-length header
        * preceding the link-layer header, generate code to load
        * the offset of the link-layer header into the register
        * assigned to that offset, if any.
        *
        * XXX - this, and the next switch statement, won't handle
        * encapsulation of 802.11 or 802.11+radio information in
        * some other protocol stack.  That's significantly more
        * complicated.
        */
       switch (cstate->outermostlinktype) {

       case DLT_PRISM_HEADER:
               s = gen_load_prism_llprefixlen(cstate);
               break;

       case DLT_IEEE802_11_RADIO_AVS:
               s = gen_load_avs_llprefixlen(cstate);
               break;

       case DLT_IEEE802_11_RADIO:
               s = gen_load_radiotap_llprefixlen(cstate);
               break;

       case DLT_PPI:
               s = gen_load_ppi_llprefixlen(cstate);
               break;

       default:
               s = NULL;
               break;
       }

       /*
        * For link-layer types that have a variable-length link-layer
        * header, generate code to load the offset of the link-layer
        * payload into the register assigned to that offset, if any.
        */
       switch (cstate->outermostlinktype) {

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
       case DLT_PPI:
               s = gen_load_802_11_header_len(cstate, s, b->stmts);
               break;

       case DLT_PFLOG:
               s = gen_load_pflog_llprefixlen(cstate);
               break;
       }

       /*
        * If there is no initialization yet and we need variable
        * length offsets for VLAN, initialize them to zero
        */
       if (s == NULL && cstate->is_vlan_vloffset) {
               struct slist *s2;

               if (cstate->off_linkpl.reg == -1)
                       cstate->off_linkpl.reg = alloc_reg(cstate);
               if (cstate->off_linktype.reg == -1)
                       cstate->off_linktype.reg = alloc_reg(cstate);

               s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
               s->s.k = 0;
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linkpl.reg;
               sappend(s, s2);
               s2 = new_stmt(cstate, BPF_ST);
               s2->s.k = cstate->off_linktype.reg;
               sappend(s, s2);
       }

       /*
        * If we have any offset-loading code, append all the
        * existing statements in the block to those statements,
        * and make the resulting list the list of statements
        * for the block.
        */
       if (s != NULL) {
               sappend(s, b->stmts);
               b->stmts = s;
       }
}

static struct block *
gen_ppi_dlt_check(compiler_state_t *cstate)
{
       struct slist *s_load_dlt;
       struct block *b;

       if (cstate->linktype == DLT_PPI)
       {
               /* Create the statements that check for the DLT
                */
               s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
               s_load_dlt->s.k = 4;

               b = new_block(cstate, JMP(BPF_JEQ));

               b->stmts = s_load_dlt;
               b->s.k = SWAPLONG(DLT_IEEE802_11);
       }
       else
       {
               b = NULL;
       }

       return b;
}

/*
* Take an absolute offset, and:
*
*    if it has no variable part, return NULL;
*
*    if it has a variable part, generate code to load the register
*    containing that variable part into the X register, returning
*    a pointer to that code - if no register for that offset has
*    been allocated, allocate it first.
*
* (The code to set that register will be generated later, but will
* be placed earlier in the code sequence.)
*/
static struct slist *
gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
{
       struct slist *s;

       if (off->is_variable) {
               if (off->reg == -1) {
                       /*
                        * We haven't yet assigned a register for the
                        * variable part of the offset of the link-layer
                        * header; allocate one.
                        */
                       off->reg = alloc_reg(cstate);
               }

               /*
                * Load the register containing the variable part of the
                * offset of the link-layer header into the X register.
                */
               s = new_stmt(cstate, BPF_LDX|BPF_MEM);
               s->s.k = off->reg;
               return s;
       } else {
               /*
                * That offset isn't variable, there's no variable part,
                * so we don't need to generate any code.
                */
               return NULL;
       }
}

/*
* Map an Ethernet type to the equivalent PPP type.
*/
static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32 ll_proto)
{
       switch (ll_proto) {

       case ETHERTYPE_IP:
               ll_proto = PPP_IP;
               break;

       case ETHERTYPE_IPV6:
               ll_proto = PPP_IPV6;
               break;

       case ETHERTYPE_DN:
               ll_proto = PPP_DECNET;
               break;

       case ETHERTYPE_ATALK:
               ll_proto = PPP_APPLE;
               break;

       case ETHERTYPE_NS:
               ll_proto = PPP_NS;
               break;

       case LLCSAP_ISONS:
               ll_proto = PPP_OSI;
               break;

       case LLCSAP_8021D:
               /*
                * I'm assuming the "Bridging PDU"s that go
                * over PPP are Spanning Tree Protocol
                * Bridging PDUs.
                */
               ll_proto = PPP_BRPDU;
               break;

       case LLCSAP_IPX:
               ll_proto = PPP_IPX;
               break;
       }
       return (ll_proto);
}

/*
* Generate any tests that, for encapsulation of a link-layer packet
* inside another protocol stack, need to be done to check for those
* link-layer packets (and that haven't already been done by a check
* for that encapsulation).
*/
static struct block *
gen_prevlinkhdr_check(compiler_state_t *cstate)
{
       struct block *b0;

       if (cstate->is_geneve)
               return gen_geneve_ll_check(cstate);

       switch (cstate->prevlinktype) {

       case DLT_SUNATM:
               /*
                * This is LANE-encapsulated Ethernet; check that the LANE
                * packet doesn't begin with an LE Control marker, i.e.
                * that it's data, not a control message.
                *
                * (We've already generated a test for LANE.)
                */
               b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
               gen_not(b0);
               return b0;

       default:
               /*
                * No such tests are necessary.
                */
               return NULL;
       }
       /*NOTREACHED*/
}

/*
* The three different values we should check for when checking for an
* IPv6 packet with DLT_NULL.
*/
#define BSD_AFNUM_INET6_BSD     24      /* NetBSD, OpenBSD, BSD/OS, Npcap */
#define BSD_AFNUM_INET6_FREEBSD 28      /* FreeBSD */
#define BSD_AFNUM_INET6_DARWIN  30      /* macOS, iOS, other Darwin-based OSes */

/*
* Generate code to match a particular packet type by matching the
* link-layer type field or fields in the 802.2 LLC header.
*
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
* value, if <= ETHERMTU.
*/
static struct block *
gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       struct block *b0, *b1, *b2;
       const char *description;

       /* are we checking MPLS-encapsulated packets? */
       if (cstate->label_stack_depth > 0)
               return gen_mpls_linktype(cstate, ll_proto);

       switch (cstate->linktype) {

       case DLT_EN10MB:
       case DLT_NETANALYZER:
       case DLT_NETANALYZER_TRANSPARENT:
               /* Geneve has an EtherType regardless of whether there is an
                * L2 header. */
               if (!cstate->is_geneve)
                       b0 = gen_prevlinkhdr_check(cstate);
               else
                       b0 = NULL;

               b1 = gen_ether_linktype(cstate, ll_proto);
               if (b0 != NULL)
                       gen_and(b0, b1);
               return b1;
               /*NOTREACHED*/

       case DLT_C_HDLC:
       case DLT_HDLC:
               switch (ll_proto) {

               case LLCSAP_ISONS:
                       ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
                       /* fall through */

               default:
                       return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
                       /*NOTREACHED*/
               }

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
       case DLT_PPI:
               /*
                * Check that we have a data frame.
                */
               b0 = gen_check_802_11_data_frame(cstate);

               /*
                * Now check for the specified link-layer type.
                */
               b1 = gen_llc_linktype(cstate, ll_proto);
               gen_and(b0, b1);
               return b1;
               /*NOTREACHED*/

       case DLT_FDDI:
               /*
                * XXX - check for LLC frames.
                */
               return gen_llc_linktype(cstate, ll_proto);
               /*NOTREACHED*/

       case DLT_IEEE802:
               /*
                * XXX - check for LLC PDUs, as per IEEE 802.5.
                */
               return gen_llc_linktype(cstate, ll_proto);
               /*NOTREACHED*/

       case DLT_ATM_RFC1483:
       case DLT_ATM_CLIP:
       case DLT_IP_OVER_FC:
               return gen_llc_linktype(cstate, ll_proto);
               /*NOTREACHED*/

       case DLT_SUNATM:
               /*
                * Check for an LLC-encapsulated version of this protocol;
                * if we were checking for LANE, linktype would no longer
                * be DLT_SUNATM.
                *
                * Check for LLC encapsulation and then check the protocol.
                */
               b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
               b1 = gen_llc_linktype(cstate, ll_proto);
               gen_and(b0, b1);
               return b1;
               /*NOTREACHED*/

       case DLT_LINUX_SLL:
               return gen_linux_sll_linktype(cstate, ll_proto);
               /*NOTREACHED*/

       case DLT_SLIP:
       case DLT_SLIP_BSDOS:
       case DLT_RAW:
               /*
                * These types don't provide any type field; packets
                * are always IPv4 or IPv6.
                *
                * XXX - for IPv4, check for a version number of 4, and,
                * for IPv6, check for a version number of 6?
                */
               switch (ll_proto) {

               case ETHERTYPE_IP:
                       /* Check for a version number of 4. */
                       return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);

               case ETHERTYPE_IPV6:
                       /* Check for a version number of 6. */
                       return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);

               default:
                       return gen_false(cstate);       /* always false */
               }
               /*NOTREACHED*/

       case DLT_IPV4:
               /*
                * Raw IPv4, so no type field.
                */
               if (ll_proto == ETHERTYPE_IP)
                       return gen_true(cstate);        /* always true */

               /* Checking for something other than IPv4; always false */
               return gen_false(cstate);
               /*NOTREACHED*/

       case DLT_IPV6:
               /*
                * Raw IPv6, so no type field.
                */
               if (ll_proto == ETHERTYPE_IPV6)
                       return gen_true(cstate);        /* always true */

               /* Checking for something other than IPv6; always false */
               return gen_false(cstate);
               /*NOTREACHED*/

       case DLT_PPP:
       case DLT_PPP_PPPD:
       case DLT_PPP_SERIAL:
       case DLT_PPP_ETHER:
               /*
                * We use Ethernet protocol types inside libpcap;
                * map them to the corresponding PPP protocol types.
                */
               return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
                   ethertype_to_ppptype(ll_proto));
               /*NOTREACHED*/

       case DLT_PPP_BSDOS:
               /*
                * We use Ethernet protocol types inside libpcap;
                * map them to the corresponding PPP protocol types.
                */
               switch (ll_proto) {

               case ETHERTYPE_IP:
                       /*
                        * Also check for Van Jacobson-compressed IP.
                        * XXX - do this for other forms of PPP?
                        */
                       b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
                       b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
                       gen_or(b0, b1);
                       b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
                       gen_or(b1, b0);
                       return b0;

               default:
                       return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
                           ethertype_to_ppptype(ll_proto));
               }
               /*NOTREACHED*/

       case DLT_NULL:
       case DLT_LOOP:
       case DLT_ENC:
               switch (ll_proto) {

               case ETHERTYPE_IP:
                       return (gen_loopback_linktype(cstate, AF_INET));

               case ETHERTYPE_IPV6:
                       /*
                        * AF_ values may, unfortunately, be platform-
                        * dependent; AF_INET isn't, because everybody
                        * used 4.2BSD's value, but AF_INET6 is, because
                        * 4.2BSD didn't have a value for it (given that
                        * IPv6 didn't exist back in the early 1980's),
                        * and they all picked their own values.
                        *
                        * This means that, if we're reading from a
                        * savefile, we need to check for all the
                        * possible values.
                        *
                        * If we're doing a live capture, we only need
                        * to check for this platform's value; however,
                        * Npcap uses 24, which isn't Windows's AF_INET6
                        * value.  (Given the multiple different values,
                        * programs that read pcap files shouldn't be
                        * checking for their platform's AF_INET6 value
                        * anyway, they should check for all of the
                        * possible values. and they might as well do
                        * that even for live captures.)
                        */
                       if (cstate->bpf_pcap->rfile != NULL) {
                               /*
                                * Savefile - check for all three
                                * possible IPv6 values.
                                */
                               b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
                               b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
                               gen_or(b0, b1);
                               b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
                               gen_or(b0, b1);
                               return (b1);
                       } else {
                               /*
                                * Live capture, so we only need to
                                * check for the value used on this
                                * platform.
                                */
#ifdef _WIN32
                               /*
                                * Npcap doesn't use Windows's AF_INET6,
                                * as that collides with AF_IPX on
                                * some BSDs (both have the value 23).
                                * Instead, it uses 24.
                                */
                               return (gen_loopback_linktype(cstate, 24));
#else /* _WIN32 */
#ifdef AF_INET6
                               return (gen_loopback_linktype(cstate, AF_INET6));
#else /* AF_INET6 */
                               /*
                                * I guess this platform doesn't support
                                * IPv6, so we just reject all packets.
                                */
                               return gen_false(cstate);
#endif /* AF_INET6 */
#endif /* _WIN32 */
                       }

               default:
                       /*
                        * Not a type on which we support filtering.
                        * XXX - support those that have AF_ values
                        * #defined on this platform, at least?
                        */
                       return gen_false(cstate);
               }

       case DLT_PFLOG:
               /*
                * af field is host byte order in contrast to the rest of
                * the packet.
                */
               if (ll_proto == ETHERTYPE_IP)
                       return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
                           BPF_B, AF_INET));
               else if (ll_proto == ETHERTYPE_IPV6)
                       return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
                           BPF_B, AF_INET6));
               else
                       return gen_false(cstate);
               /*NOTREACHED*/

       case DLT_ARCNET:
       case DLT_ARCNET_LINUX:
               /*
                * XXX should we check for first fragment if the protocol
                * uses PHDS?
                */
               switch (ll_proto) {

               default:
                       return gen_false(cstate);

               case ETHERTYPE_IPV6:
                       return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                               ARCTYPE_INET6));

               case ETHERTYPE_IP:
                       b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_IP);
                       b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_IP_OLD);
                       gen_or(b0, b1);
                       return (b1);

               case ETHERTYPE_ARP:
                       b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_ARP);
                       b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_ARP_OLD);
                       gen_or(b0, b1);
                       return (b1);

               case ETHERTYPE_REVARP:
                       return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_REVARP));

               case ETHERTYPE_ATALK:
                       return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
                           ARCTYPE_ATALK));
               }
               /*NOTREACHED*/

       case DLT_LTALK:
               switch (ll_proto) {
               case ETHERTYPE_ATALK:
                       return gen_true(cstate);
               default:
                       return gen_false(cstate);
               }
               /*NOTREACHED*/

       case DLT_FRELAY:
               /*
                * XXX - assumes a 2-byte Frame Relay header with
                * DLCI and flags.  What if the address is longer?
                */
               switch (ll_proto) {

               case ETHERTYPE_IP:
                       /*
                        * Check for the special NLPID for IP.
                        */
                       return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);

               case ETHERTYPE_IPV6:
                       /*
                        * Check for the special NLPID for IPv6.
                        */
                       return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);

               case LLCSAP_ISONS:
                       /*
                        * Check for several OSI protocols.
                        *
                        * Frame Relay packets typically have an OSI
                        * NLPID at the beginning; we check for each
                        * of them.
                        *
                        * What we check for is the NLPID and a frame
                        * control field of UI, i.e. 0x03 followed
                        * by the NLPID.
                        */
                       b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
                       b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
                       b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
                       gen_or(b1, b2);
                       gen_or(b0, b2);
                       return b2;

               default:
                       return gen_false(cstate);
               }
               /*NOTREACHED*/

       case DLT_MFR:
               bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");

       case DLT_JUNIPER_MFR:
       case DLT_JUNIPER_MLFR:
       case DLT_JUNIPER_MLPPP:
       case DLT_JUNIPER_ATM1:
       case DLT_JUNIPER_ATM2:
       case DLT_JUNIPER_PPPOE:
       case DLT_JUNIPER_PPPOE_ATM:
       case DLT_JUNIPER_GGSN:
       case DLT_JUNIPER_ES:
       case DLT_JUNIPER_MONITOR:
       case DLT_JUNIPER_SERVICES:
       case DLT_JUNIPER_ETHER:
       case DLT_JUNIPER_PPP:
       case DLT_JUNIPER_FRELAY:
       case DLT_JUNIPER_CHDLC:
       case DLT_JUNIPER_VP:
       case DLT_JUNIPER_ST:
       case DLT_JUNIPER_ISM:
       case DLT_JUNIPER_VS:
       case DLT_JUNIPER_SRX_E2E:
       case DLT_JUNIPER_FIBRECHANNEL:
       case DLT_JUNIPER_ATM_CEMIC:

               /* just lets verify the magic number for now -
                * on ATM we may have up to 6 different encapsulations on the wire
                * and need a lot of heuristics to figure out that the payload
                * might be;
                *
                * FIXME encapsulation specific BPF_ filters
                */
               return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */

       case DLT_BACNET_MS_TP:
               return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);

       case DLT_IPNET:
               return gen_ipnet_linktype(cstate, ll_proto);

       case DLT_LINUX_IRDA:
               bpf_error(cstate, "IrDA link-layer type filtering not implemented");

       case DLT_DOCSIS:
               bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");

       case DLT_MTP2:
       case DLT_MTP2_WITH_PHDR:
               bpf_error(cstate, "MTP2 link-layer type filtering not implemented");

       case DLT_ERF:
               bpf_error(cstate, "ERF link-layer type filtering not implemented");

       case DLT_PFSYNC:
               bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");

       case DLT_LINUX_LAPD:
               bpf_error(cstate, "LAPD link-layer type filtering not implemented");

       case DLT_USB_FREEBSD:
       case DLT_USB_LINUX:
       case DLT_USB_LINUX_MMAPPED:
       case DLT_USBPCAP:
               bpf_error(cstate, "USB link-layer type filtering not implemented");

       case DLT_BLUETOOTH_HCI_H4:
       case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
               bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");

       case DLT_CAN20B:
       case DLT_CAN_SOCKETCAN:
               bpf_error(cstate, "CAN link-layer type filtering not implemented");

       case DLT_IEEE802_15_4:
       case DLT_IEEE802_15_4_LINUX:
       case DLT_IEEE802_15_4_NONASK_PHY:
       case DLT_IEEE802_15_4_NOFCS:
       case DLT_IEEE802_15_4_TAP:
               bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");

       case DLT_IEEE802_16_MAC_CPS_RADIO:
               bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");

       case DLT_SITA:
               bpf_error(cstate, "SITA link-layer type filtering not implemented");

       case DLT_RAIF1:
               bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");

       case DLT_IPMB_KONTRON:
       case DLT_IPMB_LINUX:
               bpf_error(cstate, "IPMB link-layer type filtering not implemented");

       case DLT_AX25_KISS:
               bpf_error(cstate, "AX.25 link-layer type filtering not implemented");

       case DLT_NFLOG:
               /* Using the fixed-size NFLOG header it is possible to tell only
                * the address family of the packet, other meaningful data is
                * either missing or behind TLVs.
                */
               bpf_error(cstate, "NFLOG link-layer type filtering not implemented");

       default:
               /*
                * Does this link-layer header type have a field
                * indicating the type of the next protocol?  If
                * so, off_linktype.constant_part will be the offset of that
                * field in the packet; if not, it will be OFFSET_NOT_SET.
                */
               if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
                       /*
                        * Yes; assume it's an Ethernet type.  (If
                        * it's not, it needs to be handled specially
                        * above.)
                        */
                       return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
                       /*NOTREACHED */
               } else {
                       /*
                        * No; report an error.
                        */
                       description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
                       bpf_error(cstate, "%s link-layer type filtering not implemented",
                           description);
                       /*NOTREACHED */
               }
       }
}

/*
* Check for an LLC SNAP packet with a given organization code and
* protocol type; we check the entire contents of the 802.2 LLC and
* snap headers, checking for DSAP and SSAP of SNAP and a control
* field of 0x03 in the LLC header, and for the specified organization
* code and protocol type in the SNAP header.
*/
static struct block *
gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
{
       u_char snapblock[8];

       snapblock[0] = LLCSAP_SNAP;             /* DSAP = SNAP */
       snapblock[1] = LLCSAP_SNAP;             /* SSAP = SNAP */
       snapblock[2] = 0x03;                    /* control = UI */
       snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
       snapblock[4] = (u_char)(orgcode >> 8);  /* middle 8 bits of organization code */
       snapblock[5] = (u_char)(orgcode >> 0);  /* lower 8 bits of organization code */
       snapblock[6] = (u_char)(ptype >> 8);    /* upper 8 bits of protocol type */
       snapblock[7] = (u_char)(ptype >> 0);    /* lower 8 bits of protocol type */
       return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
}

/*
* Generate code to match frames with an LLC header.
*/
static struct block *
gen_llc_internal(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       switch (cstate->linktype) {

       case DLT_EN10MB:
               /*
                * We check for an Ethernet type field less than
                * 1500, which means it's an 802.3 length field.
                */
               b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
               gen_not(b0);

               /*
                * Now check for the purported DSAP and SSAP not being
                * 0xFF, to rule out NetWare-over-802.3.
                */
               b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
               gen_not(b1);
               gen_and(b0, b1);
               return b1;

       case DLT_SUNATM:
               /*
                * We check for LLC traffic.
                */
               b0 = gen_atmtype_llc(cstate);
               return b0;

       case DLT_IEEE802:       /* Token Ring */
               /*
                * XXX - check for LLC frames.
                */
               return gen_true(cstate);

       case DLT_FDDI:
               /*
                * XXX - check for LLC frames.
                */
               return gen_true(cstate);

       case DLT_ATM_RFC1483:
               /*
                * For LLC encapsulation, these are defined to have an
                * 802.2 LLC header.
                *
                * For VC encapsulation, they don't, but there's no
                * way to check for that; the protocol used on the VC
                * is negotiated out of band.
                */
               return gen_true(cstate);

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_PPI:
               /*
                * Check that we have a data frame.
                */
               b0 = gen_check_802_11_data_frame(cstate);
               return b0;

       default:
               bpf_error(cstate, "'llc' not supported for %s",
                         pcap_datalink_val_to_description_or_dlt(cstate->linktype));
               /*NOTREACHED*/
       }
}

struct block *
gen_llc(compiler_state_t *cstate)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_llc_internal(cstate);
}

struct block *
gen_llc_i(compiler_state_t *cstate)
{
       struct block *b0, *b1;
       struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Check whether this is an LLC frame.
        */
       b0 = gen_llc_internal(cstate);

       /*
        * Load the control byte and test the low-order bit; it must
        * be clear for I frames.
        */
       s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
       b1 = new_block(cstate, JMP(BPF_JSET));
       b1->s.k = 0x01;
       b1->stmts = s;
       gen_not(b1);
       gen_and(b0, b1);
       return b1;
}

struct block *
gen_llc_s(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Check whether this is an LLC frame.
        */
       b0 = gen_llc_internal(cstate);

       /*
        * Now compare the low-order 2 bit of the control byte against
        * the appropriate value for S frames.
        */
       b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
       gen_and(b0, b1);
       return b1;
}

struct block *
gen_llc_u(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Check whether this is an LLC frame.
        */
       b0 = gen_llc_internal(cstate);

       /*
        * Now compare the low-order 2 bit of the control byte against
        * the appropriate value for U frames.
        */
       b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
       gen_and(b0, b1);
       return b1;
}

struct block *
gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Check whether this is an LLC frame.
        */
       b0 = gen_llc_internal(cstate);

       /*
        * Now check for an S frame with the appropriate type.
        */
       b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
       gen_and(b0, b1);
       return b1;
}

struct block *
gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Check whether this is an LLC frame.
        */
       b0 = gen_llc_internal(cstate);

       /*
        * Now check for a U frame with the appropriate type.
        */
       b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
       gen_and(b0, b1);
       return b1;
}

/*
* Generate code to match a particular packet type, for link-layer types
* using 802.2 LLC headers.
*
* This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
* for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
*
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
* value, if <= ETHERMTU.  We use that to determine whether to
* match the DSAP or both DSAP and LSAP or to check the OUI and
* protocol ID in a SNAP header.
*/
static struct block *
gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       /*
        * XXX - handle token-ring variable-length header.
        */
       switch (ll_proto) {

       case LLCSAP_IP:
       case LLCSAP_ISONS:
       case LLCSAP_NETBEUI:
               /*
                * XXX - should we check both the DSAP and the
                * SSAP, like this, or should we check just the
                * DSAP, as we do for other SAP values?
                */
               return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
                            ((ll_proto << 8) | ll_proto));

       case LLCSAP_IPX:
               /*
                * XXX - are there ever SNAP frames for IPX on
                * non-Ethernet 802.x networks?
                */
               return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);

       case ETHERTYPE_ATALK:
               /*
                * 802.2-encapsulated ETHERTYPE_ATALK packets are
                * SNAP packets with an organization code of
                * 0x080007 (Apple, for Appletalk) and a protocol
                * type of ETHERTYPE_ATALK (Appletalk).
                *
                * XXX - check for an organization code of
                * encapsulated Ethernet as well?
                */
               return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);

       default:
               /*
                * XXX - we don't have to check for IPX 802.3
                * here, but should we check for the IPX Ethertype?
                */
               if (ll_proto <= ETHERMTU) {
                       /*
                        * This is an LLC SAP value, so check
                        * the DSAP.
                        */
                       return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
               } else {
                       /*
                        * This is an Ethernet type; we assume that it's
                        * unlikely that it'll appear in the right place
                        * at random, and therefore check only the
                        * location that would hold the Ethernet type
                        * in a SNAP frame with an organization code of
                        * 0x000000 (encapsulated Ethernet).
                        *
                        * XXX - if we were to check for the SNAP DSAP and
                        * LSAP, as per XXX, and were also to check for an
                        * organization code of 0x000000 (encapsulated
                        * Ethernet), we'd do
                        *
                        *      return gen_snap(cstate, 0x000000, ll_proto);
                        *
                        * here; for now, we don't, as per the above.
                        * I don't know whether it's worth the extra CPU
                        * time to do the right check or not.
                        */
                       return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
               }
       }
}

static struct block *
gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
   int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
{
       struct block *b0, *b1;
       u_int offset;

       switch (dir) {

       case Q_SRC:
               offset = src_off;
               break;

       case Q_DST:
               offset = dst_off;
               break;

       case Q_AND:
               b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
               b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
               b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       b0 = gen_linktype(cstate, ll_proto);
       b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
       gen_and(b0, b1);
       return b1;
}

#ifdef INET6
static struct block *
gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
   struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
   u_int dst_off)
{
       struct block *b0, *b1;
       u_int offset;
       /*
        * Code below needs to access four separate 32-bit parts of the 128-bit
        * IPv6 address and mask.  In some OSes this is as simple as using the
        * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
        * 8-, 16- and 32-bit arrays.  In other OSes this is not the case, as
        * far as libpcap sees it.  Hence copy the data before use to avoid
        * potential unaligned memory access and the associated compiler
        * warnings (whether genuine or not).
        */
       bpf_u_int32 a[4], m[4];

       switch (dir) {

       case Q_SRC:
               offset = src_off;
               break;

       case Q_DST:
               offset = dst_off;
               break;

       case Q_AND:
               b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
               b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
               b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       /* this order is important */
       memcpy(a, addr, sizeof(a));
       memcpy(m, mask, sizeof(m));
       b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
       b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
       gen_and(b0, b1);
       b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
       gen_and(b0, b1);
       b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
       gen_and(b0, b1);
       b0 = gen_linktype(cstate, ll_proto);
       gen_and(b0, b1);
       return b1;
}
#endif

static struct block *
gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       register struct block *b0, *b1;

       switch (dir) {
       case Q_SRC:
               return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);

       case Q_DST:
               return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);

       case Q_AND:
               b0 = gen_ehostop(cstate, eaddr, Q_SRC);
               b1 = gen_ehostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_ehostop(cstate, eaddr, Q_SRC);
               b1 = gen_ehostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

/*
* Like gen_ehostop, but for DLT_FDDI
*/
static struct block *
gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       struct block *b0, *b1;

       switch (dir) {
       case Q_SRC:
               return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);

       case Q_DST:
               return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);

       case Q_AND:
               b0 = gen_fhostop(cstate, eaddr, Q_SRC);
               b1 = gen_fhostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_fhostop(cstate, eaddr, Q_SRC);
               b1 = gen_fhostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is only supported on 802.11");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is only supported on 802.11");
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

/*
* Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
*/
static struct block *
gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       register struct block *b0, *b1;

       switch (dir) {
       case Q_SRC:
               return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);

       case Q_DST:
               return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);

       case Q_AND:
               b0 = gen_thostop(cstate, eaddr, Q_SRC);
               b1 = gen_thostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_thostop(cstate, eaddr, Q_SRC);
               b1 = gen_thostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is only supported on 802.11");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is only supported on 802.11");
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

/*
* Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
* various 802.11 + radio headers.
*/
static struct block *
gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       register struct block *b0, *b1, *b2;
       register struct slist *s;

#ifdef ENABLE_WLAN_FILTERING_PATCH
       /*
        * TODO GV 20070613
        * We need to disable the optimizer because the optimizer is buggy
        * and wipes out some LD instructions generated by the below
        * code to validate the Frame Control bits
        */
       cstate->no_optimize = 1;
#endif /* ENABLE_WLAN_FILTERING_PATCH */

       switch (dir) {
       case Q_SRC:
               /*
                * Oh, yuk.
                *
                *      For control frames, there is no SA.
                *
                *      For management frames, SA is at an
                *      offset of 10 from the beginning of
                *      the packet.
                *
                *      For data frames, SA is at an offset
                *      of 10 from the beginning of the packet
                *      if From DS is clear, at an offset of
                *      16 from the beginning of the packet
                *      if From DS is set and To DS is clear,
                *      and an offset of 24 from the beginning
                *      of the packet if From DS is set and To DS
                *      is set.
                */

               /*
                * Generate the tests to be done for data frames
                * with From DS set.
                *
                * First, check for To DS set, i.e. check "link[1] & 0x01".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x01; /* To DS */
               b1->stmts = s;

               /*
                * If To DS is set, the SA is at 24.
                */
               b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
               gen_and(b1, b0);

               /*
                * Now, check for To DS not set, i.e. check
                * "!(link[1] & 0x01)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b2 = new_block(cstate, JMP(BPF_JSET));
               b2->s.k = 0x01; /* To DS */
               b2->stmts = s;
               gen_not(b2);

               /*
                * If To DS is not set, the SA is at 16.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
               gen_and(b2, b1);

               /*
                * Now OR together the last two checks.  That gives
                * the complete set of checks for data frames with
                * From DS set.
                */
               gen_or(b1, b0);

               /*
                * Now check for From DS being set, and AND that with
                * the ORed-together checks.
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x02; /* From DS */
               b1->stmts = s;
               gen_and(b1, b0);

               /*
                * Now check for data frames with From DS not set.
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b2 = new_block(cstate, JMP(BPF_JSET));
               b2->s.k = 0x02; /* From DS */
               b2->stmts = s;
               gen_not(b2);

               /*
                * If From DS isn't set, the SA is at 10.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
               gen_and(b2, b1);

               /*
                * Now OR together the checks for data frames with
                * From DS not set and for data frames with From DS
                * set; that gives the checks done for data frames.
                */
               gen_or(b1, b0);

               /*
                * Now check for a data frame.
                * I.e, check "link[0] & 0x08".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x08;
               b1->stmts = s;

               /*
                * AND that with the checks done for data frames.
                */
               gen_and(b1, b0);

               /*
                * If the high-order bit of the type value is 0, this
                * is a management frame.
                * I.e, check "!(link[0] & 0x08)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b2 = new_block(cstate, JMP(BPF_JSET));
               b2->s.k = 0x08;
               b2->stmts = s;
               gen_not(b2);

               /*
                * For management frames, the SA is at 10.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
               gen_and(b2, b1);

               /*
                * OR that with the checks done for data frames.
                * That gives the checks done for management and
                * data frames.
                */
               gen_or(b1, b0);

               /*
                * If the low-order bit of the type value is 1,
                * this is either a control frame or a frame
                * with a reserved type, and thus not a
                * frame with an SA.
                *
                * I.e., check "!(link[0] & 0x04)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x04;
               b1->stmts = s;
               gen_not(b1);

               /*
                * AND that with the checks for data and management
                * frames.
                */
               gen_and(b1, b0);
               return b0;

       case Q_DST:
               /*
                * Oh, yuk.
                *
                *      For control frames, there is no DA.
                *
                *      For management frames, DA is at an
                *      offset of 4 from the beginning of
                *      the packet.
                *
                *      For data frames, DA is at an offset
                *      of 4 from the beginning of the packet
                *      if To DS is clear and at an offset of
                *      16 from the beginning of the packet
                *      if To DS is set.
                */

               /*
                * Generate the tests to be done for data frames.
                *
                * First, check for To DS set, i.e. "link[1] & 0x01".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x01; /* To DS */
               b1->stmts = s;

               /*
                * If To DS is set, the DA is at 16.
                */
               b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
               gen_and(b1, b0);

               /*
                * Now, check for To DS not set, i.e. check
                * "!(link[1] & 0x01)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
               b2 = new_block(cstate, JMP(BPF_JSET));
               b2->s.k = 0x01; /* To DS */
               b2->stmts = s;
               gen_not(b2);

               /*
                * If To DS is not set, the DA is at 4.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
               gen_and(b2, b1);

               /*
                * Now OR together the last two checks.  That gives
                * the complete set of checks for data frames.
                */
               gen_or(b1, b0);

               /*
                * Now check for a data frame.
                * I.e, check "link[0] & 0x08".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x08;
               b1->stmts = s;

               /*
                * AND that with the checks done for data frames.
                */
               gen_and(b1, b0);

               /*
                * If the high-order bit of the type value is 0, this
                * is a management frame.
                * I.e, check "!(link[0] & 0x08)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b2 = new_block(cstate, JMP(BPF_JSET));
               b2->s.k = 0x08;
               b2->stmts = s;
               gen_not(b2);

               /*
                * For management frames, the DA is at 4.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
               gen_and(b2, b1);

               /*
                * OR that with the checks done for data frames.
                * That gives the checks done for management and
                * data frames.
                */
               gen_or(b1, b0);

               /*
                * If the low-order bit of the type value is 1,
                * this is either a control frame or a frame
                * with a reserved type, and thus not a
                * frame with an SA.
                *
                * I.e., check "!(link[0] & 0x04)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x04;
               b1->stmts = s;
               gen_not(b1);

               /*
                * AND that with the checks for data and management
                * frames.
                */
               gen_and(b1, b0);
               return b0;

       case Q_AND:
               b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
               b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
               b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       /*
        * XXX - add BSSID keyword?
        */
       case Q_ADDR1:
               return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));

       case Q_ADDR2:
               /*
                * Not present in CTS or ACK control frames.
                */
               b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
                       IEEE80211_FC0_TYPE_MASK);
               gen_not(b0);
               b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
                       IEEE80211_FC0_SUBTYPE_MASK);
               gen_not(b1);
               b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
                       IEEE80211_FC0_SUBTYPE_MASK);
               gen_not(b2);
               gen_and(b1, b2);
               gen_or(b0, b2);
               b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
               gen_and(b2, b1);
               return b1;

       case Q_ADDR3:
               /*
                * Not present in control frames.
                */
               b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
                       IEEE80211_FC0_TYPE_MASK);
               gen_not(b0);
               b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
               gen_and(b0, b1);
               return b1;

       case Q_ADDR4:
               /*
                * Present only if the direction mask has both "From DS"
                * and "To DS" set.  Neither control frames nor management
                * frames should have both of those set, so we don't
                * check the frame type.
                */
               b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
                       IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
               b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
               gen_and(b0, b1);
               return b1;

       case Q_RA:
               /*
                * Not present in management frames; addr1 in other
                * frames.
                */

               /*
                * If the high-order bit of the type value is 0, this
                * is a management frame.
                * I.e, check "(link[0] & 0x08)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x08;
               b1->stmts = s;

               /*
                * Check addr1.
                */
               b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);

               /*
                * AND that with the check of addr1.
                */
               gen_and(b1, b0);
               return (b0);

       case Q_TA:
               /*
                * Not present in management frames; addr2, if present,
                * in other frames.
                */

               /*
                * Not present in CTS or ACK control frames.
                */
               b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
                       IEEE80211_FC0_TYPE_MASK);
               gen_not(b0);
               b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
                       IEEE80211_FC0_SUBTYPE_MASK);
               gen_not(b1);
               b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
                       IEEE80211_FC0_SUBTYPE_MASK);
               gen_not(b2);
               gen_and(b1, b2);
               gen_or(b0, b2);

               /*
                * If the high-order bit of the type value is 0, this
                * is a management frame.
                * I.e, check "(link[0] & 0x08)".
                */
               s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
               b1 = new_block(cstate, JMP(BPF_JSET));
               b1->s.k = 0x08;
               b1->stmts = s;

               /*
                * AND that with the check for frames other than
                * CTS and ACK frames.
                */
               gen_and(b1, b2);

               /*
                * Check addr2.
                */
               b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
               gen_and(b2, b1);
               return b1;
       }
       abort();
       /*NOTREACHED*/
}

/*
* Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
* (We assume that the addresses are IEEE 48-bit MAC addresses,
* as the RFC states.)
*/
static struct block *
gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       register struct block *b0, *b1;

       switch (dir) {
       case Q_SRC:
               return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);

       case Q_DST:
               return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);

       case Q_AND:
               b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
               b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
               b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is only supported on 802.11");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is only supported on 802.11");
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

/*
* This is quite tricky because there may be pad bytes in front of the
* DECNET header, and then there are two possible data packet formats that
* carry both src and dst addresses, plus 5 packet types in a format that
* carries only the src node, plus 2 types that use a different format and
* also carry just the src node.
*
* Yuck.
*
* Instead of doing those all right, we just look for data packets with
* 0 or 1 bytes of padding.  If you want to look at other packets, that
* will require a lot more hacking.
*
* To add support for filtering on DECNET "areas" (network numbers)
* one would want to add a "mask" argument to this routine.  That would
* make the filter even more inefficient, although one could be clever
* and not generate masking instructions if the mask is 0xFFFF.
*/
static struct block *
gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
{
       struct block *b0, *b1, *b2, *tmp;
       u_int offset_lh;        /* offset if long header is received */
       u_int offset_sh;        /* offset if short header is received */

       switch (dir) {

       case Q_DST:
               offset_sh = 1;  /* follows flags */
               offset_lh = 7;  /* flgs,darea,dsubarea,HIORD */
               break;

       case Q_SRC:
               offset_sh = 3;  /* follows flags, dstnode */
               offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
               break;

       case Q_AND:
               /* Inefficient because we do our Calvinball dance twice */
               b0 = gen_dnhostop(cstate, addr, Q_SRC);
               b1 = gen_dnhostop(cstate, addr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               /* Inefficient because we do our Calvinball dance twice */
               b0 = gen_dnhostop(cstate, addr, Q_SRC);
               b1 = gen_dnhostop(cstate, addr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       b0 = gen_linktype(cstate, ETHERTYPE_DN);
       /* Check for pad = 1, long header case */
       tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
           (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
       b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
           BPF_H, (bpf_u_int32)ntohs((u_short)addr));
       gen_and(tmp, b1);
       /* Check for pad = 0, long header case */
       tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
           (bpf_u_int32)0x7);
       b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
           (bpf_u_int32)ntohs((u_short)addr));
       gen_and(tmp, b2);
       gen_or(b2, b1);
       /* Check for pad = 1, short header case */
       tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
           (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
       b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
           (bpf_u_int32)ntohs((u_short)addr));
       gen_and(tmp, b2);
       gen_or(b2, b1);
       /* Check for pad = 0, short header case */
       tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
           (bpf_u_int32)0x7);
       b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
           (bpf_u_int32)ntohs((u_short)addr));
       gen_and(tmp, b2);
       gen_or(b2, b1);

       /* Combine with test for cstate->linktype */
       gen_and(b0, b1);
       return b1;
}

/*
* Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
* test the bottom-of-stack bit, and then check the version number
* field in the IP header.
*/
static struct block *
gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
{
       struct block *b0, *b1;

       switch (ll_proto) {

       case ETHERTYPE_IP:
               /* match the bottom-of-stack bit */
               b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
               /* match the IPv4 version number */
               b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
               gen_and(b0, b1);
               return b1;

       case ETHERTYPE_IPV6:
               /* match the bottom-of-stack bit */
               b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
               /* match the IPv4 version number */
               b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
               gen_and(b0, b1);
               return b1;

       default:
              /* FIXME add other L3 proto IDs */
              bpf_error(cstate, "unsupported protocol over mpls");
              /*NOTREACHED*/
       }
}

static struct block *
gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
   int proto, int dir, int type)
{
       struct block *b0, *b1;
       const char *typestr;

       if (type == Q_NET)
               typestr = "net";
       else
               typestr = "host";

       switch (proto) {

       case Q_DEFAULT:
               b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
               /*
                * Only check for non-IPv4 addresses if we're not
                * checking MPLS-encapsulated packets.
                */
               if (cstate->label_stack_depth == 0) {
                       b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
                       gen_or(b0, b1);
                       b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
                       gen_or(b1, b0);
               }
               return b0;

       case Q_LINK:
               bpf_error(cstate, "link-layer modifier applied to %s", typestr);

       case Q_IP:
               return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);

       case Q_RARP:
               return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);

       case Q_ARP:
               return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);

       case Q_SCTP:
               bpf_error(cstate, "'sctp' modifier applied to %s", typestr);

       case Q_TCP:
               bpf_error(cstate, "'tcp' modifier applied to %s", typestr);

       case Q_UDP:
               bpf_error(cstate, "'udp' modifier applied to %s", typestr);

       case Q_ICMP:
               bpf_error(cstate, "'icmp' modifier applied to %s", typestr);

       case Q_IGMP:
               bpf_error(cstate, "'igmp' modifier applied to %s", typestr);

       case Q_IGRP:
               bpf_error(cstate, "'igrp' modifier applied to %s", typestr);

       case Q_ATALK:
               bpf_error(cstate, "AppleTalk host filtering not implemented");

       case Q_DECNET:
               return gen_dnhostop(cstate, addr, dir);

       case Q_LAT:
               bpf_error(cstate, "LAT host filtering not implemented");

       case Q_SCA:
               bpf_error(cstate, "SCA host filtering not implemented");

       case Q_MOPRC:
               bpf_error(cstate, "MOPRC host filtering not implemented");

       case Q_MOPDL:
               bpf_error(cstate, "MOPDL host filtering not implemented");

       case Q_IPV6:
               bpf_error(cstate, "'ip6' modifier applied to ip host");

       case Q_ICMPV6:
               bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);

       case Q_AH:
               bpf_error(cstate, "'ah' modifier applied to %s", typestr);

       case Q_ESP:
               bpf_error(cstate, "'esp' modifier applied to %s", typestr);

       case Q_PIM:
               bpf_error(cstate, "'pim' modifier applied to %s", typestr);

       case Q_VRRP:
               bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);

       case Q_AARP:
               bpf_error(cstate, "AARP host filtering not implemented");

       case Q_ISO:
               bpf_error(cstate, "ISO host filtering not implemented");

       case Q_ESIS:
               bpf_error(cstate, "'esis' modifier applied to %s", typestr);

       case Q_ISIS:
               bpf_error(cstate, "'isis' modifier applied to %s", typestr);

       case Q_CLNP:
               bpf_error(cstate, "'clnp' modifier applied to %s", typestr);

       case Q_STP:
               bpf_error(cstate, "'stp' modifier applied to %s", typestr);

       case Q_IPX:
               bpf_error(cstate, "IPX host filtering not implemented");

       case Q_NETBEUI:
               bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);

       case Q_ISIS_L1:
               bpf_error(cstate, "'l1' modifier applied to %s", typestr);

       case Q_ISIS_L2:
               bpf_error(cstate, "'l2' modifier applied to %s", typestr);

       case Q_ISIS_IIH:
               bpf_error(cstate, "'iih' modifier applied to %s", typestr);

       case Q_ISIS_SNP:
               bpf_error(cstate, "'snp' modifier applied to %s", typestr);

       case Q_ISIS_CSNP:
               bpf_error(cstate, "'csnp' modifier applied to %s", typestr);

       case Q_ISIS_PSNP:
               bpf_error(cstate, "'psnp' modifier applied to %s", typestr);

       case Q_ISIS_LSP:
               bpf_error(cstate, "'lsp' modifier applied to %s", typestr);

       case Q_RADIO:
               bpf_error(cstate, "'radio' modifier applied to %s", typestr);

       case Q_CARP:
               bpf_error(cstate, "'carp' modifier applied to %s", typestr);

       default:
               abort();
       }
       /*NOTREACHED*/
}

#ifdef INET6
static struct block *
gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
   struct in6_addr *mask, int proto, int dir, int type)
{
       const char *typestr;

       if (type == Q_NET)
               typestr = "net";
       else
               typestr = "host";

       switch (proto) {

       case Q_DEFAULT:
               return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);

       case Q_LINK:
               bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);

       case Q_IP:
               bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);

       case Q_RARP:
               bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);

       case Q_ARP:
               bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);

       case Q_SCTP:
               bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);

       case Q_TCP:
               bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);

       case Q_UDP:
               bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);

       case Q_ICMP:
               bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);

       case Q_IGMP:
               bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);

       case Q_IGRP:
               bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);

       case Q_ATALK:
               bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);

       case Q_DECNET:
               bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);

       case Q_LAT:
               bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);

       case Q_SCA:
               bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);

       case Q_MOPRC:
               bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);

       case Q_MOPDL:
               bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);

       case Q_IPV6:
               return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);

       case Q_ICMPV6:
               bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);

       case Q_AH:
               bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);

       case Q_ESP:
               bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);

       case Q_PIM:
               bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);

       case Q_VRRP:
               bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);

       case Q_AARP:
               bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);

       case Q_ISO:
               bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);

       case Q_ESIS:
               bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);

       case Q_ISIS:
               bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);

       case Q_CLNP:
               bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);

       case Q_STP:
               bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);

       case Q_IPX:
               bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);

       case Q_NETBEUI:
               bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);

       case Q_ISIS_L1:
               bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);

       case Q_ISIS_L2:
               bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);

       case Q_ISIS_IIH:
               bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);

       case Q_ISIS_SNP:
               bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);

       case Q_ISIS_CSNP:
               bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);

       case Q_ISIS_PSNP:
               bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);

       case Q_ISIS_LSP:
               bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);

       case Q_RADIO:
               bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);

       case Q_CARP:
               bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);

       default:
               abort();
       }
       /*NOTREACHED*/
}
#endif

#ifndef INET6
static struct block *
gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
   struct addrinfo *alist, int proto, int dir)
{
       struct block *b0, *b1, *tmp;
       struct addrinfo *ai;
       struct sockaddr_in *sin;

       if (dir != 0)
               bpf_error(cstate, "direction applied to 'gateway'");

       switch (proto) {
       case Q_DEFAULT:
       case Q_IP:
       case Q_ARP:
       case Q_RARP:
               switch (cstate->linktype) {
               case DLT_EN10MB:
               case DLT_NETANALYZER:
               case DLT_NETANALYZER_TRANSPARENT:
                       b1 = gen_prevlinkhdr_check(cstate);
                       b0 = gen_ehostop(cstate, eaddr, Q_OR);
                       if (b1 != NULL)
                               gen_and(b1, b0);
                       break;
               case DLT_FDDI:
                       b0 = gen_fhostop(cstate, eaddr, Q_OR);
                       break;
               case DLT_IEEE802:
                       b0 = gen_thostop(cstate, eaddr, Q_OR);
                       break;
               case DLT_IEEE802_11:
               case DLT_PRISM_HEADER:
               case DLT_IEEE802_11_RADIO_AVS:
               case DLT_IEEE802_11_RADIO:
               case DLT_PPI:
                       b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
                       break;
               case DLT_SUNATM:
                       /*
                        * This is LLC-multiplexed traffic; if it were
                        * LANE, cstate->linktype would have been set to
                        * DLT_EN10MB.
                        */
                       bpf_error(cstate,
                           "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
               case DLT_IP_OVER_FC:
                       b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
                       break;
               default:
                       bpf_error(cstate,
                           "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
               }
               b1 = NULL;
               for (ai = alist; ai != NULL; ai = ai->ai_next) {
                       /*
                        * Does it have an address?
                        */
                       if (ai->ai_addr != NULL) {
                               /*
                                * Yes.  Is it an IPv4 address?
                                */
                               if (ai->ai_addr->sa_family == AF_INET) {
                                       /*
                                        * Generate an entry for it.
                                        */
                                       sin = (struct sockaddr_in *)ai->ai_addr;
                                       tmp = gen_host(cstate,
                                           ntohl(sin->sin_addr.s_addr),
                                           0xffffffff, proto, Q_OR, Q_HOST);
                                       /*
                                        * Is it the *first* IPv4 address?
                                        */
                                       if (b1 == NULL) {
                                               /*
                                                * Yes, so start with it.
                                                */
                                               b1 = tmp;
                                       } else {
                                               /*
                                                * No, so OR it into the
                                                * existing set of
                                                * addresses.
                                                */
                                               gen_or(b1, tmp);
                                               b1 = tmp;
                                       }
                               }
                       }
               }
               if (b1 == NULL) {
                       /*
                        * No IPv4 addresses found.
                        */
                       return (NULL);
               }
               gen_not(b1);
               gen_and(b0, b1);
               return b1;
       }
       bpf_error(cstate, "illegal modifier of 'gateway'");
       /*NOTREACHED*/
}
#endif

static struct block *
gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
{
       struct block *b0;
       struct block *b1;

       switch (proto) {

       case Q_SCTP:
               b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
               break;

       case Q_TCP:
               b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
               break;

       case Q_UDP:
               b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
               break;

       case Q_ICMP:
               b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
               break;

#ifndef IPPROTO_IGMP
#define IPPROTO_IGMP    2
#endif

       case Q_IGMP:
               b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
               break;

#ifndef IPPROTO_IGRP
#define IPPROTO_IGRP    9
#endif
       case Q_IGRP:
               b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
               break;

#ifndef IPPROTO_PIM
#define IPPROTO_PIM     103
#endif

       case Q_PIM:
               b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
               break;

#ifndef IPPROTO_VRRP
#define IPPROTO_VRRP    112
#endif

       case Q_VRRP:
               b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
               break;

#ifndef IPPROTO_CARP
#define IPPROTO_CARP    112
#endif

       case Q_CARP:
               b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
               break;

       case Q_IP:
               b1 = gen_linktype(cstate, ETHERTYPE_IP);
               break;

       case Q_ARP:
               b1 = gen_linktype(cstate, ETHERTYPE_ARP);
               break;

       case Q_RARP:
               b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
               break;

       case Q_LINK:
               bpf_error(cstate, "link layer applied in wrong context");

       case Q_ATALK:
               b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
               break;

       case Q_AARP:
               b1 = gen_linktype(cstate, ETHERTYPE_AARP);
               break;

       case Q_DECNET:
               b1 = gen_linktype(cstate, ETHERTYPE_DN);
               break;

       case Q_SCA:
               b1 = gen_linktype(cstate, ETHERTYPE_SCA);
               break;

       case Q_LAT:
               b1 = gen_linktype(cstate, ETHERTYPE_LAT);
               break;

       case Q_MOPDL:
               b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
               break;

       case Q_MOPRC:
               b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
               break;

       case Q_IPV6:
               b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
               break;

#ifndef IPPROTO_ICMPV6
#define IPPROTO_ICMPV6  58
#endif
       case Q_ICMPV6:
               b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
               break;

#ifndef IPPROTO_AH
#define IPPROTO_AH      51
#endif
       case Q_AH:
               b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
               break;

#ifndef IPPROTO_ESP
#define IPPROTO_ESP     50
#endif
       case Q_ESP:
               b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
               break;

       case Q_ISO:
               b1 = gen_linktype(cstate, LLCSAP_ISONS);
               break;

       case Q_ESIS:
               b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
               break;

       case Q_ISIS:
               b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
               break;

       case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
               b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
               b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
               b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_LSP:
               b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_SNP:
               b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_CSNP:
               b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_ISIS_PSNP:
               b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
               b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
               gen_or(b0, b1);
               break;

       case Q_CLNP:
               b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
               break;

       case Q_STP:
               b1 = gen_linktype(cstate, LLCSAP_8021D);
               break;

       case Q_IPX:
               b1 = gen_linktype(cstate, LLCSAP_IPX);
               break;

       case Q_NETBEUI:
               b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
               break;

       case Q_RADIO:
               bpf_error(cstate, "'radio' is not a valid protocol type");

       default:
               abort();
       }
       return b1;
}

struct block *
gen_proto_abbrev(compiler_state_t *cstate, int proto)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_proto_abbrev_internal(cstate, proto);
}

static struct block *
gen_ipfrag(compiler_state_t *cstate)
{
       struct slist *s;
       struct block *b;

       /* not IPv4 frag other than the first frag */
       s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
       b = new_block(cstate, JMP(BPF_JSET));
       b->s.k = 0x1fff;
       b->stmts = s;
       gen_not(b);

       return b;
}

/*
* Generate a comparison to a port value in the transport-layer header
* at the specified offset from the beginning of that header.
*
* XXX - this handles a variable-length prefix preceding the link-layer
* header, such as the radiotap or AVS radio prefix, but doesn't handle
* variable-length link-layer headers (such as Token Ring or 802.11
* headers).
*/
static struct block *
gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
{
       return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
}

static struct block *
gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
{
       return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
}

static struct block *
gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /* ip proto 'proto' and not a fragment other than the first fragment */
       tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
       b0 = gen_ipfrag(cstate);
       gen_and(tmp, b0);

       switch (dir) {
       case Q_SRC:
               b1 = gen_portatom(cstate, 0, port);
               break;

       case Q_DST:
               b1 = gen_portatom(cstate, 2, port);
               break;

       case Q_AND:
               tmp = gen_portatom(cstate, 0, port);
               b1 = gen_portatom(cstate, 2, port);
               gen_and(tmp, b1);
               break;

       case Q_DEFAULT:
       case Q_OR:
               tmp = gen_portatom(cstate, 0, port);
               b1 = gen_portatom(cstate, 2, port);
               gen_or(tmp, b1);
               break;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is not a valid qualifier for ports");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is not a valid qualifier for ports");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       gen_and(b0, b1);

       return b1;
}

static struct block *
gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /*
        * ether proto ip
        *
        * For FDDI, RFC 1188 says that SNAP encapsulation is used,
        * not LLC encapsulation with LLCSAP_IP.
        *
        * For IEEE 802 networks - which includes 802.5 token ring
        * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
        * says that SNAP encapsulation is used, not LLC encapsulation
        * with LLCSAP_IP.
        *
        * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
        * RFC 2225 say that SNAP encapsulation is used, not LLC
        * encapsulation with LLCSAP_IP.
        *
        * So we always check for ETHERTYPE_IP.
        */
       b0 = gen_linktype(cstate, ETHERTYPE_IP);

       switch (ip_proto) {
       case IPPROTO_UDP:
       case IPPROTO_TCP:
       case IPPROTO_SCTP:
               b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
               break;

       case PROTO_UNDEF:
               tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
               b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
               gen_or(tmp, b1);
               tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);
       return b1;
}

struct block *
gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /* ip6 proto 'proto' */
       /* XXX - catch the first fragment of a fragmented packet? */
       b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);

       switch (dir) {
       case Q_SRC:
               b1 = gen_portatom6(cstate, 0, port);
               break;

       case Q_DST:
               b1 = gen_portatom6(cstate, 2, port);
               break;

       case Q_AND:
               tmp = gen_portatom6(cstate, 0, port);
               b1 = gen_portatom6(cstate, 2, port);
               gen_and(tmp, b1);
               break;

       case Q_DEFAULT:
       case Q_OR:
               tmp = gen_portatom6(cstate, 0, port);
               b1 = gen_portatom6(cstate, 2, port);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);

       return b1;
}

static struct block *
gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /* link proto ip6 */
       b0 = gen_linktype(cstate, ETHERTYPE_IPV6);

       switch (ip_proto) {
       case IPPROTO_UDP:
       case IPPROTO_TCP:
       case IPPROTO_SCTP:
               b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
               break;

       case PROTO_UNDEF:
               tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
               b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
               gen_or(tmp, b1);
               tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);
       return b1;
}

/* gen_portrange code */
static struct block *
gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
   bpf_u_int32 v2)
{
       struct block *b1, *b2;

       if (v1 > v2) {
               /*
                * Reverse the order of the ports, so v1 is the lower one.
                */
               bpf_u_int32 vtemp;

               vtemp = v1;
               v1 = v2;
               v2 = vtemp;
       }

       b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
       b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);

       gen_and(b1, b2);

       return b2;
}

static struct block *
gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
   bpf_u_int32 proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /* ip proto 'proto' and not a fragment other than the first fragment */
       tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
       b0 = gen_ipfrag(cstate);
       gen_and(tmp, b0);

       switch (dir) {
       case Q_SRC:
               b1 = gen_portrangeatom(cstate, 0, port1, port2);
               break;

       case Q_DST:
               b1 = gen_portrangeatom(cstate, 2, port1, port2);
               break;

       case Q_AND:
               tmp = gen_portrangeatom(cstate, 0, port1, port2);
               b1 = gen_portrangeatom(cstate, 2, port1, port2);
               gen_and(tmp, b1);
               break;

       case Q_DEFAULT:
       case Q_OR:
               tmp = gen_portrangeatom(cstate, 0, port1, port2);
               b1 = gen_portrangeatom(cstate, 2, port1, port2);
               gen_or(tmp, b1);
               break;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       gen_and(b0, b1);

       return b1;
}

static struct block *
gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
   int dir)
{
       struct block *b0, *b1, *tmp;

       /* link proto ip */
       b0 = gen_linktype(cstate, ETHERTYPE_IP);

       switch (ip_proto) {
       case IPPROTO_UDP:
       case IPPROTO_TCP:
       case IPPROTO_SCTP:
               b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
                   dir);
               break;

       case PROTO_UNDEF:
               tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
               b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
               gen_or(tmp, b1);
               tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);
       return b1;
}

static struct block *
gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
   bpf_u_int32 v2)
{
       struct block *b1, *b2;

       if (v1 > v2) {
               /*
                * Reverse the order of the ports, so v1 is the lower one.
                */
               bpf_u_int32 vtemp;

               vtemp = v1;
               v1 = v2;
               v2 = vtemp;
       }

       b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
       b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);

       gen_and(b1, b2);

       return b2;
}

static struct block *
gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
   bpf_u_int32 proto, int dir)
{
       struct block *b0, *b1, *tmp;

       /* ip6 proto 'proto' */
       /* XXX - catch the first fragment of a fragmented packet? */
       b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);

       switch (dir) {
       case Q_SRC:
               b1 = gen_portrangeatom6(cstate, 0, port1, port2);
               break;

       case Q_DST:
               b1 = gen_portrangeatom6(cstate, 2, port1, port2);
               break;

       case Q_AND:
               tmp = gen_portrangeatom6(cstate, 0, port1, port2);
               b1 = gen_portrangeatom6(cstate, 2, port1, port2);
               gen_and(tmp, b1);
               break;

       case Q_DEFAULT:
       case Q_OR:
               tmp = gen_portrangeatom6(cstate, 0, port1, port2);
               b1 = gen_portrangeatom6(cstate, 2, port1, port2);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);

       return b1;
}

static struct block *
gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
   int dir)
{
       struct block *b0, *b1, *tmp;

       /* link proto ip6 */
       b0 = gen_linktype(cstate, ETHERTYPE_IPV6);

       switch (ip_proto) {
       case IPPROTO_UDP:
       case IPPROTO_TCP:
       case IPPROTO_SCTP:
               b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
                   dir);
               break;

       case PROTO_UNDEF:
               tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
               b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
               gen_or(tmp, b1);
               tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
               gen_or(tmp, b1);
               break;

       default:
               abort();
       }
       gen_and(b0, b1);
       return b1;
}

static int
lookup_proto(compiler_state_t *cstate, const char *name, int proto)
{
       register int v;

       switch (proto) {

       case Q_DEFAULT:
       case Q_IP:
       case Q_IPV6:
               v = pcap_nametoproto(name);
               if (v == PROTO_UNDEF)
                       bpf_error(cstate, "unknown ip proto '%s'", name);
               break;

       case Q_LINK:
               /* XXX should look up h/w protocol type based on cstate->linktype */
               v = pcap_nametoeproto(name);
               if (v == PROTO_UNDEF) {
                       v = pcap_nametollc(name);
                       if (v == PROTO_UNDEF)
                               bpf_error(cstate, "unknown ether proto '%s'", name);
               }
               break;

       case Q_ISO:
               if (strcmp(name, "esis") == 0)
                       v = ISO9542_ESIS;
               else if (strcmp(name, "isis") == 0)
                       v = ISO10589_ISIS;
               else if (strcmp(name, "clnp") == 0)
                       v = ISO8473_CLNP;
               else
                       bpf_error(cstate, "unknown osi proto '%s'", name);
               break;

       default:
               v = PROTO_UNDEF;
               break;
       }
       return v;
}

#if !defined(NO_PROTOCHAIN)
static struct block *
gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
{
       struct block *b0, *b;
       struct slist *s[100];
       int fix2, fix3, fix4, fix5;
       int ahcheck, again, end;
       int i, max;
       int reg2 = alloc_reg(cstate);

       memset(s, 0, sizeof(s));
       fix3 = fix4 = fix5 = 0;

       switch (proto) {
       case Q_IP:
       case Q_IPV6:
               break;
       case Q_DEFAULT:
               b0 = gen_protochain(cstate, v, Q_IP);
               b = gen_protochain(cstate, v, Q_IPV6);
               gen_or(b0, b);
               return b;
       default:
               bpf_error(cstate, "bad protocol applied for 'protochain'");
               /*NOTREACHED*/
       }

       /*
        * We don't handle variable-length prefixes before the link-layer
        * header, or variable-length link-layer headers, here yet.
        * We might want to add BPF instructions to do the protochain
        * work, to simplify that and, on platforms that have a BPF
        * interpreter with the new instructions, let the filtering
        * be done in the kernel.  (We already require a modified BPF
        * engine to do the protochain stuff, to support backward
        * branches, and backward branch support is unlikely to appear
        * in kernel BPF engines.)
        */
       if (cstate->off_linkpl.is_variable)
               bpf_error(cstate, "'protochain' not supported with variable length headers");

       /*
        * To quote a comment in optimize.c:
        *
        * "These data structures are used in a Cocke and Schwartz style
        * value numbering scheme.  Since the flowgraph is acyclic,
        * exit values can be propagated from a node's predecessors
        * provided it is uniquely defined."
        *
        * "Acyclic" means "no backward branches", which means "no
        * loops", so we have to turn the optimizer off.
        */
       cstate->no_optimize = 1;

       /*
        * s[0] is a dummy entry to protect other BPF insn from damage
        * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
        * hard to find interdependency made by jump table fixup.
        */
       i = 0;
       s[i] = new_stmt(cstate, 0);     /*dummy*/
       i++;

       switch (proto) {
       case Q_IP:
               b0 = gen_linktype(cstate, ETHERTYPE_IP);

               /* A = ip->ip_p */
               s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
               s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
               i++;
               /* X = ip->ip_hl << 2 */
               s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
               s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
               i++;
               break;

       case Q_IPV6:
               b0 = gen_linktype(cstate, ETHERTYPE_IPV6);

               /* A = ip6->ip_nxt */
               s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
               s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
               i++;
               /* X = sizeof(struct ip6_hdr) */
               s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
               s[i]->s.k = 40;
               i++;
               break;

       default:
               bpf_error(cstate, "unsupported proto to gen_protochain");
               /*NOTREACHED*/
       }

       /* again: if (A == v) goto end; else fall through; */
       again = i;
       s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
       s[i]->s.k = v;
       s[i]->s.jt = NULL;              /*later*/
       s[i]->s.jf = NULL;              /*update in next stmt*/
       fix5 = i;
       i++;

#ifndef IPPROTO_NONE
#define IPPROTO_NONE    59
#endif
       /* if (A == IPPROTO_NONE) goto end */
       s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
       s[i]->s.jt = NULL;      /*later*/
       s[i]->s.jf = NULL;      /*update in next stmt*/
       s[i]->s.k = IPPROTO_NONE;
       s[fix5]->s.jf = s[i];
       fix2 = i;
       i++;

       if (proto == Q_IPV6) {
               int v6start, v6end, v6advance, j;

               v6start = i;
               /* if (A == IPPROTO_HOPOPTS) goto v6advance */
               s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
               s[i]->s.jt = NULL;      /*later*/
               s[i]->s.jf = NULL;      /*update in next stmt*/
               s[i]->s.k = IPPROTO_HOPOPTS;
               s[fix2]->s.jf = s[i];
               i++;
               /* if (A == IPPROTO_DSTOPTS) goto v6advance */
               s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
               s[i]->s.jt = NULL;      /*later*/
               s[i]->s.jf = NULL;      /*update in next stmt*/
               s[i]->s.k = IPPROTO_DSTOPTS;
               i++;
               /* if (A == IPPROTO_ROUTING) goto v6advance */
               s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
               s[i]->s.jt = NULL;      /*later*/
               s[i]->s.jf = NULL;      /*update in next stmt*/
               s[i]->s.k = IPPROTO_ROUTING;
               i++;
               /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
               s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
               s[i]->s.jt = NULL;      /*later*/
               s[i]->s.jf = NULL;      /*later*/
               s[i]->s.k = IPPROTO_FRAGMENT;
               fix3 = i;
               v6end = i;
               i++;

               /* v6advance: */
               v6advance = i;

               /*
                * in short,
                * A = P[X + packet head];
                * X = X + (P[X + packet head + 1] + 1) * 8;
                */
               /* A = P[X + packet head] */
               s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
               s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
               i++;
               /* MEM[reg2] = A */
               s[i] = new_stmt(cstate, BPF_ST);
               s[i]->s.k = reg2;
               i++;
               /* A = P[X + packet head + 1]; */
               s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
               s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
               i++;
               /* A += 1 */
               s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
               s[i]->s.k = 1;
               i++;
               /* A *= 8 */
               s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
               s[i]->s.k = 8;
               i++;
               /* A += X */
               s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
               s[i]->s.k = 0;
               i++;
               /* X = A; */
               s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
               i++;
               /* A = MEM[reg2] */
               s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
               s[i]->s.k = reg2;
               i++;

               /* goto again; (must use BPF_JA for backward jump) */
               s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
               s[i]->s.k = again - i - 1;
               s[i - 1]->s.jf = s[i];
               i++;

               /* fixup */
               for (j = v6start; j <= v6end; j++)
                       s[j]->s.jt = s[v6advance];
       } else {
               /* nop */
               s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
               s[i]->s.k = 0;
               s[fix2]->s.jf = s[i];
               i++;
       }

       /* ahcheck: */
       ahcheck = i;
       /* if (A == IPPROTO_AH) then fall through; else goto end; */
       s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
       s[i]->s.jt = NULL;      /*later*/
       s[i]->s.jf = NULL;      /*later*/
       s[i]->s.k = IPPROTO_AH;
       if (fix3)
               s[fix3]->s.jf = s[ahcheck];
       fix4 = i;
       i++;

       /*
        * in short,
        * A = P[X];
        * X = X + (P[X + 1] + 2) * 4;
        */
       /* A = X */
       s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
       i++;
       /* A = P[X + packet head]; */
       s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
       s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
       i++;
       /* MEM[reg2] = A */
       s[i] = new_stmt(cstate, BPF_ST);
       s[i]->s.k = reg2;
       i++;
       /* A = X */
       s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
       i++;
       /* A += 1 */
       s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s[i]->s.k = 1;
       i++;
       /* X = A */
       s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
       i++;
       /* A = P[X + packet head] */
       s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
       s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
       i++;
       /* A += 2 */
       s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s[i]->s.k = 2;
       i++;
       /* A *= 4 */
       s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
       s[i]->s.k = 4;
       i++;
       /* X = A; */
       s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
       i++;
       /* A = MEM[reg2] */
       s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
       s[i]->s.k = reg2;
       i++;

       /* goto again; (must use BPF_JA for backward jump) */
       s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
       s[i]->s.k = again - i - 1;
       i++;

       /* end: nop */
       end = i;
       s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s[i]->s.k = 0;
       s[fix2]->s.jt = s[end];
       s[fix4]->s.jf = s[end];
       s[fix5]->s.jt = s[end];
       i++;

       /*
        * make slist chain
        */
       max = i;
       for (i = 0; i < max - 1; i++)
               s[i]->next = s[i + 1];
       s[max - 1]->next = NULL;

       /*
        * emit final check
        */
       b = new_block(cstate, JMP(BPF_JEQ));
       b->stmts = s[1];        /*remember, s[0] is dummy*/
       b->s.k = v;

       free_reg(cstate, reg2);

       gen_and(b0, b);
       return b;
}
#endif /* !defined(NO_PROTOCHAIN) */

static struct block *
gen_check_802_11_data_frame(compiler_state_t *cstate)
{
       struct slist *s;
       struct block *b0, *b1;

       /*
        * A data frame has the 0x08 bit (b3) in the frame control field set
        * and the 0x04 bit (b2) clear.
        */
       s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
       b0 = new_block(cstate, JMP(BPF_JSET));
       b0->s.k = 0x08;
       b0->stmts = s;

       s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
       b1 = new_block(cstate, JMP(BPF_JSET));
       b1->s.k = 0x04;
       b1->stmts = s;
       gen_not(b1);

       gen_and(b1, b0);

       return b0;
}

/*
* Generate code that checks whether the packet is a packet for protocol
* <proto> and whether the type field in that protocol's header has
* the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
* IP packet and checks the protocol number in the IP header against <v>.
*
* If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
* against Q_IP and Q_IPV6.
*/
static struct block *
gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
{
       struct block *b0, *b1;
       struct block *b2;

       if (dir != Q_DEFAULT)
               bpf_error(cstate, "direction applied to 'proto'");

       switch (proto) {
       case Q_DEFAULT:
               b0 = gen_proto(cstate, v, Q_IP, dir);
               b1 = gen_proto(cstate, v, Q_IPV6, dir);
               gen_or(b0, b1);
               return b1;

       case Q_LINK:
               return gen_linktype(cstate, v);

       case Q_IP:
               /*
                * For FDDI, RFC 1188 says that SNAP encapsulation is used,
                * not LLC encapsulation with LLCSAP_IP.
                *
                * For IEEE 802 networks - which includes 802.5 token ring
                * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
                * says that SNAP encapsulation is used, not LLC encapsulation
                * with LLCSAP_IP.
                *
                * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
                * RFC 2225 say that SNAP encapsulation is used, not LLC
                * encapsulation with LLCSAP_IP.
                *
                * So we always check for ETHERTYPE_IP.
                */
               b0 = gen_linktype(cstate, ETHERTYPE_IP);
               b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
               gen_and(b0, b1);
               return b1;

       case Q_ARP:
               bpf_error(cstate, "arp does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_RARP:
               bpf_error(cstate, "rarp does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_SCTP:
               bpf_error(cstate, "'sctp proto' is bogus");
               /*NOTREACHED*/

       case Q_TCP:
               bpf_error(cstate, "'tcp proto' is bogus");
               /*NOTREACHED*/

       case Q_UDP:
               bpf_error(cstate, "'udp proto' is bogus");
               /*NOTREACHED*/

       case Q_ICMP:
               bpf_error(cstate, "'icmp proto' is bogus");
               /*NOTREACHED*/

       case Q_IGMP:
               bpf_error(cstate, "'igmp proto' is bogus");
               /*NOTREACHED*/

       case Q_IGRP:
               bpf_error(cstate, "'igrp proto' is bogus");
               /*NOTREACHED*/

       case Q_ATALK:
               bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
               /*NOTREACHED*/

       case Q_DECNET:
               bpf_error(cstate, "DECNET encapsulation is not specifiable");
               /*NOTREACHED*/

       case Q_LAT:
               bpf_error(cstate, "LAT does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_SCA:
               bpf_error(cstate, "SCA does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_MOPRC:
               bpf_error(cstate, "MOPRC does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_MOPDL:
               bpf_error(cstate, "MOPDL does not encapsulate another protocol");
               /*NOTREACHED*/

       case Q_IPV6:
               b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
               /*
                * Also check for a fragment header before the final
                * header.
                */
               b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
               b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
               gen_and(b2, b1);
               b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
               gen_or(b2, b1);
               gen_and(b0, b1);
               return b1;

       case Q_ICMPV6:
               bpf_error(cstate, "'icmp6 proto' is bogus");
               /*NOTREACHED*/

       case Q_AH:
               bpf_error(cstate, "'ah proto' is bogus");
               /*NOTREACHED*/

       case Q_ESP:
               bpf_error(cstate, "'esp proto' is bogus");
               /*NOTREACHED*/

       case Q_PIM:
               bpf_error(cstate, "'pim proto' is bogus");
               /*NOTREACHED*/

       case Q_VRRP:
               bpf_error(cstate, "'vrrp proto' is bogus");
               /*NOTREACHED*/

       case Q_AARP:
               bpf_error(cstate, "'aarp proto' is bogus");
               /*NOTREACHED*/

       case Q_ISO:
               switch (cstate->linktype) {

               case DLT_FRELAY:
                       /*
                        * Frame Relay packets typically have an OSI
                        * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
                        * generates code to check for all the OSI
                        * NLPIDs, so calling it and then adding a check
                        * for the particular NLPID for which we're
                        * looking is bogus, as we can just check for
                        * the NLPID.
                        *
                        * What we check for is the NLPID and a frame
                        * control field value of UI, i.e. 0x03 followed
                        * by the NLPID.
                        *
                        * XXX - assumes a 2-byte Frame Relay header with
                        * DLCI and flags.  What if the address is longer?
                        *
                        * XXX - what about SNAP-encapsulated frames?
                        */
                       return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
                       /*NOTREACHED*/

               case DLT_C_HDLC:
               case DLT_HDLC:
                       /*
                        * Cisco uses an Ethertype lookalike - for OSI,
                        * it's 0xfefe.
                        */
                       b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
                       /* OSI in C-HDLC is stuffed with a fudge byte */
                       b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
                       gen_and(b0, b1);
                       return b1;

               default:
                       b0 = gen_linktype(cstate, LLCSAP_ISONS);
                       b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
                       gen_and(b0, b1);
                       return b1;
               }

       case Q_ESIS:
               bpf_error(cstate, "'esis proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS:
               b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
               /*
                * 4 is the offset of the PDU type relative to the IS-IS
                * header.
                */
               b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
               gen_and(b0, b1);
               return b1;

       case Q_CLNP:
               bpf_error(cstate, "'clnp proto' is not supported");
               /*NOTREACHED*/

       case Q_STP:
               bpf_error(cstate, "'stp proto' is bogus");
               /*NOTREACHED*/

       case Q_IPX:
               bpf_error(cstate, "'ipx proto' is bogus");
               /*NOTREACHED*/

       case Q_NETBEUI:
               bpf_error(cstate, "'netbeui proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_L1:
               bpf_error(cstate, "'l1 proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_L2:
               bpf_error(cstate, "'l2 proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_IIH:
               bpf_error(cstate, "'iih proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_SNP:
               bpf_error(cstate, "'snp proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_CSNP:
               bpf_error(cstate, "'csnp proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_PSNP:
               bpf_error(cstate, "'psnp proto' is bogus");
               /*NOTREACHED*/

       case Q_ISIS_LSP:
               bpf_error(cstate, "'lsp proto' is bogus");
               /*NOTREACHED*/

       case Q_RADIO:
               bpf_error(cstate, "'radio proto' is bogus");
               /*NOTREACHED*/

       case Q_CARP:
               bpf_error(cstate, "'carp proto' is bogus");
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       /*NOTREACHED*/
}

/*
* Convert a non-numeric name to a port number.
*/
static int
nametoport(compiler_state_t *cstate, const char *name, int ipproto)
{
       struct addrinfo hints, *res, *ai;
       int error;
       struct sockaddr_in *in4;
#ifdef INET6
       struct sockaddr_in6 *in6;
#endif
       int port = -1;

       /*
        * We check for both TCP and UDP in case there are
        * ambiguous entries.
        */
       memset(&hints, 0, sizeof(hints));
       hints.ai_family = PF_UNSPEC;
       hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
       hints.ai_protocol = ipproto;
       error = getaddrinfo(NULL, name, &hints, &res);
       if (error != 0) {
               switch (error) {

               case EAI_NONAME:
               case EAI_SERVICE:
                       /*
                        * No such port.  Just return -1.
                        */
                       break;

#ifdef EAI_SYSTEM
               case EAI_SYSTEM:
                       /*
                        * We don't use strerror() because it's not
                        * guaranteed to be thread-safe on all platforms
                        * (probably because it might use a non-thread-local
                        * buffer into which to format an error message
                        * if the error code isn't one for which it has
                        * a canned string; three cheers for C string
                        * handling).
                        */
                       bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
                           name, errno);
                       port = -2;      /* a real error */
                       break;
#endif

               default:
                       /*
                        * This is a real error, not just "there's
                        * no such service name".
                        *
                        * We don't use gai_strerror() because it's not
                        * guaranteed to be thread-safe on all platforms
                        * (probably because it might use a non-thread-local
                        * buffer into which to format an error message
                        * if the error code isn't one for which it has
                        * a canned string; three cheers for C string
                        * handling).
                        */
                       bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
                           name, error);
                       port = -2;      /* a real error */
                       break;
               }
       } else {
               /*
                * OK, we found it.  Did it find anything?
                */
               for (ai = res; ai != NULL; ai = ai->ai_next) {
                       /*
                        * Does it have an address?
                        */
                       if (ai->ai_addr != NULL) {
                               /*
                                * Yes.  Get a port number; we're done.
                                */
                               if (ai->ai_addr->sa_family == AF_INET) {
                                       in4 = (struct sockaddr_in *)ai->ai_addr;
                                       port = ntohs(in4->sin_port);
                                       break;
                               }
#ifdef INET6
                               if (ai->ai_addr->sa_family == AF_INET6) {
                                       in6 = (struct sockaddr_in6 *)ai->ai_addr;
                                       port = ntohs(in6->sin6_port);
                                       break;
                               }
#endif
                       }
               }
               freeaddrinfo(res);
       }
       return port;
}

/*
* Convert a string to a port number.
*/
static bpf_u_int32
stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
   int *proto)
{
       stoulen_ret ret;
       char *cpy;
       bpf_u_int32 val;
       int tcp_port = -1;
       int udp_port = -1;

       /*
        * See if it's a number.
        */
       ret = stoulen(string, string_size, &val, cstate);
       switch (ret) {

       case STOULEN_OK:
               /* Unknown port type - it's just a number. */
               *proto = PROTO_UNDEF;
               break;

       case STOULEN_NOT_OCTAL_NUMBER:
       case STOULEN_NOT_HEX_NUMBER:
       case STOULEN_NOT_DECIMAL_NUMBER:
               /*
                * Not a valid number; try looking it up as a port.
                */
               cpy = malloc(string_size + 1);  /* +1 for terminating '\0' */
               memcpy(cpy, string, string_size);
               cpy[string_size] = '\0';
               tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
               if (tcp_port == -2) {
                       /*
                        * We got a hard error; the error string has
                        * already been set.
                        */
                       free(cpy);
                       longjmp(cstate->top_ctx, 1);
                       /*NOTREACHED*/
               }
               udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
               if (udp_port == -2) {
                       /*
                        * We got a hard error; the error string has
                        * already been set.
                        */
                       free(cpy);
                       longjmp(cstate->top_ctx, 1);
                       /*NOTREACHED*/
               }

               /*
                * We need to check /etc/services for ambiguous entries.
                * If we find an ambiguous entry, and it has the
                * same port number, change the proto to PROTO_UNDEF
                * so both TCP and UDP will be checked.
                */
               if (tcp_port >= 0) {
                       val = (bpf_u_int32)tcp_port;
                       *proto = IPPROTO_TCP;
                       if (udp_port >= 0) {
                               if (udp_port == tcp_port)
                                       *proto = PROTO_UNDEF;
#ifdef notdef
                               else
                                       /* Can't handle ambiguous names that refer
                                          to different port numbers. */
                                       warning("ambiguous port %s in /etc/services",
                                               cpy);
#endif
                       }
                       free(cpy);
                       break;
               }
               if (udp_port >= 0) {
                       val = (bpf_u_int32)udp_port;
                       *proto = IPPROTO_UDP;
                       free(cpy);
                       break;
               }
#if defined(ultrix) || defined(__osf__)
               /* Special hack in case NFS isn't in /etc/services */
               if (strcmp(cpy, "nfs") == 0) {
                       val = 2049;
                       *proto = PROTO_UNDEF;
                       free(cpy);
                       break;
               }
#endif
               bpf_set_error(cstate, "'%s' is not a valid port", cpy);
               free(cpy);
               longjmp(cstate->top_ctx, 1);
               /*NOTREACHED*/

       case STOULEN_ERROR:
               /* Error already set. */
               longjmp(cstate->top_ctx, 1);
               /*NOTREACHED*/

       default:
               /* Should not happen */
               bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
               longjmp(cstate->top_ctx, 1);
               /*NOTREACHED*/
       }
       return (val);
}

/*
* Convert a string in the form PPP-PPP, which correspond to ports, to
* a starting and ending port in a port range.
*/
static void
stringtoportrange(compiler_state_t *cstate, const char *string,
   bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
{
       char *hyphen_off;
       const char *first, *second;
       size_t first_size, second_size;
       int save_proto;

       if ((hyphen_off = strchr(string, '-')) == NULL)
               bpf_error(cstate, "port range '%s' contains no hyphen", string);

       /*
        * Make sure there are no other hyphens.
        *
        * XXX - we support named ports, but there are some port names
        * in /etc/services that include hyphens, so this would rule
        * that out.
        */
       if (strchr(hyphen_off + 1, '-') != NULL)
               bpf_error(cstate, "port range '%s' contains more than one hyphen",
                   string);

       /*
        * Get the length of the first port.
        */
       first = string;
       first_size = hyphen_off - string;
       if (first_size == 0) {
               /* Range of "-port", which we don't support. */
               bpf_error(cstate, "port range '%s' has no starting port", string);
       }

       /*
        * Try to convert it to a port.
        */
       *port1 = stringtoport(cstate, first, first_size, proto);
       save_proto = *proto;

       /*
        * Get the length of the second port.
        */
       second = hyphen_off + 1;
       second_size = strlen(second);
       if (second_size == 0) {
               /* Range of "port-", which we don't support. */
               bpf_error(cstate, "port range '%s' has no ending port", string);
       }

       /*
        * Try to convert it to a port.
        */
       *port2 = stringtoport(cstate, second, second_size, proto);
       if (*proto != save_proto)
               *proto = PROTO_UNDEF;
}

struct block *
gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
{
       int proto = q.proto;
       int dir = q.dir;
       int tproto;
       u_char *eaddr;
       bpf_u_int32 mask, addr;
       struct addrinfo *res, *res0;
       struct sockaddr_in *sin4;
#ifdef INET6
       int tproto6;
       struct sockaddr_in6 *sin6;
       struct in6_addr mask128;
#endif /*INET6*/
       struct block *b, *tmp;
       int port, real_proto;
       bpf_u_int32 port1, port2;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (q.addr) {

       case Q_NET:
               addr = pcap_nametonetaddr(name);
               if (addr == 0)
                       bpf_error(cstate, "unknown network '%s'", name);
               /* Left justify network addr and calculate its network mask */
               mask = 0xffffffff;
               while (addr && (addr & 0xff000000) == 0) {
                       addr <<= 8;
                       mask <<= 8;
               }
               return gen_host(cstate, addr, mask, proto, dir, q.addr);

       case Q_DEFAULT:
       case Q_HOST:
               if (proto == Q_LINK) {
                       switch (cstate->linktype) {

                       case DLT_EN10MB:
                       case DLT_NETANALYZER:
                       case DLT_NETANALYZER_TRANSPARENT:
                               eaddr = pcap_ether_hostton(name);
                               if (eaddr == NULL)
                                       bpf_error(cstate,
                                           "unknown ether host '%s'", name);
                               tmp = gen_prevlinkhdr_check(cstate);
                               b = gen_ehostop(cstate, eaddr, dir);
                               if (tmp != NULL)
                                       gen_and(tmp, b);
                               free(eaddr);
                               return b;

                       case DLT_FDDI:
                               eaddr = pcap_ether_hostton(name);
                               if (eaddr == NULL)
                                       bpf_error(cstate,
                                           "unknown FDDI host '%s'", name);
                               b = gen_fhostop(cstate, eaddr, dir);
                               free(eaddr);
                               return b;

                       case DLT_IEEE802:
                               eaddr = pcap_ether_hostton(name);
                               if (eaddr == NULL)
                                       bpf_error(cstate,
                                           "unknown token ring host '%s'", name);
                               b = gen_thostop(cstate, eaddr, dir);
                               free(eaddr);
                               return b;

                       case DLT_IEEE802_11:
                       case DLT_PRISM_HEADER:
                       case DLT_IEEE802_11_RADIO_AVS:
                       case DLT_IEEE802_11_RADIO:
                       case DLT_PPI:
                               eaddr = pcap_ether_hostton(name);
                               if (eaddr == NULL)
                                       bpf_error(cstate,
                                           "unknown 802.11 host '%s'", name);
                               b = gen_wlanhostop(cstate, eaddr, dir);
                               free(eaddr);
                               return b;

                       case DLT_IP_OVER_FC:
                               eaddr = pcap_ether_hostton(name);
                               if (eaddr == NULL)
                                       bpf_error(cstate,
                                           "unknown Fibre Channel host '%s'", name);
                               b = gen_ipfchostop(cstate, eaddr, dir);
                               free(eaddr);
                               return b;
                       }

                       bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
               } else if (proto == Q_DECNET) {
                       unsigned short dn_addr;

                       if (!__pcap_nametodnaddr(name, &dn_addr)) {
#ifdef  DECNETLIB
                               bpf_error(cstate, "unknown decnet host name '%s'\n", name);
#else
                               bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
                                       name);
#endif
                       }
                       /*
                        * I don't think DECNET hosts can be multihomed, so
                        * there is no need to build up a list of addresses
                        */
                       return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
               } else {
#ifdef INET6
                       memset(&mask128, 0xff, sizeof(mask128));
#endif
                       res0 = res = pcap_nametoaddrinfo(name);
                       if (res == NULL)
                               bpf_error(cstate, "unknown host '%s'", name);
                       cstate->ai = res;
                       b = tmp = NULL;
                       tproto = proto;
#ifdef INET6
                       tproto6 = proto;
#endif
                       if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
                           tproto == Q_DEFAULT) {
                               tproto = Q_IP;
#ifdef INET6
                               tproto6 = Q_IPV6;
#endif
                       }
                       for (res = res0; res; res = res->ai_next) {
                               switch (res->ai_family) {
                               case AF_INET:
#ifdef INET6
                                       if (tproto == Q_IPV6)
                                               continue;
#endif

                                       sin4 = (struct sockaddr_in *)
                                               res->ai_addr;
                                       tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
                                               0xffffffff, tproto, dir, q.addr);
                                       break;
#ifdef INET6
                               case AF_INET6:
                                       if (tproto6 == Q_IP)
                                               continue;

                                       sin6 = (struct sockaddr_in6 *)
                                               res->ai_addr;
                                       tmp = gen_host6(cstate, &sin6->sin6_addr,
                                               &mask128, tproto6, dir, q.addr);
                                       break;
#endif
                               default:
                                       continue;
                               }
                               if (b)
                                       gen_or(b, tmp);
                               b = tmp;
                       }
                       cstate->ai = NULL;
                       freeaddrinfo(res0);
                       if (b == NULL) {
                               bpf_error(cstate, "unknown host '%s'%s", name,
                                   (proto == Q_DEFAULT)
                                       ? ""
                                       : " for specified address family");
                       }
                       return b;
               }

       case Q_PORT:
               if (proto != Q_DEFAULT &&
                   proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
                       bpf_error(cstate, "illegal qualifier of 'port'");
               if (pcap_nametoport(name, &port, &real_proto) == 0)
                       bpf_error(cstate, "unknown port '%s'", name);
               if (proto == Q_UDP) {
                       if (real_proto == IPPROTO_TCP)
                               bpf_error(cstate, "port '%s' is tcp", name);
                       else if (real_proto == IPPROTO_SCTP)
                               bpf_error(cstate, "port '%s' is sctp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_UDP;
               }
               if (proto == Q_TCP) {
                       if (real_proto == IPPROTO_UDP)
                               bpf_error(cstate, "port '%s' is udp", name);

                       else if (real_proto == IPPROTO_SCTP)
                               bpf_error(cstate, "port '%s' is sctp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_TCP;
               }
               if (proto == Q_SCTP) {
                       if (real_proto == IPPROTO_UDP)
                               bpf_error(cstate, "port '%s' is udp", name);

                       else if (real_proto == IPPROTO_TCP)
                               bpf_error(cstate, "port '%s' is tcp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_SCTP;
               }
               if (port < 0)
                       bpf_error(cstate, "illegal port number %d < 0", port);
               if (port > 65535)
                       bpf_error(cstate, "illegal port number %d > 65535", port);
               b = gen_port(cstate, port, real_proto, dir);
               gen_or(gen_port6(cstate, port, real_proto, dir), b);
               return b;

       case Q_PORTRANGE:
               if (proto != Q_DEFAULT &&
                   proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
                       bpf_error(cstate, "illegal qualifier of 'portrange'");
               stringtoportrange(cstate, name, &port1, &port2, &real_proto);
               if (proto == Q_UDP) {
                       if (real_proto == IPPROTO_TCP)
                               bpf_error(cstate, "port in range '%s' is tcp", name);
                       else if (real_proto == IPPROTO_SCTP)
                               bpf_error(cstate, "port in range '%s' is sctp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_UDP;
               }
               if (proto == Q_TCP) {
                       if (real_proto == IPPROTO_UDP)
                               bpf_error(cstate, "port in range '%s' is udp", name);
                       else if (real_proto == IPPROTO_SCTP)
                               bpf_error(cstate, "port in range '%s' is sctp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_TCP;
               }
               if (proto == Q_SCTP) {
                       if (real_proto == IPPROTO_UDP)
                               bpf_error(cstate, "port in range '%s' is udp", name);
                       else if (real_proto == IPPROTO_TCP)
                               bpf_error(cstate, "port in range '%s' is tcp", name);
                       else
                               /* override PROTO_UNDEF */
                               real_proto = IPPROTO_SCTP;
               }
               if (port1 > 65535)
                       bpf_error(cstate, "illegal port number %d > 65535", port1);
               if (port2 > 65535)
                       bpf_error(cstate, "illegal port number %d > 65535", port2);

               b = gen_portrange(cstate, port1, port2, real_proto, dir);
               gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
               return b;

       case Q_GATEWAY:
#ifndef INET6
               eaddr = pcap_ether_hostton(name);
               if (eaddr == NULL)
                       bpf_error(cstate, "unknown ether host: %s", name);

               res = pcap_nametoaddrinfo(name);
               cstate->ai = res;
               if (res == NULL)
                       bpf_error(cstate, "unknown host '%s'", name);
               b = gen_gateway(cstate, eaddr, res, proto, dir);
               cstate->ai = NULL;
               freeaddrinfo(res);
               if (b == NULL)
                       bpf_error(cstate, "unknown host '%s'", name);
               return b;
#else
               bpf_error(cstate, "'gateway' not supported in this configuration");
#endif /*INET6*/

       case Q_PROTO:
               real_proto = lookup_proto(cstate, name, proto);
               if (real_proto >= 0)
                       return gen_proto(cstate, real_proto, proto, dir);
               else
                       bpf_error(cstate, "unknown protocol: %s", name);

#if !defined(NO_PROTOCHAIN)
       case Q_PROTOCHAIN:
               real_proto = lookup_proto(cstate, name, proto);
               if (real_proto >= 0)
                       return gen_protochain(cstate, real_proto, proto);
               else
                       bpf_error(cstate, "unknown protocol: %s", name);
#endif /* !defined(NO_PROTOCHAIN) */

       case Q_UNDEF:
               syntax(cstate);
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

struct block *
gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
   bpf_u_int32 masklen, struct qual q)
{
       register int nlen, mlen;
       bpf_u_int32 n, m;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       nlen = __pcap_atoin(s1, &n);
       if (nlen < 0)
               bpf_error(cstate, "invalid IPv4 address '%s'", s1);
       /* Promote short ipaddr */
       n <<= 32 - nlen;

       if (s2 != NULL) {
               mlen = __pcap_atoin(s2, &m);
               if (mlen < 0)
                       bpf_error(cstate, "invalid IPv4 address '%s'", s2);
               /* Promote short ipaddr */
               m <<= 32 - mlen;
               if ((n & ~m) != 0)
                       bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
                           s1, s2);
       } else {
               /* Convert mask len to mask */
               if (masklen > 32)
                       bpf_error(cstate, "mask length must be <= 32");
               if (masklen == 0) {
                       /*
                        * X << 32 is not guaranteed by C to be 0; it's
                        * undefined.
                        */
                       m = 0;
               } else
                       m = 0xffffffff << (32 - masklen);
               if ((n & ~m) != 0)
                       bpf_error(cstate, "non-network bits set in \"%s/%d\"",
                           s1, masklen);
       }

       switch (q.addr) {

       case Q_NET:
               return gen_host(cstate, n, m, q.proto, q.dir, q.addr);

       default:
               bpf_error(cstate, "Mask syntax for networks only");
               /*NOTREACHED*/
       }
       /*NOTREACHED*/
}

struct block *
gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
{
       bpf_u_int32 mask;
       int proto;
       int dir;
       register int vlen;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       proto = q.proto;
       dir = q.dir;
       if (s == NULL)
               vlen = 32;
       else if (q.proto == Q_DECNET) {
               vlen = __pcap_atodn(s, &v);
               if (vlen == 0)
                       bpf_error(cstate, "malformed decnet address '%s'", s);
       } else {
               vlen = __pcap_atoin(s, &v);
               if (vlen < 0)
                       bpf_error(cstate, "invalid IPv4 address '%s'", s);
       }

       switch (q.addr) {

       case Q_DEFAULT:
       case Q_HOST:
       case Q_NET:
               if (proto == Q_DECNET)
                       return gen_host(cstate, v, 0, proto, dir, q.addr);
               else if (proto == Q_LINK) {
                       bpf_error(cstate, "illegal link layer address");
               } else {
                       mask = 0xffffffff;
                       if (s == NULL && q.addr == Q_NET) {
                               /* Promote short net number */
                               while (v && (v & 0xff000000) == 0) {
                                       v <<= 8;
                                       mask <<= 8;
                               }
                       } else {
                               /* Promote short ipaddr */
                               v <<= 32 - vlen;
                               mask <<= 32 - vlen ;
                       }
                       return gen_host(cstate, v, mask, proto, dir, q.addr);
               }

       case Q_PORT:
               if (proto == Q_UDP)
                       proto = IPPROTO_UDP;
               else if (proto == Q_TCP)
                       proto = IPPROTO_TCP;
               else if (proto == Q_SCTP)
                       proto = IPPROTO_SCTP;
               else if (proto == Q_DEFAULT)
                       proto = PROTO_UNDEF;
               else
                       bpf_error(cstate, "illegal qualifier of 'port'");

               if (v > 65535)
                       bpf_error(cstate, "illegal port number %u > 65535", v);

           {
               struct block *b;
               b = gen_port(cstate, v, proto, dir);
               gen_or(gen_port6(cstate, v, proto, dir), b);
               return b;
           }

       case Q_PORTRANGE:
               if (proto == Q_UDP)
                       proto = IPPROTO_UDP;
               else if (proto == Q_TCP)
                       proto = IPPROTO_TCP;
               else if (proto == Q_SCTP)
                       proto = IPPROTO_SCTP;
               else if (proto == Q_DEFAULT)
                       proto = PROTO_UNDEF;
               else
                       bpf_error(cstate, "illegal qualifier of 'portrange'");

               if (v > 65535)
                       bpf_error(cstate, "illegal port number %u > 65535", v);

           {
               struct block *b;
               b = gen_portrange(cstate, v, v, proto, dir);
               gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
               return b;
           }

       case Q_GATEWAY:
               bpf_error(cstate, "'gateway' requires a name");
               /*NOTREACHED*/

       case Q_PROTO:
               return gen_proto(cstate, v, proto, dir);

#if !defined(NO_PROTOCHAIN)
       case Q_PROTOCHAIN:
               return gen_protochain(cstate, v, proto);
#endif

       case Q_UNDEF:
               syntax(cstate);
               /*NOTREACHED*/

       default:
               abort();
               /*NOTREACHED*/
       }
       /*NOTREACHED*/
}

#ifdef INET6
struct block *
gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
   struct qual q)
{
       struct addrinfo *res;
       struct in6_addr *addr;
       struct in6_addr mask;
       struct block *b;
       bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       res = pcap_nametoaddrinfo(s);
       if (!res)
               bpf_error(cstate, "invalid ip6 address %s", s);
       cstate->ai = res;
       if (res->ai_next)
               bpf_error(cstate, "%s resolved to multiple address", s);
       addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;

       if (masklen > sizeof(mask.s6_addr) * 8)
               bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
       memset(&mask, 0, sizeof(mask));
       memset(&mask.s6_addr, 0xff, masklen / 8);
       if (masklen % 8) {
               mask.s6_addr[masklen / 8] =
                       (0xff << (8 - masklen % 8)) & 0xff;
       }

       memcpy(a, addr, sizeof(a));
       memcpy(m, &mask, sizeof(m));
       if ((a[0] & ~m[0]) || (a[1] & ~m[1])
        || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
               bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
       }

       switch (q.addr) {

       case Q_DEFAULT:
       case Q_HOST:
               if (masklen != 128)
                       bpf_error(cstate, "Mask syntax for networks only");
               /* FALLTHROUGH */

       case Q_NET:
               b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
               cstate->ai = NULL;
               freeaddrinfo(res);
               return b;

       default:
               bpf_error(cstate, "invalid qualifier against IPv6 address");
               /*NOTREACHED*/
       }
}
#endif /*INET6*/

struct block *
gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
{
       struct block *b, *tmp;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
               cstate->e = pcap_ether_aton(s);
               if (cstate->e == NULL)
                       bpf_error(cstate, "malloc");
               switch (cstate->linktype) {
               case DLT_EN10MB:
               case DLT_NETANALYZER:
               case DLT_NETANALYZER_TRANSPARENT:
                       tmp = gen_prevlinkhdr_check(cstate);
                       b = gen_ehostop(cstate, cstate->e, (int)q.dir);
                       if (tmp != NULL)
                               gen_and(tmp, b);
                       break;
               case DLT_FDDI:
                       b = gen_fhostop(cstate, cstate->e, (int)q.dir);
                       break;
               case DLT_IEEE802:
                       b = gen_thostop(cstate, cstate->e, (int)q.dir);
                       break;
               case DLT_IEEE802_11:
               case DLT_PRISM_HEADER:
               case DLT_IEEE802_11_RADIO_AVS:
               case DLT_IEEE802_11_RADIO:
               case DLT_PPI:
                       b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
                       break;
               case DLT_IP_OVER_FC:
                       b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
                       break;
               default:
                       free(cstate->e);
                       cstate->e = NULL;
                       bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
                       /*NOTREACHED*/
               }
               free(cstate->e);
               cstate->e = NULL;
               return (b);
       }
       bpf_error(cstate, "ethernet address used in non-ether expression");
       /*NOTREACHED*/
}

void
sappend(struct slist *s0, struct slist *s1)
{
       /*
        * This is definitely not the best way to do this, but the
        * lists will rarely get long.
        */
       while (s0->next)
               s0 = s0->next;
       s0->next = s1;
}

static struct slist *
xfer_to_x(compiler_state_t *cstate, struct arth *a)
{
       struct slist *s;

       s = new_stmt(cstate, BPF_LDX|BPF_MEM);
       s->s.k = a->regno;
       return s;
}

static struct slist *
xfer_to_a(compiler_state_t *cstate, struct arth *a)
{
       struct slist *s;

       s = new_stmt(cstate, BPF_LD|BPF_MEM);
       s->s.k = a->regno;
       return s;
}

/*
* Modify "index" to use the value stored into its register as an
* offset relative to the beginning of the header for the protocol
* "proto", and allocate a register and put an item "size" bytes long
* (1, 2, or 4) at that offset into that register, making it the register
* for "index".
*/
static struct arth *
gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
   bpf_u_int32 size)
{
       int size_code;
       struct slist *s, *tmp;
       struct block *b;
       int regno = alloc_reg(cstate);

       free_reg(cstate, inst->regno);
       switch (size) {

       default:
               bpf_error(cstate, "data size must be 1, 2, or 4");
               /*NOTREACHED*/

       case 1:
               size_code = BPF_B;
               break;

       case 2:
               size_code = BPF_H;
               break;

       case 4:
               size_code = BPF_W;
               break;
       }
       switch (proto) {
       default:
               bpf_error(cstate, "unsupported index operation");

       case Q_RADIO:
               /*
                * The offset is relative to the beginning of the packet
                * data, if we have a radio header.  (If we don't, this
                * is an error.)
                */
               if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
                   cstate->linktype != DLT_IEEE802_11_RADIO &&
                   cstate->linktype != DLT_PRISM_HEADER)
                       bpf_error(cstate, "radio information not present in capture");

               /*
                * Load into the X register the offset computed into the
                * register specified by "index".
                */
               s = xfer_to_x(cstate, inst);

               /*
                * Load the item at that offset.
                */
               tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
               sappend(s, tmp);
               sappend(inst->s, s);
               break;

       case Q_LINK:
               /*
                * The offset is relative to the beginning of
                * the link-layer header.
                *
                * XXX - what about ATM LANE?  Should the index be
                * relative to the beginning of the AAL5 frame, so
                * that 0 refers to the beginning of the LE Control
                * field, or relative to the beginning of the LAN
                * frame, so that 0 refers, for Ethernet LANE, to
                * the beginning of the destination address?
                */
               s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);

               /*
                * If "s" is non-null, it has code to arrange that the
                * X register contains the length of the prefix preceding
                * the link-layer header.  Add to it the offset computed
                * into the register specified by "index", and move that
                * into the X register.  Otherwise, just load into the X
                * register the offset computed into the register specified
                * by "index".
                */
               if (s != NULL) {
                       sappend(s, xfer_to_a(cstate, inst));
                       sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
                       sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
               } else
                       s = xfer_to_x(cstate, inst);

               /*
                * Load the item at the sum of the offset we've put in the
                * X register and the offset of the start of the link
                * layer header (which is 0 if the radio header is
                * variable-length; that header length is what we put
                * into the X register and then added to the index).
                */
               tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
               tmp->s.k = cstate->off_linkhdr.constant_part;
               sappend(s, tmp);
               sappend(inst->s, s);
               break;

       case Q_IP:
       case Q_ARP:
       case Q_RARP:
       case Q_ATALK:
       case Q_DECNET:
       case Q_SCA:
       case Q_LAT:
       case Q_MOPRC:
       case Q_MOPDL:
       case Q_IPV6:
               /*
                * The offset is relative to the beginning of
                * the network-layer header.
                * XXX - are there any cases where we want
                * cstate->off_nl_nosnap?
                */
               s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);

               /*
                * If "s" is non-null, it has code to arrange that the
                * X register contains the variable part of the offset
                * of the link-layer payload.  Add to it the offset
                * computed into the register specified by "index",
                * and move that into the X register.  Otherwise, just
                * load into the X register the offset computed into
                * the register specified by "index".
                */
               if (s != NULL) {
                       sappend(s, xfer_to_a(cstate, inst));
                       sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
                       sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
               } else
                       s = xfer_to_x(cstate, inst);

               /*
                * Load the item at the sum of the offset we've put in the
                * X register, the offset of the start of the network
                * layer header from the beginning of the link-layer
                * payload, and the constant part of the offset of the
                * start of the link-layer payload.
                */
               tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
               tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
               sappend(s, tmp);
               sappend(inst->s, s);

               /*
                * Do the computation only if the packet contains
                * the protocol in question.
                */
               b = gen_proto_abbrev_internal(cstate, proto);
               if (inst->b)
                       gen_and(inst->b, b);
               inst->b = b;
               break;

       case Q_SCTP:
       case Q_TCP:
       case Q_UDP:
       case Q_ICMP:
       case Q_IGMP:
       case Q_IGRP:
       case Q_PIM:
       case Q_VRRP:
       case Q_CARP:
               /*
                * The offset is relative to the beginning of
                * the transport-layer header.
                *
                * Load the X register with the length of the IPv4 header
                * (plus the offset of the link-layer header, if it's
                * a variable-length header), in bytes.
                *
                * XXX - are there any cases where we want
                * cstate->off_nl_nosnap?
                * XXX - we should, if we're built with
                * IPv6 support, generate code to load either
                * IPv4, IPv6, or both, as appropriate.
                */
               s = gen_loadx_iphdrlen(cstate);

               /*
                * The X register now contains the sum of the variable
                * part of the offset of the link-layer payload and the
                * length of the network-layer header.
                *
                * Load into the A register the offset relative to
                * the beginning of the transport layer header,
                * add the X register to that, move that to the
                * X register, and load with an offset from the
                * X register equal to the sum of the constant part of
                * the offset of the link-layer payload and the offset,
                * relative to the beginning of the link-layer payload,
                * of the network-layer header.
                */
               sappend(s, xfer_to_a(cstate, inst));
               sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
               sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
               sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
               tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
               sappend(inst->s, s);

               /*
                * Do the computation only if the packet contains
                * the protocol in question - which is true only
                * if this is an IP datagram and is the first or
                * only fragment of that datagram.
                */
               gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
               if (inst->b)
                       gen_and(inst->b, b);
               gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
               inst->b = b;
               break;
       case Q_ICMPV6:
               /*
                * Do the computation only if the packet contains
                * the protocol in question.
                */
               b = gen_proto_abbrev_internal(cstate, Q_IPV6);
               if (inst->b)
                       gen_and(inst->b, b);
               inst->b = b;

               /*
                * Check if we have an icmp6 next header
                */
               b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
               if (inst->b)
                       gen_and(inst->b, b);
               inst->b = b;

               s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
               /*
                * If "s" is non-null, it has code to arrange that the
                * X register contains the variable part of the offset
                * of the link-layer payload.  Add to it the offset
                * computed into the register specified by "index",
                * and move that into the X register.  Otherwise, just
                * load into the X register the offset computed into
                * the register specified by "index".
                */
               if (s != NULL) {
                       sappend(s, xfer_to_a(cstate, inst));
                       sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
                       sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
               } else
                       s = xfer_to_x(cstate, inst);

               /*
                * Load the item at the sum of the offset we've put in the
                * X register, the offset of the start of the network
                * layer header from the beginning of the link-layer
                * payload, and the constant part of the offset of the
                * start of the link-layer payload.
                */
               tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
               tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;

               sappend(s, tmp);
               sappend(inst->s, s);

               break;
       }
       inst->regno = regno;
       s = new_stmt(cstate, BPF_ST);
       s->s.k = regno;
       sappend(inst->s, s);

       return inst;
}

struct arth *
gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
   bpf_u_int32 size)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_load_internal(cstate, proto, inst, size);
}

static struct block *
gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
   struct arth *a1, int reversed)
{
       struct slist *s0, *s1, *s2;
       struct block *b, *tmp;

       s0 = xfer_to_x(cstate, a1);
       s1 = xfer_to_a(cstate, a0);
       if (code == BPF_JEQ) {
               s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
               b = new_block(cstate, JMP(code));
               sappend(s1, s2);
       }
       else
               b = new_block(cstate, BPF_JMP|code|BPF_X);
       if (reversed)
               gen_not(b);

       sappend(s0, s1);
       sappend(a1->s, s0);
       sappend(a0->s, a1->s);

       b->stmts = a0->s;

       free_reg(cstate, a0->regno);
       free_reg(cstate, a1->regno);

       /* 'and' together protocol checks */
       if (a0->b) {
               if (a1->b) {
                       gen_and(a0->b, tmp = a1->b);
               }
               else
                       tmp = a0->b;
       } else
               tmp = a1->b;

       if (tmp)
               gen_and(tmp, b);

       return b;
}

struct block *
gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
   struct arth *a1, int reversed)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_relation_internal(cstate, code, a0, a1, reversed);
}

struct arth *
gen_loadlen(compiler_state_t *cstate)
{
       int regno;
       struct arth *a;
       struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       regno = alloc_reg(cstate);
       a = (struct arth *)newchunk(cstate, sizeof(*a));
       s = new_stmt(cstate, BPF_LD|BPF_LEN);
       s->next = new_stmt(cstate, BPF_ST);
       s->next->s.k = regno;
       a->s = s;
       a->regno = regno;

       return a;
}

static struct arth *
gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
{
       struct arth *a;
       struct slist *s;
       int reg;

       a = (struct arth *)newchunk(cstate, sizeof(*a));

       reg = alloc_reg(cstate);

       s = new_stmt(cstate, BPF_LD|BPF_IMM);
       s->s.k = val;
       s->next = new_stmt(cstate, BPF_ST);
       s->next->s.k = reg;
       a->s = s;
       a->regno = reg;

       return a;
}

struct arth *
gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_loadi_internal(cstate, val);
}

/*
* The a_arg dance is to avoid annoying whining by compilers that
* a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
* It's not *used* after setjmp returns.
*/
struct arth *
gen_neg(compiler_state_t *cstate, struct arth *a_arg)
{
       struct arth * volatile a = a_arg;
       struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       s = xfer_to_a(cstate, a);
       sappend(a->s, s);
       s = new_stmt(cstate, BPF_ALU|BPF_NEG);
       s->s.k = 0;
       sappend(a->s, s);
       s = new_stmt(cstate, BPF_ST);
       s->s.k = a->regno;
       sappend(a->s, s);

       return a;
}

/*
* The a0_arg dance is to avoid annoying whining by compilers that
* a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
* It's not *used* after setjmp returns.
*/
struct arth *
gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
   struct arth *a1)
{
       struct arth * volatile a0 = a0_arg;
       struct slist *s0, *s1, *s2;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Disallow division by, or modulus by, zero; we do this here
        * so that it gets done even if the optimizer is disabled.
        *
        * Also disallow shifts by a value greater than 31; we do this
        * here, for the same reason.
        */
       if (code == BPF_DIV) {
               if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
                       bpf_error(cstate, "division by zero");
       } else if (code == BPF_MOD) {
               if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
                       bpf_error(cstate, "modulus by zero");
       } else if (code == BPF_LSH || code == BPF_RSH) {
               if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
                       bpf_error(cstate, "shift by more than 31 bits");
       }
       s0 = xfer_to_x(cstate, a1);
       s1 = xfer_to_a(cstate, a0);
       s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);

       sappend(s1, s2);
       sappend(s0, s1);
       sappend(a1->s, s0);
       sappend(a0->s, a1->s);

       free_reg(cstate, a0->regno);
       free_reg(cstate, a1->regno);

       s0 = new_stmt(cstate, BPF_ST);
       a0->regno = s0->s.k = alloc_reg(cstate);
       sappend(a0->s, s0);

       return a0;
}

/*
* Initialize the table of used registers and the current register.
*/
static void
init_regs(compiler_state_t *cstate)
{
       cstate->curreg = 0;
       memset(cstate->regused, 0, sizeof cstate->regused);
}

/*
* Return the next free register.
*/
static int
alloc_reg(compiler_state_t *cstate)
{
       int n = BPF_MEMWORDS;

       while (--n >= 0) {
               if (cstate->regused[cstate->curreg])
                       cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
               else {
                       cstate->regused[cstate->curreg] = 1;
                       return cstate->curreg;
               }
       }
       bpf_error(cstate, "too many registers needed to evaluate expression");
       /*NOTREACHED*/
}

/*
* Return a register to the table so it can
* be used later.
*/
static void
free_reg(compiler_state_t *cstate, int n)
{
       cstate->regused[n] = 0;
}

static struct block *
gen_len(compiler_state_t *cstate, int jmp, int n)
{
       struct slist *s;
       struct block *b;

       s = new_stmt(cstate, BPF_LD|BPF_LEN);
       b = new_block(cstate, JMP(jmp));
       b->stmts = s;
       b->s.k = n;

       return b;
}

struct block *
gen_greater(compiler_state_t *cstate, int n)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_len(cstate, BPF_JGE, n);
}

/*
* Actually, this is less than or equal.
*/
struct block *
gen_less(compiler_state_t *cstate, int n)
{
       struct block *b;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       b = gen_len(cstate, BPF_JGT, n);
       gen_not(b);

       return b;
}

/*
* This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
* the beginning of the link-layer header.
* XXX - that means you can't test values in the radiotap header, but
* as that header is difficult if not impossible to parse generally
* without a loop, that might not be a severe problem.  A new keyword
* "radio" could be added for that, although what you'd really want
* would be a way of testing particular radio header values, which
* would generate code appropriate to the radio header in question.
*/
struct block *
gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
{
       struct block *b;
       struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (op) {
       default:
               abort();

       case '=':
               return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);

       case '<':
               b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
               return b;

       case '>':
               b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
               return b;

       case '|':
               s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
               break;

       case '&':
               s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
               break;
       }
       s->s.k = val;
       b = new_block(cstate, JMP(BPF_JEQ));
       b->stmts = s;
       gen_not(b);

       return b;
}

static const u_char abroadcast[] = { 0x0 };

struct block *
gen_broadcast(compiler_state_t *cstate, int proto)
{
       bpf_u_int32 hostmask;
       struct block *b0, *b1, *b2;
       static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (proto) {

       case Q_DEFAULT:
       case Q_LINK:
               switch (cstate->linktype) {
               case DLT_ARCNET:
               case DLT_ARCNET_LINUX:
                       return gen_ahostop(cstate, abroadcast, Q_DST);
               case DLT_EN10MB:
               case DLT_NETANALYZER:
               case DLT_NETANALYZER_TRANSPARENT:
                       b1 = gen_prevlinkhdr_check(cstate);
                       b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
                       if (b1 != NULL)
                               gen_and(b1, b0);
                       return b0;
               case DLT_FDDI:
                       return gen_fhostop(cstate, ebroadcast, Q_DST);
               case DLT_IEEE802:
                       return gen_thostop(cstate, ebroadcast, Q_DST);
               case DLT_IEEE802_11:
               case DLT_PRISM_HEADER:
               case DLT_IEEE802_11_RADIO_AVS:
               case DLT_IEEE802_11_RADIO:
               case DLT_PPI:
                       return gen_wlanhostop(cstate, ebroadcast, Q_DST);
               case DLT_IP_OVER_FC:
                       return gen_ipfchostop(cstate, ebroadcast, Q_DST);
               default:
                       bpf_error(cstate, "not a broadcast link");
               }
               /*NOTREACHED*/

       case Q_IP:
               /*
                * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
                * as an indication that we don't know the netmask, and fail
                * in that case.
                */
               if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
                       bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
               b0 = gen_linktype(cstate, ETHERTYPE_IP);
               hostmask = ~cstate->netmask;
               b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
               b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
                             ~0 & hostmask, hostmask);
               gen_or(b1, b2);
               gen_and(b0, b2);
               return b2;
       }
       bpf_error(cstate, "only link-layer/IP broadcast filters supported");
       /*NOTREACHED*/
}

/*
* Generate code to test the low-order bit of a MAC address (that's
* the bottom bit of the *first* byte).
*/
static struct block *
gen_mac_multicast(compiler_state_t *cstate, int offset)
{
       register struct block *b0;
       register struct slist *s;

       /* link[offset] & 1 != 0 */
       s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
       b0 = new_block(cstate, JMP(BPF_JSET));
       b0->s.k = 1;
       b0->stmts = s;
       return b0;
}

struct block *
gen_multicast(compiler_state_t *cstate, int proto)
{
       register struct block *b0, *b1, *b2;
       register struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (proto) {

       case Q_DEFAULT:
       case Q_LINK:
               switch (cstate->linktype) {
               case DLT_ARCNET:
               case DLT_ARCNET_LINUX:
                       /* all ARCnet multicasts use the same address */
                       return gen_ahostop(cstate, abroadcast, Q_DST);
               case DLT_EN10MB:
               case DLT_NETANALYZER:
               case DLT_NETANALYZER_TRANSPARENT:
                       b1 = gen_prevlinkhdr_check(cstate);
                       /* ether[0] & 1 != 0 */
                       b0 = gen_mac_multicast(cstate, 0);
                       if (b1 != NULL)
                               gen_and(b1, b0);
                       return b0;
               case DLT_FDDI:
                       /*
                        * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
                        *
                        * XXX - was that referring to bit-order issues?
                        */
                       /* fddi[1] & 1 != 0 */
                       return gen_mac_multicast(cstate, 1);
               case DLT_IEEE802:
                       /* tr[2] & 1 != 0 */
                       return gen_mac_multicast(cstate, 2);
               case DLT_IEEE802_11:
               case DLT_PRISM_HEADER:
               case DLT_IEEE802_11_RADIO_AVS:
               case DLT_IEEE802_11_RADIO:
               case DLT_PPI:
                       /*
                        * Oh, yuk.
                        *
                        *      For control frames, there is no DA.
                        *
                        *      For management frames, DA is at an
                        *      offset of 4 from the beginning of
                        *      the packet.
                        *
                        *      For data frames, DA is at an offset
                        *      of 4 from the beginning of the packet
                        *      if To DS is clear and at an offset of
                        *      16 from the beginning of the packet
                        *      if To DS is set.
                        */

                       /*
                        * Generate the tests to be done for data frames.
                        *
                        * First, check for To DS set, i.e. "link[1] & 0x01".
                        */
                       s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
                       b1 = new_block(cstate, JMP(BPF_JSET));
                       b1->s.k = 0x01; /* To DS */
                       b1->stmts = s;

                       /*
                        * If To DS is set, the DA is at 16.
                        */
                       b0 = gen_mac_multicast(cstate, 16);
                       gen_and(b1, b0);

                       /*
                        * Now, check for To DS not set, i.e. check
                        * "!(link[1] & 0x01)".
                        */
                       s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
                       b2 = new_block(cstate, JMP(BPF_JSET));
                       b2->s.k = 0x01; /* To DS */
                       b2->stmts = s;
                       gen_not(b2);

                       /*
                        * If To DS is not set, the DA is at 4.
                        */
                       b1 = gen_mac_multicast(cstate, 4);
                       gen_and(b2, b1);

                       /*
                        * Now OR together the last two checks.  That gives
                        * the complete set of checks for data frames.
                        */
                       gen_or(b1, b0);

                       /*
                        * Now check for a data frame.
                        * I.e, check "link[0] & 0x08".
                        */
                       s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
                       b1 = new_block(cstate, JMP(BPF_JSET));
                       b1->s.k = 0x08;
                       b1->stmts = s;

                       /*
                        * AND that with the checks done for data frames.
                        */
                       gen_and(b1, b0);

                       /*
                        * If the high-order bit of the type value is 0, this
                        * is a management frame.
                        * I.e, check "!(link[0] & 0x08)".
                        */
                       s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
                       b2 = new_block(cstate, JMP(BPF_JSET));
                       b2->s.k = 0x08;
                       b2->stmts = s;
                       gen_not(b2);

                       /*
                        * For management frames, the DA is at 4.
                        */
                       b1 = gen_mac_multicast(cstate, 4);
                       gen_and(b2, b1);

                       /*
                        * OR that with the checks done for data frames.
                        * That gives the checks done for management and
                        * data frames.
                        */
                       gen_or(b1, b0);

                       /*
                        * If the low-order bit of the type value is 1,
                        * this is either a control frame or a frame
                        * with a reserved type, and thus not a
                        * frame with an SA.
                        *
                        * I.e., check "!(link[0] & 0x04)".
                        */
                       s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
                       b1 = new_block(cstate, JMP(BPF_JSET));
                       b1->s.k = 0x04;
                       b1->stmts = s;
                       gen_not(b1);

                       /*
                        * AND that with the checks for data and management
                        * frames.
                        */
                       gen_and(b1, b0);
                       return b0;
               case DLT_IP_OVER_FC:
                       b0 = gen_mac_multicast(cstate, 2);
                       return b0;
               default:
                       break;
               }
               /* Link not known to support multicasts */
               break;

       case Q_IP:
               b0 = gen_linktype(cstate, ETHERTYPE_IP);
               b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
               gen_and(b0, b1);
               return b1;

       case Q_IPV6:
               b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
               b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
               gen_and(b0, b1);
               return b1;
       }
       bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
       /*NOTREACHED*/
}

struct block *
gen_ifindex(compiler_state_t *cstate, int ifindex)
{
       register struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Only some data link types support ifindex qualifiers.
        */
       switch (cstate->linktype) {
       case DLT_LINUX_SLL2:
               /* match packets on this interface */
               b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
               break;
       default:
#if defined(__linux__)
               /*
                * This is Linux; we require PF_PACKET support.
                * If this is a *live* capture, we can look at
                * special meta-data in the filter expression;
                * if it's a savefile, we can't.
                */
               if (cstate->bpf_pcap->rfile != NULL) {
                       /* We have a FILE *, so this is a savefile */
                       bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
                       /*NOTREACHED*/
               }
               /* match ifindex */
               b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
                            ifindex);
#else /* defined(__linux__) */
               bpf_error(cstate, "ifindex not supported on %s",
                   pcap_datalink_val_to_description_or_dlt(cstate->linktype));
               /*NOTREACHED*/
#endif /* defined(__linux__) */
       }
       return (b0);
}

/*
* Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
* Outbound traffic is sent by this machine, while inbound traffic is
* sent by a remote machine (and may include packets destined for a
* unicast or multicast link-layer address we are not subscribing to).
* These are the same definitions implemented by pcap_setdirection().
* Capturing only unicast traffic destined for this host is probably
* better accomplished using a higher-layer filter.
*/
struct block *
gen_inbound(compiler_state_t *cstate, int dir)
{
       register struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Only some data link types support inbound/outbound qualifiers.
        */
       switch (cstate->linktype) {
       case DLT_SLIP:
               b0 = gen_relation_internal(cstate, BPF_JEQ,
                         gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
                         gen_loadi_internal(cstate, 0),
                         dir);
               break;

       case DLT_IPNET:
               if (dir) {
                       /* match outgoing packets */
                       b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
               } else {
                       /* match incoming packets */
                       b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
               }
               break;

       case DLT_LINUX_SLL:
               /* match outgoing packets */
               b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
               if (!dir) {
                       /* to filter on inbound traffic, invert the match */
                       gen_not(b0);
               }
               break;

       case DLT_LINUX_SLL2:
               /* match outgoing packets */
               b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
               if (!dir) {
                       /* to filter on inbound traffic, invert the match */
                       gen_not(b0);
               }
               break;

       case DLT_PFLOG:
               b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
                   ((dir == 0) ? PF_IN : PF_OUT));
               break;

       case DLT_PPP_PPPD:
               if (dir) {
                       /* match outgoing packets */
                       b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
               } else {
                       /* match incoming packets */
                       b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
               }
               break;

       case DLT_JUNIPER_MFR:
       case DLT_JUNIPER_MLFR:
       case DLT_JUNIPER_MLPPP:
       case DLT_JUNIPER_ATM1:
       case DLT_JUNIPER_ATM2:
       case DLT_JUNIPER_PPPOE:
       case DLT_JUNIPER_PPPOE_ATM:
       case DLT_JUNIPER_GGSN:
       case DLT_JUNIPER_ES:
       case DLT_JUNIPER_MONITOR:
       case DLT_JUNIPER_SERVICES:
       case DLT_JUNIPER_ETHER:
       case DLT_JUNIPER_PPP:
       case DLT_JUNIPER_FRELAY:
       case DLT_JUNIPER_CHDLC:
       case DLT_JUNIPER_VP:
       case DLT_JUNIPER_ST:
       case DLT_JUNIPER_ISM:
       case DLT_JUNIPER_VS:
       case DLT_JUNIPER_SRX_E2E:
       case DLT_JUNIPER_FIBRECHANNEL:
       case DLT_JUNIPER_ATM_CEMIC:

               /* juniper flags (including direction) are stored
                * the byte after the 3-byte magic number */
               if (dir) {
                       /* match outgoing packets */
                       b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
               } else {
                       /* match incoming packets */
                       b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
               }
               break;

       default:
               /*
                * If we have packet meta-data indicating a direction,
                * and that metadata can be checked by BPF code, check
                * it.  Otherwise, give up, as this link-layer type has
                * nothing in the packet data.
                *
                * Currently, the only platform where a BPF filter can
                * check that metadata is Linux with the in-kernel
                * BPF interpreter.  If other packet capture mechanisms
                * and BPF filters also supported this, it would be
                * nice.  It would be even better if they made that
                * metadata available so that we could provide it
                * with newer capture APIs, allowing it to be saved
                * in pcapng files.
                */
#if defined(__linux__)
               /*
                * This is Linux; we require PF_PACKET support.
                * If this is a *live* capture, we can look at
                * special meta-data in the filter expression;
                * if it's a savefile, we can't.
                */
               if (cstate->bpf_pcap->rfile != NULL) {
                       /* We have a FILE *, so this is a savefile */
                       bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
                       /*NOTREACHED*/
               }
               /* match outgoing packets */
               b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
                            PACKET_OUTGOING);
               if (!dir) {
                       /* to filter on inbound traffic, invert the match */
                       gen_not(b0);
               }
#else /* defined(__linux__) */
               bpf_error(cstate, "inbound/outbound not supported on %s",
                   pcap_datalink_val_to_description_or_dlt(cstate->linktype));
               /*NOTREACHED*/
#endif /* defined(__linux__) */
       }
       return (b0);
}

/* PF firewall log matched interface */
struct block *
gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
{
       struct block *b0;
       u_int len, off;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "ifname supported only on PF linktype");
               /*NOTREACHED*/
       }
       len = sizeof(((struct pfloghdr *)0)->ifname);
       off = offsetof(struct pfloghdr, ifname);
       if (strlen(ifname) >= len) {
               bpf_error(cstate, "ifname interface names can only be %d characters",
                   len-1);
               /*NOTREACHED*/
       }
       b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
           (const u_char *)ifname);
       return (b0);
}

/* PF firewall log ruleset name */
struct block *
gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "ruleset supported only on PF linktype");
               /*NOTREACHED*/
       }

       if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
               bpf_error(cstate, "ruleset names can only be %ld characters",
                   (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
               /*NOTREACHED*/
       }

       b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
           (u_int)strlen(ruleset), (const u_char *)ruleset);
       return (b0);
}

/* PF firewall log rule number */
struct block *
gen_pf_rnr(compiler_state_t *cstate, int rnr)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "rnr supported only on PF linktype");
               /*NOTREACHED*/
       }

       b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
                (bpf_u_int32)rnr);
       return (b0);
}

/* PF firewall log sub-rule number */
struct block *
gen_pf_srnr(compiler_state_t *cstate, int srnr)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "srnr supported only on PF linktype");
               /*NOTREACHED*/
       }

       b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
           (bpf_u_int32)srnr);
       return (b0);
}

/* PF firewall log reason code */
struct block *
gen_pf_reason(compiler_state_t *cstate, int reason)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "reason supported only on PF linktype");
               /*NOTREACHED*/
       }

       b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
           (bpf_u_int32)reason);
       return (b0);
}

/* PF firewall log action */
struct block *
gen_pf_action(compiler_state_t *cstate, int action)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->linktype != DLT_PFLOG) {
               bpf_error(cstate, "action supported only on PF linktype");
               /*NOTREACHED*/
       }

       b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
           (bpf_u_int32)action);
       return (b0);
}

/* IEEE 802.11 wireless header */
struct block *
gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (cstate->linktype) {

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
               b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
               break;

       default:
               bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
               /*NOTREACHED*/
       }

       return (b0);
}

struct block *
gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
{
       struct block *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (cstate->linktype) {

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
               break;

       default:
               bpf_error(cstate, "frame direction supported only with 802.11 headers");
               /*NOTREACHED*/
       }

       b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
           IEEE80211_FC1_DIR_MASK);

       return (b0);
}

struct block *
gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
{
       struct block *b;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (cstate->linktype) {

       case DLT_ARCNET:
       case DLT_ARCNET_LINUX:
               if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
                   q.proto == Q_LINK) {
                       cstate->e = pcap_ether_aton(s);
                       if (cstate->e == NULL)
                               bpf_error(cstate, "malloc");
                       b = gen_ahostop(cstate, cstate->e, (int)q.dir);
                       free(cstate->e);
                       cstate->e = NULL;
                       return (b);
               } else
                       bpf_error(cstate, "ARCnet address used in non-arc expression");
               /*NOTREACHED*/

       default:
               bpf_error(cstate, "aid supported only on ARCnet");
               /*NOTREACHED*/
       }
}

static struct block *
gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
{
       register struct block *b0, *b1;

       switch (dir) {
       /* src comes first, different from Ethernet */
       case Q_SRC:
               return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);

       case Q_DST:
               return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);

       case Q_AND:
               b0 = gen_ahostop(cstate, eaddr, Q_SRC);
               b1 = gen_ahostop(cstate, eaddr, Q_DST);
               gen_and(b0, b1);
               return b1;

       case Q_DEFAULT:
       case Q_OR:
               b0 = gen_ahostop(cstate, eaddr, Q_SRC);
               b1 = gen_ahostop(cstate, eaddr, Q_DST);
               gen_or(b0, b1);
               return b1;

       case Q_ADDR1:
               bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR2:
               bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR3:
               bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_ADDR4:
               bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
               /*NOTREACHED*/

       case Q_RA:
               bpf_error(cstate, "'ra' is only supported on 802.11");
               /*NOTREACHED*/

       case Q_TA:
               bpf_error(cstate, "'ta' is only supported on 802.11");
               /*NOTREACHED*/
       }
       abort();
       /*NOTREACHED*/
}

static struct block *
gen_vlan_tpid_test(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       /* check for VLAN, including 802.1ad and QinQ */
       b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
       b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
       gen_or(b0,b1);
       b0 = b1;
       b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
       gen_or(b0,b1);

       return b1;
}

static struct block *
gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
{
       if (vlan_num > 0x0fff) {
               bpf_error(cstate, "VLAN tag %u greater than maximum %u",
                   vlan_num, 0x0fff);
       }
       return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
}

static struct block *
gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
   int has_vlan_tag)
{
       struct block *b0, *b1;

       b0 = gen_vlan_tpid_test(cstate);

       if (has_vlan_tag) {
               b1 = gen_vlan_vid_test(cstate, vlan_num);
               gen_and(b0, b1);
               b0 = b1;
       }

       /*
        * Both payload and link header type follow the VLAN tags so that
        * both need to be updated.
        */
       cstate->off_linkpl.constant_part += 4;
       cstate->off_linktype.constant_part += 4;

       return b0;
}

#if defined(SKF_AD_VLAN_TAG_PRESENT)
/* add v to variable part of off */
static void
gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
   bpf_u_int32 v, struct slist *s)
{
       struct slist *s2;

       if (!off->is_variable)
               off->is_variable = 1;
       if (off->reg == -1)
               off->reg = alloc_reg(cstate);

       s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
       s2->s.k = off->reg;
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
       s2->s.k = v;
       sappend(s, s2);
       s2 = new_stmt(cstate, BPF_ST);
       s2->s.k = off->reg;
       sappend(s, s2);
}

/*
* patch block b_tpid (VLAN TPID test) to update variable parts of link payload
* and link type offsets first
*/
static void
gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
{
       struct slist s;

       /* offset determined at run time, shift variable part */
       s.next = NULL;
       cstate->is_vlan_vloffset = 1;
       gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
       gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);

       /* we get a pointer to a chain of or-ed blocks, patch first of them */
       sappend(s.next, b_tpid->head->stmts);
       b_tpid->head->stmts = s.next;
}

/*
* patch block b_vid (VLAN id test) to load VID value either from packet
* metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
*/
static void
gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
{
       struct slist *s, *s2, *sjeq;
       unsigned cnt;

       s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
       s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;

       /* true -> next instructions, false -> beginning of b_vid */
       sjeq = new_stmt(cstate, JMP(BPF_JEQ));
       sjeq->s.k = 1;
       sjeq->s.jf = b_vid->stmts;
       sappend(s, sjeq);

       s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
       s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
       sappend(s, s2);
       sjeq->s.jt = s2;

       /* Jump to the test in b_vid. We need to jump one instruction before
        * the end of the b_vid block so that we only skip loading the TCI
        * from packet data and not the 'and' instruction extracting VID.
        */
       cnt = 0;
       for (s2 = b_vid->stmts; s2; s2 = s2->next)
               cnt++;
       s2 = new_stmt(cstate, JMP(BPF_JA));
       s2->s.k = cnt - 1;
       sappend(s, s2);

       /* insert our statements at the beginning of b_vid */
       sappend(s, b_vid->stmts);
       b_vid->stmts = s;
}

/*
* Generate check for "vlan" or "vlan <id>" on systems with support for BPF
* extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
* tag can be either in metadata or in packet data; therefore if the
* SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
* header for VLAN tag. As the decision is done at run time, we need
* update variable part of the offsets
*/
static struct block *
gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
   int has_vlan_tag)
{
       struct block *b0, *b_tpid, *b_vid = NULL;
       struct slist *s;

       /* generate new filter code based on extracting packet
        * metadata */
       s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
       s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;

       b0 = new_block(cstate, JMP(BPF_JEQ));
       b0->stmts = s;
       b0->s.k = 1;

       /*
        * This is tricky. We need to insert the statements updating variable
        * parts of offsets before the traditional TPID and VID tests so
        * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
        * we do not want this update to affect those checks. That's why we
        * generate both test blocks first and insert the statements updating
        * variable parts of both offsets after that. This wouldn't work if
        * there already were variable length link header when entering this
        * function but gen_vlan_bpf_extensions() isn't called in that case.
        */
       b_tpid = gen_vlan_tpid_test(cstate);
       if (has_vlan_tag)
               b_vid = gen_vlan_vid_test(cstate, vlan_num);

       gen_vlan_patch_tpid_test(cstate, b_tpid);
       gen_or(b0, b_tpid);
       b0 = b_tpid;

       if (has_vlan_tag) {
               gen_vlan_patch_vid_test(cstate, b_vid);
               gen_and(b0, b_vid);
               b0 = b_vid;
       }

       return b0;
}
#endif

/*
* support IEEE 802.1Q VLAN trunk over ethernet
*/
struct block *
gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
{
       struct  block   *b0;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /* can't check for VLAN-encapsulated packets inside MPLS */
       if (cstate->label_stack_depth > 0)
               bpf_error(cstate, "no VLAN match after MPLS");

       /*
        * Check for a VLAN packet, and then change the offsets to point
        * to the type and data fields within the VLAN packet.  Just
        * increment the offsets, so that we can support a hierarchy, e.g.
        * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
        * VLAN 100.
        *
        * XXX - this is a bit of a kludge.  If we were to split the
        * compiler into a parser that parses an expression and
        * generates an expression tree, and a code generator that
        * takes an expression tree (which could come from our
        * parser or from some other parser) and generates BPF code,
        * we could perhaps make the offsets parameters of routines
        * and, in the handler for an "AND" node, pass to subnodes
        * other than the VLAN node the adjusted offsets.
        *
        * This would mean that "vlan" would, instead of changing the
        * behavior of *all* tests after it, change only the behavior
        * of tests ANDed with it.  That would change the documented
        * semantics of "vlan", which might break some expressions.
        * However, it would mean that "(vlan and ip) or ip" would check
        * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
        * checking only for VLAN-encapsulated IP, so that could still
        * be considered worth doing; it wouldn't break expressions
        * that are of the form "vlan and ..." or "vlan N and ...",
        * which I suspect are the most common expressions involving
        * "vlan".  "vlan or ..." doesn't necessarily do what the user
        * would really want, now, as all the "or ..." tests would
        * be done assuming a VLAN, even though the "or" could be viewed
        * as meaning "or, if this isn't a VLAN packet...".
        */
       switch (cstate->linktype) {

       case DLT_EN10MB:
       case DLT_NETANALYZER:
       case DLT_NETANALYZER_TRANSPARENT:
#if defined(SKF_AD_VLAN_TAG_PRESENT)
               /* Verify that this is the outer part of the packet and
                * not encapsulated somehow. */
               if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
                   cstate->off_linkhdr.constant_part ==
                   cstate->off_outermostlinkhdr.constant_part) {
                       /*
                        * Do we need special VLAN handling?
                        */
                       if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
                               b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
                                   has_vlan_tag);
                       else
                               b0 = gen_vlan_no_bpf_extensions(cstate,
                                   vlan_num, has_vlan_tag);
               } else
#endif
                       b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
                           has_vlan_tag);
               break;

       case DLT_IEEE802_11:
       case DLT_PRISM_HEADER:
       case DLT_IEEE802_11_RADIO_AVS:
       case DLT_IEEE802_11_RADIO:
               b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
               break;

       default:
               bpf_error(cstate, "no VLAN support for %s",
                     pcap_datalink_val_to_description_or_dlt(cstate->linktype));
               /*NOTREACHED*/
       }

       cstate->vlan_stack_depth++;

       return (b0);
}

/*
* support for MPLS
*
* The label_num_arg dance is to avoid annoying whining by compilers that
* label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
* It's not *used* after setjmp returns.
*/
struct block *
gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
   int has_label_num)
{
       volatile bpf_u_int32 label_num = label_num_arg;
       struct  block   *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       if (cstate->label_stack_depth > 0) {
               /* just match the bottom-of-stack bit clear */
               b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
       } else {
               /*
                * We're not in an MPLS stack yet, so check the link-layer
                * type against MPLS.
                */
               switch (cstate->linktype) {

               case DLT_C_HDLC: /* fall through */
               case DLT_HDLC:
               case DLT_EN10MB:
               case DLT_NETANALYZER:
               case DLT_NETANALYZER_TRANSPARENT:
                       b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
                       break;

               case DLT_PPP:
                       b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
                       break;

                       /* FIXME add other DLT_s ...
                        * for Frame-Relay/and ATM this may get messy due to SNAP headers
                        * leave it for now */

               default:
                       bpf_error(cstate, "no MPLS support for %s",
                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
                       /*NOTREACHED*/
               }
       }

       /* If a specific MPLS label is requested, check it */
       if (has_label_num) {
               if (label_num > 0xFFFFF) {
                       bpf_error(cstate, "MPLS label %u greater than maximum %u",
                           label_num, 0xFFFFF);
               }
               label_num = label_num << 12; /* label is shifted 12 bits on the wire */
               b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
                   0xfffff000); /* only compare the first 20 bits */
               gen_and(b0, b1);
               b0 = b1;
       }

       /*
        * Change the offsets to point to the type and data fields within
        * the MPLS packet.  Just increment the offsets, so that we
        * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
        * capture packets with an outer label of 100000 and an inner
        * label of 1024.
        *
        * Increment the MPLS stack depth as well; this indicates that
        * we're checking MPLS-encapsulated headers, to make sure higher
        * level code generators don't try to match against IP-related
        * protocols such as Q_ARP, Q_RARP etc.
        *
        * XXX - this is a bit of a kludge.  See comments in gen_vlan().
        */
       cstate->off_nl_nosnap += 4;
       cstate->off_nl += 4;
       cstate->label_stack_depth++;
       return (b0);
}

/*
* Support PPPOE discovery and session.
*/
struct block *
gen_pppoed(compiler_state_t *cstate)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /* check for PPPoE discovery */
       return gen_linktype(cstate, ETHERTYPE_PPPOED);
}

struct block *
gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       /*
        * Test against the PPPoE session link-layer type.
        */
       b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);

       /* If a specific session is requested, check PPPoE session id */
       if (has_sess_num) {
               if (sess_num > 0x0000ffff) {
                       bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
                           sess_num, 0x0000ffff);
               }
               b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
               gen_and(b0, b1);
               b0 = b1;
       }

       /*
        * Change the offsets to point to the type and data fields within
        * the PPP packet, and note that this is PPPoE rather than
        * raw PPP.
        *
        * XXX - this is a bit of a kludge.  See the comments in
        * gen_vlan().
        *
        * The "network-layer" protocol is PPPoE, which has a 6-byte
        * PPPoE header, followed by a PPP packet.
        *
        * There is no HDLC encapsulation for the PPP packet (it's
        * encapsulated in PPPoES instead), so the link-layer type
        * starts at the first byte of the PPP packet.  For PPPoE,
        * that offset is relative to the beginning of the total
        * link-layer payload, including any 802.2 LLC header, so
        * it's 6 bytes past cstate->off_nl.
        */
       PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
           cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
           cstate->off_linkpl.reg);

       cstate->off_linktype = cstate->off_linkhdr;
       cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;

       cstate->off_nl = 0;
       cstate->off_nl_nosnap = 0;      /* no 802.2 LLC */

       return b0;
}

/* Check that this is Geneve and the VNI is correct if
* specified. Parameterized to handle both IPv4 and IPv6. */
static struct block *
gen_geneve_check(compiler_state_t *cstate,
   struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
   enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
{
       struct block *b0, *b1;

       b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);

       /* Check that we are operating on version 0. Otherwise, we
        * can't decode the rest of the fields. The version is 2 bits
        * in the first byte of the Geneve header. */
       b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
       gen_and(b0, b1);
       b0 = b1;

       if (has_vni) {
               if (vni > 0xffffff) {
                       bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
                           vni, 0xffffff);
               }
               vni <<= 8; /* VNI is in the upper 3 bytes */
               b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
               gen_and(b0, b1);
               b0 = b1;
       }

       return b0;
}

/* The IPv4 and IPv6 Geneve checks need to do two things:
* - Verify that this actually is Geneve with the right VNI.
* - Place the IP header length (plus variable link prefix if
*   needed) into register A to be used later to compute
*   the inner packet offsets. */
static struct block *
gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
{
       struct block *b0, *b1;
       struct slist *s, *s1;

       b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);

       /* Load the IP header length into A. */
       s = gen_loadx_iphdrlen(cstate);

       s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
       sappend(s, s1);

       /* Forcibly append these statements to the true condition
        * of the protocol check by creating a new block that is
        * always true and ANDing them. */
       b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
       b1->stmts = s;
       b1->s.k = 0;

       gen_and(b0, b1);

       return b1;
}

static struct block *
gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
{
       struct block *b0, *b1;
       struct slist *s, *s1;

       b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);

       /* Load the IP header length. We need to account for a
        * variable length link prefix if there is one. */
       s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
       if (s) {
               s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
               s1->s.k = 40;
               sappend(s, s1);

               s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
               s1->s.k = 0;
               sappend(s, s1);
       } else {
               s = new_stmt(cstate, BPF_LD|BPF_IMM);
               s->s.k = 40;
       }

       /* Forcibly append these statements to the true condition
        * of the protocol check by creating a new block that is
        * always true and ANDing them. */
       s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
       sappend(s, s1);

       b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
       b1->stmts = s;
       b1->s.k = 0;

       gen_and(b0, b1);

       return b1;
}

/* We need to store three values based on the Geneve header::
* - The offset of the linktype.
* - The offset of the end of the Geneve header.
* - The offset of the end of the encapsulated MAC header. */
static struct slist *
gen_geneve_offsets(compiler_state_t *cstate)
{
       struct slist *s, *s1, *s_proto;

       /* First we need to calculate the offset of the Geneve header
        * itself. This is composed of the IP header previously calculated
        * (include any variable link prefix) and stored in A plus the
        * fixed sized headers (fixed link prefix, MAC length, and UDP
        * header). */
       s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;

       /* Stash this in X since we'll need it later. */
       s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
       sappend(s, s1);

       /* The EtherType in Geneve is 2 bytes in. Calculate this and
        * store it. */
       s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s1->s.k = 2;
       sappend(s, s1);

       cstate->off_linktype.reg = alloc_reg(cstate);
       cstate->off_linktype.is_variable = 1;
       cstate->off_linktype.constant_part = 0;

       s1 = new_stmt(cstate, BPF_ST);
       s1->s.k = cstate->off_linktype.reg;
       sappend(s, s1);

       /* Load the Geneve option length and mask and shift to get the
        * number of bytes. It is stored in the first byte of the Geneve
        * header. */
       s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
       s1->s.k = 0;
       sappend(s, s1);

       s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
       s1->s.k = 0x3f;
       sappend(s, s1);

       s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
       s1->s.k = 4;
       sappend(s, s1);

       /* Add in the rest of the Geneve base header. */
       s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s1->s.k = 8;
       sappend(s, s1);

       /* Add the Geneve header length to its offset and store. */
       s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
       s1->s.k = 0;
       sappend(s, s1);

       /* Set the encapsulated type as Ethernet. Even though we may
        * not actually have Ethernet inside there are two reasons this
        * is useful:
        * - The linktype field is always in EtherType format regardless
        *   of whether it is in Geneve or an inner Ethernet frame.
        * - The only link layer that we have specific support for is
        *   Ethernet. We will confirm that the packet actually is
        *   Ethernet at runtime before executing these checks. */
       PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));

       s1 = new_stmt(cstate, BPF_ST);
       s1->s.k = cstate->off_linkhdr.reg;
       sappend(s, s1);

       /* Calculate whether we have an Ethernet header or just raw IP/
        * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
        * and linktype by 14 bytes so that the network header can be found
        * seamlessly. Otherwise, keep what we've calculated already. */

       /* We have a bare jmp so we can't use the optimizer. */
       cstate->no_optimize = 1;

       /* Load the EtherType in the Geneve header, 2 bytes in. */
       s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
       s1->s.k = 2;
       sappend(s, s1);

       /* Load X with the end of the Geneve header. */
       s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
       s1->s.k = cstate->off_linkhdr.reg;
       sappend(s, s1);

       /* Check if the EtherType is Transparent Ethernet Bridging. At the
        * end of this check, we should have the total length in X. In
        * the non-Ethernet case, it's already there. */
       s_proto = new_stmt(cstate, JMP(BPF_JEQ));
       s_proto->s.k = ETHERTYPE_TEB;
       sappend(s, s_proto);

       s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
       sappend(s, s1);
       s_proto->s.jt = s1;

       /* Since this is Ethernet, use the EtherType of the payload
        * directly as the linktype. Overwrite what we already have. */
       s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s1->s.k = 12;
       sappend(s, s1);

       s1 = new_stmt(cstate, BPF_ST);
       s1->s.k = cstate->off_linktype.reg;
       sappend(s, s1);

       /* Advance two bytes further to get the end of the Ethernet
        * header. */
       s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
       s1->s.k = 2;
       sappend(s, s1);

       /* Move the result to X. */
       s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
       sappend(s, s1);

       /* Store the final result of our linkpl calculation. */
       cstate->off_linkpl.reg = alloc_reg(cstate);
       cstate->off_linkpl.is_variable = 1;
       cstate->off_linkpl.constant_part = 0;

       s1 = new_stmt(cstate, BPF_STX);
       s1->s.k = cstate->off_linkpl.reg;
       sappend(s, s1);
       s_proto->s.jf = s1;

       cstate->off_nl = 0;

       return s;
}

/* Check to see if this is a Geneve packet. */
struct block *
gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
{
       struct block *b0, *b1;
       struct slist *s;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       b0 = gen_geneve4(cstate, vni, has_vni);
       b1 = gen_geneve6(cstate, vni, has_vni);

       gen_or(b0, b1);
       b0 = b1;

       /* Later filters should act on the payload of the Geneve frame,
        * update all of the header pointers. Attach this code so that
        * it gets executed in the event that the Geneve filter matches. */
       s = gen_geneve_offsets(cstate);

       b1 = gen_true(cstate);
       sappend(s, b1->stmts);
       b1->stmts = s;

       gen_and(b0, b1);

       cstate->is_geneve = 1;

       return b1;
}

/* Check that the encapsulated frame has a link layer header
* for Ethernet filters. */
static struct block *
gen_geneve_ll_check(compiler_state_t *cstate)
{
       struct block *b0;
       struct slist *s, *s1;

       /* The easiest way to see if there is a link layer present
        * is to check if the link layer header and payload are not
        * the same. */

       /* Geneve always generates pure variable offsets so we can
        * compare only the registers. */
       s = new_stmt(cstate, BPF_LD|BPF_MEM);
       s->s.k = cstate->off_linkhdr.reg;

       s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
       s1->s.k = cstate->off_linkpl.reg;
       sappend(s, s1);

       b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
       b0->stmts = s;
       b0->s.k = 0;
       gen_not(b0);

       return b0;
}

static struct block *
gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
   bpf_u_int32 jvalue, int jtype, int reverse)
{
       struct block *b0;

       switch (atmfield) {

       case A_VPI:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'vpi' supported only on raw ATM");
               if (cstate->off_vpi == OFFSET_NOT_SET)
                       abort();
               b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
                   0xffffffffU, jtype, reverse, jvalue);
               break;

       case A_VCI:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'vci' supported only on raw ATM");
               if (cstate->off_vci == OFFSET_NOT_SET)
                       abort();
               b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
                   0xffffffffU, jtype, reverse, jvalue);
               break;

       case A_PROTOTYPE:
               if (cstate->off_proto == OFFSET_NOT_SET)
                       abort();        /* XXX - this isn't on FreeBSD */
               b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
                   0x0fU, jtype, reverse, jvalue);
               break;

       case A_MSGTYPE:
               if (cstate->off_payload == OFFSET_NOT_SET)
                       abort();
               b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
                   0xffffffffU, jtype, reverse, jvalue);
               break;

       case A_CALLREFTYPE:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'callref' supported only on raw ATM");
               if (cstate->off_proto == OFFSET_NOT_SET)
                       abort();
               b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
                   0xffffffffU, jtype, reverse, jvalue);
               break;

       default:
               abort();
       }
       return b0;
}

static struct block *
gen_atmtype_metac(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
       b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
       gen_and(b0, b1);
       return b1;
}

static struct block *
gen_atmtype_sc(compiler_state_t *cstate)
{
       struct block *b0, *b1;

       b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
       b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
       gen_and(b0, b1);
       return b1;
}

static struct block *
gen_atmtype_llc(compiler_state_t *cstate)
{
       struct block *b0;

       b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
       cstate->linktype = cstate->prevlinktype;
       return b0;
}

struct block *
gen_atmfield_code(compiler_state_t *cstate, int atmfield,
   bpf_u_int32 jvalue, int jtype, int reverse)
{
       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
           reverse);
}

struct block *
gen_atmtype_abbrev(compiler_state_t *cstate, int type)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (type) {

       case A_METAC:
               /* Get all packets in Meta signalling Circuit */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'metac' supported only on raw ATM");
               b1 = gen_atmtype_metac(cstate);
               break;

       case A_BCC:
               /* Get all packets in Broadcast Circuit*/
               if (!cstate->is_atm)
                       bpf_error(cstate, "'bcc' supported only on raw ATM");
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_OAMF4SC:
               /* Get all cells in Segment OAM F4 circuit*/
               if (!cstate->is_atm)
                       bpf_error(cstate, "'oam4sc' supported only on raw ATM");
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_OAMF4EC:
               /* Get all cells in End-to-End OAM F4 Circuit*/
               if (!cstate->is_atm)
                       bpf_error(cstate, "'oam4ec' supported only on raw ATM");
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_SC:
               /*  Get all packets in connection Signalling Circuit */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'sc' supported only on raw ATM");
               b1 = gen_atmtype_sc(cstate);
               break;

       case A_ILMIC:
               /* Get all packets in ILMI Circuit */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'ilmic' supported only on raw ATM");
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_LANE:
               /* Get all LANE packets */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'lane' supported only on raw ATM");
               b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);

               /*
                * Arrange that all subsequent tests assume LANE
                * rather than LLC-encapsulated packets, and set
                * the offsets appropriately for LANE-encapsulated
                * Ethernet.
                *
                * We assume LANE means Ethernet, not Token Ring.
                */
               PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
                   cstate->off_payload + 2,    /* Ethernet header */
                   -1);
               cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
               cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;      /* Ethernet */
               cstate->off_nl = 0;                     /* Ethernet II */
               cstate->off_nl_nosnap = 3;              /* 802.3+802.2 */
               break;

       case A_LLC:
               /* Get all LLC-encapsulated packets */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'llc' supported only on raw ATM");
               b1 = gen_atmtype_llc(cstate);
               break;

       default:
               abort();
       }
       return b1;
}

/*
* Filtering for MTP2 messages based on li value
* FISU, length is null
* LSSU, length is 1 or 2
* MSU, length is 3 or more
* For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
*/
struct block *
gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (type) {

       case M_FISU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'fisu' supported only on MTP2");
               /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
                   0x3fU, BPF_JEQ, 0, 0U);
               break;

       case M_LSSU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'lssu' supported only on MTP2");
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
                   0x3fU, BPF_JGT, 1, 2U);
               b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
                   0x3fU, BPF_JGT, 0, 0U);
               gen_and(b1, b0);
               break;

       case M_MSU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'msu' supported only on MTP2");
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
                   0x3fU, BPF_JGT, 0, 2U);
               break;

       case MH_FISU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
               /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
                   0xff80U, BPF_JEQ, 0, 0U);
               break;

       case MH_LSSU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
                   0xff80U, BPF_JGT, 1, 0x0100U);
               b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
                   0xff80U, BPF_JGT, 0, 0U);
               gen_and(b1, b0);
               break;

       case MH_MSU:
               if ( (cstate->linktype != DLT_MTP2) &&
                    (cstate->linktype != DLT_ERF) &&
                    (cstate->linktype != DLT_MTP2_WITH_PHDR) )
                       bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
               b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
                   0xff80U, BPF_JGT, 0, 0x0100U);
               break;

       default:
               abort();
       }
       return b0;
}

/*
* The jvalue_arg dance is to avoid annoying whining by compilers that
* jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
* It's not *used* after setjmp returns.
*/
struct block *
gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
   bpf_u_int32 jvalue_arg, int jtype, int reverse)
{
       volatile bpf_u_int32 jvalue = jvalue_arg;
       struct block *b0;
       bpf_u_int32 val1 , val2 , val3;
       u_int newoff_sio;
       u_int newoff_opc;
       u_int newoff_dpc;
       u_int newoff_sls;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       newoff_sio = cstate->off_sio;
       newoff_opc = cstate->off_opc;
       newoff_dpc = cstate->off_dpc;
       newoff_sls = cstate->off_sls;
       switch (mtp3field) {

       case MH_SIO:
               newoff_sio += 3; /* offset for MTP2_HSL */
               /* FALLTHROUGH */

       case M_SIO:
               if (cstate->off_sio == OFFSET_NOT_SET)
                       bpf_error(cstate, "'sio' supported only on SS7");
               /* sio coded on 1 byte so max value 255 */
               if(jvalue > 255)
                       bpf_error(cstate, "sio value %u too big; max value = 255",
                           jvalue);
               b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
                   jtype, reverse, jvalue);
               break;

       case MH_OPC:
               newoff_opc += 3;

               /* FALLTHROUGH */
       case M_OPC:
               if (cstate->off_opc == OFFSET_NOT_SET)
                       bpf_error(cstate, "'opc' supported only on SS7");
               /* opc coded on 14 bits so max value 16383 */
               if (jvalue > 16383)
                       bpf_error(cstate, "opc value %u too big; max value = 16383",
                           jvalue);
               /* the following instructions are made to convert jvalue
                * to the form used to write opc in an ss7 message*/
               val1 = jvalue & 0x00003c00;
               val1 = val1 >>10;
               val2 = jvalue & 0x000003fc;
               val2 = val2 <<6;
               val3 = jvalue & 0x00000003;
               val3 = val3 <<22;
               jvalue = val1 + val2 + val3;
               b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
                   jtype, reverse, jvalue);
               break;

       case MH_DPC:
               newoff_dpc += 3;
               /* FALLTHROUGH */

       case M_DPC:
               if (cstate->off_dpc == OFFSET_NOT_SET)
                       bpf_error(cstate, "'dpc' supported only on SS7");
               /* dpc coded on 14 bits so max value 16383 */
               if (jvalue > 16383)
                       bpf_error(cstate, "dpc value %u too big; max value = 16383",
                           jvalue);
               /* the following instructions are made to convert jvalue
                * to the forme used to write dpc in an ss7 message*/
               val1 = jvalue & 0x000000ff;
               val1 = val1 << 24;
               val2 = jvalue & 0x00003f00;
               val2 = val2 << 8;
               jvalue = val1 + val2;
               b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
                   jtype, reverse, jvalue);
               break;

       case MH_SLS:
               newoff_sls += 3;
               /* FALLTHROUGH */

       case M_SLS:
               if (cstate->off_sls == OFFSET_NOT_SET)
                       bpf_error(cstate, "'sls' supported only on SS7");
               /* sls coded on 4 bits so max value 15 */
               if (jvalue > 15)
                        bpf_error(cstate, "sls value %u too big; max value = 15",
                            jvalue);
               /* the following instruction is made to convert jvalue
                * to the forme used to write sls in an ss7 message*/
               jvalue = jvalue << 4;
               b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
                   jtype, reverse, jvalue);
               break;

       default:
               abort();
       }
       return b0;
}

static struct block *
gen_msg_abbrev(compiler_state_t *cstate, int type)
{
       struct block *b1;

       /*
        * Q.2931 signalling protocol messages for handling virtual circuits
        * establishment and teardown
        */
       switch (type) {

       case A_SETUP:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
               break;

       case A_CALLPROCEED:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
               break;

       case A_CONNECT:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
               break;

       case A_CONNECTACK:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
               break;

       case A_RELEASE:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
               break;

       case A_RELEASE_DONE:
               b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
               break;

       default:
               abort();
       }
       return b1;
}

struct block *
gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
{
       struct block *b0, *b1;

       /*
        * Catch errors reported by us and routines below us, and return NULL
        * on an error.
        */
       if (setjmp(cstate->top_ctx))
               return (NULL);

       switch (type) {

       case A_OAM:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'oam' supported only on raw ATM");
               /* OAM F4 type */
               b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
               gen_or(b0, b1);
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_OAMF4:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'oamf4' supported only on raw ATM");
               /* OAM F4 type */
               b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
               b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
               gen_or(b0, b1);
               b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
               gen_and(b0, b1);
               break;

       case A_CONNECTMSG:
               /*
                * Get Q.2931 signalling messages for switched
                * virtual connection
                */
               if (!cstate->is_atm)
                       bpf_error(cstate, "'connectmsg' supported only on raw ATM");
               b0 = gen_msg_abbrev(cstate, A_SETUP);
               b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_CONNECT);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_RELEASE);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
               gen_or(b0, b1);
               b0 = gen_atmtype_sc(cstate);
               gen_and(b0, b1);
               break;

       case A_METACONNECT:
               if (!cstate->is_atm)
                       bpf_error(cstate, "'metaconnect' supported only on raw ATM");
               b0 = gen_msg_abbrev(cstate, A_SETUP);
               b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_CONNECT);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_RELEASE);
               gen_or(b0, b1);
               b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
               gen_or(b0, b1);
               b0 = gen_atmtype_metac(cstate);
               gen_and(b0, b1);
               break;

       default:
               abort();
       }
       return b1;
}