/*
* Copyright (c) 2004 by Internet Systems Consortium, Inc. ("ISC")
* Copyright (c) 1999 by Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define DPRINTF(x) do {\
int save_errno = errno; \
if ((statp->options & RES_DEBUG) != 0U) res_dprintf x; \
errno = save_errno; \
} while (0)
/* Public. */
/*%
* find enclosing zone for a <dname,class>, and some server addresses
*
* parameters:
*\li res - resolver context to work within (is modified)
*\li dname - domain name whose enclosing zone is desired
*\li class - class of dname (and its enclosing zone)
*\li zname - found zone name
*\li zsize - allocated size of zname
*\li addrs - found server addresses
*\li naddrs - max number of addrs
*
* return values:
*\li < 0 - an error occurred (check errno)
*\li = 0 - zname is now valid, but addrs[] wasn't changed
*\li > 0 - zname is now valid, and return value is number of addrs[] found
*
* notes:
*\li this function calls res_nsend() which means it depends on correctly
* functioning recursive nameservers (usually defined in /etc/resolv.conf
* or its local equivilent).
*
*\li we start by asking for an SOA<dname,class>. if we get one as an
* answer, that just means <dname,class> is a zone top, which is fine.
* more than likely we'll be told to go pound sand, in the form of a
* negative answer.
*
*\li note that we are not prepared to deal with referrals since that would
* only come from authority servers and our correctly functioning local
* recursive server would have followed the referral and got us something
* more definite.
*
*\li if the authority section contains an SOA, this SOA should also be the
* closest enclosing zone, since any intermediary zone cuts would've been
* returned as referrals and dealt with by our correctly functioning local
* recursive name server. but an SOA in the authority section should NOT
* match our dname (since that would have been returned in the answer
* section). an authority section SOA has to be "above" our dname.
*
*\li however, since authority section SOA's were once optional, it's
* possible that we'll have to go hunting for the enclosing SOA by
* ripping labels off the front of our dname -- this is known as "doing
* it the hard way."
*
*\li ultimately we want some server addresses, which are ideally the ones
* pertaining to the SOA.MNAME, but only if there is a matching NS RR.
* so the second phase (after we find an SOA) is to go looking for the
* NS RRset for that SOA's zone.
*
*\li no answer section processed by this code is allowed to contain CNAME
* or DNAME RR's. for the SOA query this means we strip a label and
* keep going. for the NS and A queries this means we just give up.
*/
int
res_findzonecut(res_state statp, const char *dname, ns_class class, int opts,
char *zname, size_t zsize, struct in_addr *addrs, int naddrs)
{
int result, i;
union res_sockaddr_union *u;
opts |= RES_IPV4ONLY;
opts &= ~RES_IPV6ONLY;
u = calloc(naddrs, sizeof(*u));
if (u == NULL)
return(-1);
result = res_findzonecut2(statp, dname, class, opts, zname, zsize,
u, naddrs);
for (i = 0; i < result; i++) {
addrs[i] = u[i].sin.sin_addr;
}
free(u);
return (result);
}
int
res_findzonecut2(res_state statp, const char *dname, ns_class class, int opts,
char *zname, size_t zsize, union res_sockaddr_union *addrs,
int naddrs)
{
char mname[NS_MAXDNAME];
u_long save_pfcode;
rrset_ns nsrrs;
int n;
DPRINTF(("get the soa, and see if it has enough glue"));
if ((n = get_soa(statp, dname, class, opts, zname, zsize,
mname, sizeof mname, &nsrrs)) < 0 ||
((opts & RES_EXHAUSTIVE) == 0 &&
(n = satisfy(statp, mname, &nsrrs, addrs, naddrs)) > 0))
goto done;
DPRINTF(("get the ns rrset and see if it has enough glue"));
if ((n = get_ns(statp, zname, class, opts, &nsrrs)) < 0 ||
((opts & RES_EXHAUSTIVE) == 0 &&
(n = satisfy(statp, mname, &nsrrs, addrs, naddrs)) > 0))
goto done;
DPRINTF(("get the missing glue and see if it's finally enough"));
if ((n = get_glue(statp, class, opts, &nsrrs)) >= 0)
n = satisfy(statp, mname, &nsrrs, addrs, naddrs);
static int
get_soa(res_state statp, const char *dname, ns_class class, int opts,
char *zname, size_t zsize, char *mname, size_t msize,
rrset_ns *nsrrsp)
{
char tname[NS_MAXDNAME];
u_char *resp = NULL;
int n, i, ancount, nscount;
ns_sect sect;
ns_msg msg;
u_int rcode;
/*
* Find closest enclosing SOA, even if it's for the root zone.
*/
/* First canonicalize dname (exactly one unescaped trailing "."). */
if (ns_makecanon(dname, tname, sizeof tname) < 0)
goto cleanup;
dname = tname;
resp = malloc(NS_MAXMSG);
if (resp == NULL)
goto cleanup;
/* Now grovel the subdomains, hunting for an SOA answer or auth. */
for (;;) {
/* Leading or inter-label '.' are skipped here. */
while (*dname == '.')
dname++;
/* Is there an SOA? */
n = do_query(statp, dname, class, ns_t_soa, resp, &msg);
if (n < 0) {
DPRINTF(("get_soa: do_query('%s', %s) failed (%d)",
dname, p_class(class), n));
goto cleanup;
}
if (n > 0) {
DPRINTF(("get_soa: CNAME or DNAME found"));
sect = ns_s_max, n = 0;
} else {
rcode = ns_msg_getflag(msg, ns_f_rcode);
ancount = ns_msg_count(msg, ns_s_an);
nscount = ns_msg_count(msg, ns_s_ns);
if (ancount > 0 && rcode == ns_r_noerror)
sect = ns_s_an, n = ancount;
else if (nscount > 0)
sect = ns_s_ns, n = nscount;
else
sect = ns_s_max, n = 0;
}
for (i = 0; i < n; i++) {
const char *t;
const u_char *rdata;
ns_rr rr;
/* If we're out of labels, then not even "." has an SOA! */
if (*dname == '\0')
break;
/* Find label-terminating "."; top of loop will skip it. */
while (*dname != '.') {
if (*dname == '\\')
if (*++dname == '\0') {
errno = EMSGSIZE;
goto cleanup;
}
dname++;
}
}
DPRINTF(("get_soa: out of labels"));
errno = EDESTADDRREQ;
cleanup:
if (resp != NULL)
free(resp);
return (-1);
}
static int
get_ns(res_state statp, const char *zname, ns_class class, int opts,
rrset_ns *nsrrsp)
{
u_char *resp;
ns_msg msg;
int n;
resp = malloc(NS_MAXMSG);
if (resp == NULL)
return (-1);
/* Go and get the NS RRs for this zone. */
n = do_query(statp, zname, class, ns_t_ns, resp, &msg);
if (n != 0) {
DPRINTF(("get_ns: do_query('%s', %s) failed (%d)",
zname, p_class(class), n));
free(resp);
return (-1);
}
/* Remember the NS RRs and associated A RRs that came back. */
if (save_ns(statp, &msg, ns_s_an, zname, class, opts, nsrrsp) < 0) {
DPRINTF(("get_ns save_ns('%s', %s) failed",
zname, p_class(class)));
free(resp);
return (-1);
}
free(resp);
return (0);
}
static int
get_glue(res_state statp, ns_class class, int opts, rrset_ns *nsrrsp) {
rr_ns *nsrr, *nsrr_n;
u_char *resp;
resp = malloc(NS_MAXMSG);
if (resp == NULL)
return(-1);
/* Go and get the A RRs for each empty NS RR on our list. */
for (nsrr = HEAD(*nsrrsp); nsrr != NULL; nsrr = nsrr_n) {
ns_msg msg;
int n;