/*      $NetBSD: dst_api.c,v 1.1.1.2 2012/09/09 16:07:47 christos Exp $ */

#ifndef LINT
static const char rcsid[] = "Header: /proj/cvs/prod/libbind/dst/dst_api.c,v 1.17 2007/09/24 17:18:25 each Exp ";
#endif

/*
* Portions Copyright (c) 1995-1998 by Trusted Information Systems, Inc.
*
* Permission to use, copy modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND TRUSTED INFORMATION SYSTEMS
* DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.  IN NO EVENT SHALL
* TRUSTED INFORMATION SYSTEMS BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
* FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THE SOFTWARE.
*/
/*
* This file contains the interface between the DST API and the crypto API.
* This is the only file that needs to be changed if the crypto system is
* changed.  Exported functions are:
* void dst_init()       Initialize the toolkit
* int  dst_check_algorithm()   Function to determines if alg is suppored.
* int  dst_compare_keys()      Function to compare two keys for equality.
* int  dst_sign_data()         Incremental signing routine.
* int  dst_verify_data()       Incremental verify routine.
* int  dst_generate_key()      Function to generate new KEY
* DST_KEY *dst_read_key()      Function to retrieve private/public KEY.
* void dst_write_key()         Function to write out a key.
* DST_KEY *dst_dnskey_to_key() Function to convert DNS KEY RR to a DST
*                              KEY structure.
* int dst_key_to_dnskey()      Function to return a public key in DNS
*                              format binary
* DST_KEY *dst_buffer_to_key() Converst a data in buffer to KEY
* int *dst_key_to_buffer()     Writes out DST_KEY key matterial in buffer
* void dst_free_key()          Releases all memory referenced by key structure
*/

#include "port_before.h"
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <memory.h>
#include <ctype.h>
#include <time.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include "dst_internal.h"
#include "port_after.h"

/* static variables */
static int done_init = 0;
dst_func *dst_t_func[DST_MAX_ALGS];
const char *key_file_fmt_str = "Private-key-format: v%s\nAlgorithm: %d (%s)\n";
const char *dst_path = "";

/* internal I/O functions */
static DST_KEY *dst_s_read_public_key(const char *in_name,
                                     const u_int16_t in_id, int in_alg);
static int dst_s_read_private_key_file(char *name, DST_KEY *pk_key,
                                      u_int16_t in_id, int in_alg);
static int dst_s_write_public_key(const DST_KEY *key);
static int dst_s_write_private_key(const DST_KEY *key);

/* internal function to set up data structure */
static DST_KEY *dst_s_get_key_struct(const char *name, const int alg,
                                    const int flags, const int protocol,
                                    const int bits);

/*%
*  dst_init
*      This function initializes the Digital Signature Toolkit.
*      Right now, it just checks the DSTKEYPATH environment variable.
*  Parameters
*      none
*  Returns
*      none
*/
void
dst_init()
{
       char *s;
       int len;

       if (done_init != 0)
               return;
       done_init = 1;

       s = getenv("DSTKEYPATH");
       len = 0;
       if (s) {
               struct stat statbuf;

               len = strlen(s);
               if (len > PATH_MAX) {
                       EREPORT(("%s is longer than %d characters, ignoring\n",
                                s, PATH_MAX));
               } else if (stat(s, &statbuf) != 0 || !S_ISDIR(statbuf.st_mode)) {
                       EREPORT(("%s is not a valid directory\n", s));
               } else {
                       char *tmp;
                       tmp = (char *) malloc(len + 2);
                       memcpy(tmp, s, len + 1);
                       if (tmp[strlen(tmp) - 1] != '/') {
                               tmp[strlen(tmp) + 1] = 0;
                               tmp[strlen(tmp)] = '/';
                       }
                       dst_path = tmp;
               }
       }
       memset(dst_t_func, 0, sizeof(dst_t_func));
       /* first one is selected */
       dst_hmac_md5_init();
}

/*%
*  dst_check_algorithm
*      This function determines if the crypto system for the specified
*      algorithm is present.
*  Parameters
*      alg     1       KEY_RSA
*              3       KEY_DSA
*            157     KEY_HMAC_MD5
*                    future algorithms TBD and registered with IANA.
*  Returns
*      1 - The algorithm is available.
*      0 - The algorithm is not available.
*/
int
dst_check_algorithm(const int alg)
{
       return (dst_t_func[alg] != NULL);
}

/*%
* dst_s_get_key_struct
*      This function allocates key structure and fills in some of the
*      fields of the structure.
* Parameters:
*      name:     the name of the key
*      alg:      the algorithm number
*      flags:    the dns flags of the key
*      protocol: the dns protocol of the key
*      bits:     the size of the key
* Returns:
*       NULL if error
*       valid pointer otherwise
*/
static DST_KEY *
dst_s_get_key_struct(const char *name, const int alg, const int flags,
                    const int protocol, const int bits)
{
       DST_KEY *new_key = NULL;

       if (dst_check_algorithm(alg)) /*%< make sure alg is available */
               new_key = (DST_KEY *) malloc(sizeof(*new_key));
       if (new_key == NULL)
               return (NULL);

       memset(new_key, 0, sizeof(*new_key));
       new_key->dk_key_name = strdup(name);
       if (new_key->dk_key_name == NULL) {
               free(new_key);
               return (NULL);
       }
       new_key->dk_alg = alg;
       new_key->dk_flags = flags;
       new_key->dk_proto = protocol;
       new_key->dk_KEY_struct = NULL;
       new_key->dk_key_size = bits;
       new_key->dk_func = dst_t_func[alg];
       return (new_key);
}

/*%
*  dst_compare_keys
*      Compares two keys for equality.
*  Parameters
*      key1, key2      Two keys to be compared.
*  Returns
*      0              The keys are equal.
*      non-zero        The keys are not equal.
*/

int
dst_compare_keys(const DST_KEY *key1, const DST_KEY *key2)
{
       if (key1 == key2)
               return (0);
       if (key1 == NULL || key2 == NULL)
               return (4);
       if (key1->dk_alg != key2->dk_alg)
               return (1);
       if (key1->dk_key_size != key2->dk_key_size)
               return (2);
       if (key1->dk_id != key2->dk_id)
               return (3);
       return (key1->dk_func->compare(key1, key2));
}

/*%
* dst_sign_data
*      An incremental signing function.  Data is signed in steps.
*      First the context must be initialized (SIG_MODE_INIT).
*      Then data is hashed (SIG_MODE_UPDATE).  Finally the signature
*      itself is created (SIG_MODE_FINAL).  This function can be called
*      once with INIT, UPDATE and FINAL modes all set, or it can be
*      called separately with a different mode set for each step.  The
*      UPDATE step can be repeated.
* Parameters
*      mode    A bit mask used to specify operation(s) to be performed.
*                SIG_MODE_INIT    1   Initialize digest
*                SIG_MODE_UPDATE        2   Add data to digest
*                SIG_MODE_FINAL          4   Generate signature
*                                            from signature
*                SIG_MODE_ALL (SIG_MODE_INIT,SIG_MODE_UPDATE,SIG_MODE_FINAL
*      data    Data to be signed.
*      len     The length in bytes of data to be signed.
*      in_key  Contains a private key to sign with.
*                KEY structures should be handled (created, converted,
*                compared, stored, freed) by the DST.
*      signature
*            The location to which the signature will be written.
*      sig_len Length of the signature field in bytes.
* Return
*       0      Successfull INIT or Update operation
*      &gt;0      success FINAL (sign) operation
*      &lt;0      failure
*/

int
dst_sign_data(const int mode, DST_KEY *in_key, void **context,
             const u_char *data, const int len,
             u_char *signature, const int sig_len)
{
       DUMP(data, mode, len, "dst_sign_data()");

       if (mode & SIG_MODE_FINAL &&
           (in_key->dk_KEY_struct == NULL || signature == NULL))
               return (MISSING_KEY_OR_SIGNATURE);

       if (in_key->dk_func && in_key->dk_func->sign)
               return (in_key->dk_func->sign(mode, in_key, context, data, len,
                                             signature, sig_len));
       return (UNKNOWN_KEYALG);
}

/*%
*  dst_verify_data
*      An incremental verify function.  Data is verified in steps.
*      First the context must be initialized (SIG_MODE_INIT).
*      Then data is hashed (SIG_MODE_UPDATE).  Finally the signature
*      is verified (SIG_MODE_FINAL).  This function can be called
*      once with INIT, UPDATE and FINAL modes all set, or it can be
*      called separately with a different mode set for each step.  The
*      UPDATE step can be repeated.
*  Parameters
*      mode    Operations to perform this time.
*                    SIG_MODE_INIT       1   Initialize digest
*                    SIG_MODE_UPDATE     2   add data to digest
*                    SIG_MODE_FINAL      4   verify signature
*                    SIG_MODE_ALL
*                        (SIG_MODE_INIT,SIG_MODE_UPDATE,SIG_MODE_FINAL)
*      data    Data to pass through the hash function.
*      len      Length of the data in bytes.
*      in_key      Key for verification.
*      signature   Location of signature.
*      sig_len     Length of the signature in bytes.
*  Returns
*      0          Verify success
*      Non-Zero    Verify Failure
*/

int
dst_verify_data(const int mode, DST_KEY *in_key, void **context,
               const u_char *data, const int len,
               const u_char *signature, const int sig_len)
{
       DUMP(data, mode, len, "dst_verify_data()");
       if (mode & SIG_MODE_FINAL &&
           (in_key->dk_KEY_struct == NULL || signature == NULL))
               return (MISSING_KEY_OR_SIGNATURE);

       if (in_key->dk_func == NULL || in_key->dk_func->verify == NULL)
               return (UNSUPPORTED_KEYALG);
       return (in_key->dk_func->verify(mode, in_key, context, data, len,
                                       signature, sig_len));
}

/*%
*  dst_read_private_key
*      Access a private key.  First the list of private keys that have
*      already been read in is searched, then the key accessed on disk.
*      If the private key can be found, it is returned.  If the key cannot
*      be found, a null pointer is returned.  The options specify required
*      key characteristics.  If the private key requested does not have
*      these characteristics, it will not be read.
*  Parameters
*      in_keyname  The private key name.
*      in_id       The id of the private key.
*      options     DST_FORCE_READ  Read from disk - don't use a previously
*                                    read key.
*                DST_CAN_SIGN    The key must be useable for signing.
*                DST_NO_AUTHEN   The key must be useable for authentication.
*                DST_STANDARD    Return any key
*  Returns
*      NULL    If there is no key found in the current directory or
*                    this key has not been loaded before.
*      !NULL       Success - KEY structure returned.
*/

DST_KEY *
dst_read_key(const char *in_keyname, const u_int16_t in_id,
            const int in_alg, const int type)
{
       char keyname[PATH_MAX];
       DST_KEY *dg_key = NULL, *pubkey = NULL;

       if (!dst_check_algorithm(in_alg)) { /*%< make sure alg is available */
               EREPORT(("dst_read_private_key(): Algorithm %d not suppored\n",
                        in_alg));
               return (NULL);
       }
       if ((type & (DST_PUBLIC | DST_PRIVATE)) == 0)
               return (NULL);
       if (in_keyname == NULL) {
               EREPORT(("dst_read_private_key(): Null key name passed in\n"));
               return (NULL);
       } else if (strlen(in_keyname) >= sizeof(keyname)) {
               EREPORT(("dst_read_private_key(): keyname too big\n"));
               return (NULL);
       } else
               strcpy(keyname, in_keyname);

       /* before I read in the public key, check if it is allowed to sign */
       if ((pubkey = dst_s_read_public_key(keyname, in_id, in_alg)) == NULL)
               return (NULL);

       if (type == DST_PUBLIC)
               return pubkey;

       if (!(dg_key = dst_s_get_key_struct(keyname, pubkey->dk_alg,
                                           pubkey->dk_flags, pubkey->dk_proto,
                                           0)))
               return (dg_key);
       /* Fill in private key and some fields in the general key structure */
       if (dst_s_read_private_key_file(keyname, dg_key, pubkey->dk_id,
                                       pubkey->dk_alg) == 0)
               dg_key = dst_free_key(dg_key);

       (void)dst_free_key(pubkey);
       return (dg_key);
}

int
dst_write_key(const DST_KEY *key, const int type)
{
       int pub = 0, priv = 0;

       if (key == NULL)
               return (0);
       if (!dst_check_algorithm(key->dk_alg)) { /*%< make sure alg is available */
               EREPORT(("dst_write_key(): Algorithm %d not suppored\n",
                        key->dk_alg));
               return (UNSUPPORTED_KEYALG);
       }
       if ((type & (DST_PRIVATE|DST_PUBLIC)) == 0)
               return (0);

       if (type & DST_PUBLIC)
               if ((pub = dst_s_write_public_key(key)) < 0)
                       return (pub);
       if (type & DST_PRIVATE)
               if ((priv = dst_s_write_private_key(key)) < 0)
                       return (priv);
       return (priv+pub);
}

/*%
*  dst_write_private_key
*      Write a private key to disk.  The filename will be of the form:
*      K&lt;key-&gt;dk_name&gt;+&lt;key-&gt;dk_alg+&gt;&lt;key-d&gt;k_id.&gt;&lt;private key suffix&gt;.
*      If there is already a file with this name, an error is returned.
*
*  Parameters
*      key     A DST managed key structure that contains
*            all information needed about a key.
*  Return
*      &gt;= 0    Correct behavior.  Returns length of encoded key value
*                written to disk.
*      &lt;  0    error.
*/

static int
dst_s_write_private_key(const DST_KEY *key)
{
       u_char encoded_block[RAW_KEY_SIZE];
       char file[PATH_MAX];
       int len;
       FILE *fp;

       /* First encode the key into the portable key format */
       if (key == NULL)
               return (-1);
       if (key->dk_KEY_struct == NULL)
               return (0);     /*%< null key has no private key */
       if (key->dk_func == NULL || key->dk_func->to_file_fmt == NULL) {
               EREPORT(("dst_write_private_key(): Unsupported operation %d\n",
                        key->dk_alg));
               return (-5);
       } else if ((len = key->dk_func->to_file_fmt(key, (char *)encoded_block,
                                            sizeof(encoded_block))) <= 0) {
               EREPORT(("dst_write_private_key(): Failed encoding private RSA bsafe key %d\n", len));
               return (-8);
       }
       /* Now I can create the file I want to use */
       dst_s_build_filename(file, key->dk_key_name, key->dk_id, key->dk_alg,
                            PRIVATE_KEY, PATH_MAX);

       /* Do not overwrite an existing file */
       if ((fp = dst_s_fopen(file, "w", 0600)) != NULL) {
               int nn;
               if ((nn = fwrite(encoded_block, 1, len, fp)) != len) {
                       EREPORT(("dst_write_private_key(): Write failure on %s %d != %d errno=%d\n",
                                file, len, nn, errno));
                       fclose(fp);
                       return (-5);
               }
               fclose(fp);
       } else {
               EREPORT(("dst_write_private_key(): Can not create file %s\n"
                        ,file));
               return (-6);
       }
       memset(encoded_block, 0, len);
       return (len);
}

/*%
*
*  dst_read_public_key
*      Read a public key from disk and store in a DST key structure.
*  Parameters
*      in_name  K&lt;in_name&gt;&lt;in_id&gt;.&lt;public key suffix&gt; is the
*                    filename of the key file to be read.
*  Returns
*      NULL        If the key does not exist or no name is supplied.
*      NON-NULL        Initialized key structure if the key exists.
*/

static DST_KEY *
dst_s_read_public_key(const char *in_name, const u_int16_t in_id, int in_alg)
{
       int flags, proto, alg, len, dlen;
       int c;
       char name[PATH_MAX], enckey[RAW_KEY_SIZE], *notspace;
       u_char deckey[RAW_KEY_SIZE];
       FILE *fp;

       if (in_name == NULL) {
               EREPORT(("dst_read_public_key(): No key name given\n"));
               return (NULL);
       }
       if (dst_s_build_filename(name, in_name, in_id, in_alg, PUBLIC_KEY,
                                PATH_MAX) == -1) {
               EREPORT(("dst_read_public_key(): Cannot make filename from %s, %d, and %s\n",
                        in_name, in_id, PUBLIC_KEY));
               return (NULL);
       }
       /*
        * Open the file and read it's formatted contents up to key
        * File format:
        *    domain.name [ttl] [IN] KEY  &lt;flags&gt; &lt;protocol&gt; &lt;algorithm&gt; &lt;key&gt;
        * flags, proto, alg stored as decimal (or hex numbers FIXME).
        * (FIXME: handle parentheses for line continuation.)
        */
       if ((fp = dst_s_fopen(name, "r", 0)) == NULL) {
               EREPORT(("dst_read_public_key(): Public Key not found %s\n",
                        name));
               return (NULL);
       }
       /* Skip domain name, which ends at first blank */
       while ((c = getc(fp)) != EOF)
               if (isspace(c))
                       break;
       /* Skip blank to get to next field */
       while ((c = getc(fp)) != EOF)
               if (!isspace(c))
                       break;

       /* Skip optional TTL -- if initial digit, skip whole word. */
       if (isdigit(c)) {
               while ((c = getc(fp)) != EOF)
                       if (isspace(c))
                               break;
               while ((c = getc(fp)) != EOF)
                       if (!isspace(c))
                               break;
       }
       /* Skip optional "IN" */
       if (c == 'I' || c == 'i') {
               while ((c = getc(fp)) != EOF)
                       if (isspace(c))
                               break;
               while ((c = getc(fp)) != EOF)
                       if (!isspace(c))
                               break;
       }
       /* Locate and skip "KEY" */
       if (c != 'K' && c != 'k') {
               EREPORT(("\"KEY\" doesn't appear in file: %s", name));
               return NULL;
       }
       while ((c = getc(fp)) != EOF)
               if (isspace(c))
                       break;
       while ((c = getc(fp)) != EOF)
               if (!isspace(c))
                       break;
       ungetc(c, fp);          /*%< return the charcter to the input field */
       /* Handle hex!! FIXME.  */

       if (fscanf(fp, "%d %d %d", &flags, &proto, &alg) != 3) {
               EREPORT(("dst_read_public_key(): Can not read flag/proto/alg field from %s\n"
                        ,name));
               return (NULL);
       }
       /* read in the key string */
       fgets(enckey, sizeof(enckey), fp);

       /* If we aren't at end-of-file, something is wrong.  */
       while ((c = getc(fp)) != EOF)
               if (!isspace(c))
                       break;
       if (!feof(fp)) {
               EREPORT(("Key too long in file: %s", name));
               return NULL;
       }
       fclose(fp);

       if ((len = strlen(enckey)) <= 0)
               return (NULL);

       /* discard \n */
       enckey[--len] = '\0';

       /* remove leading spaces */
       for (notspace = (char *) enckey; isspace((*notspace)&0xff); len--)
               notspace++;

       dlen = b64_pton(notspace, deckey, sizeof(deckey));
       if (dlen < 0) {
               EREPORT(("dst_read_public_key: bad return from b64_pton = %d",
                        dlen));
               return (NULL);
       }
       /* store key and info in a key structure that is returned */
/*      return dst_store_public_key(in_name, alg, proto, 666, flags, deckey,
                                   dlen);*/
       return dst_buffer_to_key(in_name, alg, flags, proto, deckey, dlen);
}

/*%
*  dst_write_public_key
*      Write a key to disk in DNS format.
*  Parameters
*      key     Pointer to a DST key structure.
*  Returns
*      0       Failure
*      1       Success
*/

static int
dst_s_write_public_key(const DST_KEY *key)
{
       FILE *fp;
       char filename[PATH_MAX];
       u_char out_key[RAW_KEY_SIZE];
       char enc_key[RAW_KEY_SIZE];
       int len = 0;
       int mode;

       memset(out_key, 0, sizeof(out_key));
       if (key == NULL) {
               EREPORT(("dst_write_public_key(): No key specified \n"));
               return (0);
       } else if ((len = dst_key_to_dnskey(key, out_key, sizeof(out_key)))< 0)
               return (0);

       /* Make the filename */
       if (dst_s_build_filename(filename, key->dk_key_name, key->dk_id,
                                key->dk_alg, PUBLIC_KEY, PATH_MAX) == -1) {
               EREPORT(("dst_write_public_key(): Cannot make filename from %s, %d, and %s\n",
                        key->dk_key_name, key->dk_id, PUBLIC_KEY));
               return (0);
       }
       /* XXX in general this should be a check for symmetric keys */
       mode = (key->dk_alg == KEY_HMAC_MD5) ? 0600 : 0644;
       /* create public key file */
       if ((fp = dst_s_fopen(filename, "w+", mode)) == NULL) {
               EREPORT(("DST_write_public_key: open of file:%s failed (errno=%d)\n",
                        filename, errno));
               return (0);
       }
       /*write out key first base64 the key data */
       if (key->dk_flags & DST_EXTEND_FLAG)
               b64_ntop(&out_key[6], len - 6, enc_key, sizeof(enc_key));
       else
               b64_ntop(&out_key[4], len - 4, enc_key, sizeof(enc_key));
       fprintf(fp, "%s IN KEY %d %d %d %s\n",
               key->dk_key_name,
               key->dk_flags, key->dk_proto, key->dk_alg, enc_key);
       fclose(fp);
       return (1);
}

/*%
*  dst_dnskey_to_public_key
*      This function converts the contents of a DNS KEY RR into a DST
*      key structure.
*  Paramters
*      len      Length of the RDATA of the KEY RR RDATA
*      rdata    A pointer to the the KEY RR RDATA.
*      in_name     Key name to be stored in key structure.
*  Returns
*      NULL        Failure
*      NON-NULL        Success.  Pointer to key structure.
*                      Caller's responsibility to free() it.
*/

DST_KEY *
dst_dnskey_to_key(const char *in_name, const u_char *rdata, const int len)
{
       DST_KEY *key_st;
       int alg ;
       int start = DST_KEY_START;

       if (rdata == NULL || len <= DST_KEY_ALG) /*%< no data */
               return (NULL);
       alg = (u_int8_t) rdata[DST_KEY_ALG];
       if (!dst_check_algorithm(alg)) { /*%< make sure alg is available */
               EREPORT(("dst_dnskey_to_key(): Algorithm %d not suppored\n",
                        alg));
               return (NULL);
       }

       if (in_name == NULL)
               return (NULL);

       if ((key_st = dst_s_get_key_struct(in_name, alg, 0, 0, 0)) == NULL)
               return (NULL);

       key_st->dk_id = dst_s_dns_key_id(rdata, len);
       key_st->dk_flags = dst_s_get_int16(rdata);
       key_st->dk_proto = (u_int16_t) rdata[DST_KEY_PROT];
       if (key_st->dk_flags & DST_EXTEND_FLAG) {
               u_int32_t ext_flags;
               ext_flags = (u_int32_t) dst_s_get_int16(&rdata[DST_EXT_FLAG]);
               key_st->dk_flags = key_st->dk_flags | (ext_flags << 16);
               start += 2;
       }
       /*
        * now point to the begining of the data representing the encoding
        * of the key
        */
       if (key_st->dk_func && key_st->dk_func->from_dns_key) {
               if (key_st->dk_func->from_dns_key(key_st, &rdata[start],
                                                 len - start) > 0)
                       return (key_st);
       } else
               EREPORT(("dst_dnskey_to_public_key(): unsuppored alg %d\n",
                        alg));

       SAFE_FREE(key_st);
       return (key_st);
}

/*%
*  dst_public_key_to_dnskey
*      Function to encode a public key into DNS KEY wire format
*  Parameters
*      key          Key structure to encode.
*      out_storage     Location to write the encoded key to.
*      out_len  Size of the output array.
*  Returns
*      <0      Failure
*      >=0     Number of bytes written to out_storage
*/

int
dst_key_to_dnskey(const DST_KEY *key, u_char *out_storage,
                        const int out_len)
{
       u_int16_t val;
       int loc = 0;
       int enc_len = 0;
       if (key == NULL)
               return (-1);

       if (!dst_check_algorithm(key->dk_alg)) { /*%< make sure alg is available */
               EREPORT(("dst_key_to_dnskey(): Algorithm %d not suppored\n",
                        key->dk_alg));
               return (UNSUPPORTED_KEYALG);
       }
       memset(out_storage, 0, out_len);
       val = (u_int16_t)(key->dk_flags & 0xffff);
       dst_s_put_int16(out_storage, val);
       loc += 2;

       out_storage[loc++] = (u_char) key->dk_proto;
       out_storage[loc++] = (u_char) key->dk_alg;

       if (key->dk_flags > 0xffff) {   /*%< Extended flags */
               val = (u_int16_t)((key->dk_flags >> 16) & 0xffff);
               dst_s_put_int16(&out_storage[loc], val);
               loc += 2;
       }
       if (key->dk_KEY_struct == NULL)
               return (loc);
       if (key->dk_func && key->dk_func->to_dns_key) {
               enc_len = key->dk_func->to_dns_key(key,
                                                (u_char *) &out_storage[loc],
                                                  out_len - loc);
               if (enc_len > 0)
                       return (enc_len + loc);
               else
                       return (-1);
       } else
               EREPORT(("dst_key_to_dnskey(): Unsupported ALG %d\n",
                        key->dk_alg));
       return (-1);
}

/*%
*  dst_buffer_to_key
*      Function to encode a string of raw data into a DST key
*  Parameters
*      alg             The algorithm (HMAC only)
*      key             A pointer to the data
*      keylen          The length of the data
*  Returns
*      NULL        an error occurred
*      NON-NULL        the DST key
*/
DST_KEY *
dst_buffer_to_key(const char *key_name,         /*!< name of the key  */
                 const int alg,                /*!< algorithm  */
                 const int flags,              /*!< dns flags  */
                 const int protocol,           /*!< dns protocol  */
                 const u_char *key_buf,        /*!< key in dns wire fmt  */
                 const int key_len)            /*!< size of key  */
{

       DST_KEY *dkey = NULL;
       int dnslen;
       u_char dns[2048];

       if (!dst_check_algorithm(alg)) { /*%< make sure alg is available */
               EREPORT(("dst_buffer_to_key(): Algorithm %d not suppored\n", alg));
               return (NULL);
       }

       dkey = dst_s_get_key_struct(key_name, alg, flags, protocol, -1);

       if (dkey == NULL || dkey->dk_func == NULL ||
           dkey->dk_func->from_dns_key == NULL)
               return (dst_free_key(dkey));

       if (dkey->dk_func->from_dns_key(dkey, key_buf, key_len) < 0) {
               EREPORT(("dst_buffer_to_key(): dst_buffer_to_hmac failed\n"));
               return (dst_free_key(dkey));
       }

       dnslen = dst_key_to_dnskey(dkey, dns, sizeof(dns));
       dkey->dk_id = dst_s_dns_key_id(dns, dnslen);
       return (dkey);
}

int
dst_key_to_buffer(DST_KEY *key, u_char *out_buff, int buf_len)
{
       int len;
 /* this function will extrac the secret of HMAC into a buffer */
       if (key == NULL)
               return (0);
       if (key->dk_func != NULL && key->dk_func->to_dns_key != NULL) {
               len = key->dk_func->to_dns_key(key, out_buff, buf_len);
               if (len < 0)
                       return (0);
               return (len);
       }
       return (0);
}

/*%
* dst_s_read_private_key_file
*     Function reads in private key from a file.
*     Fills out the KEY structure.
* Parameters
*     name    Name of the key to be read.
*     pk_key  Structure that the key is returned in.
*     in_id   Key identifier (tag)
* Return
*     1 if everthing works
*     0 if there is any problem
*/

static int
dst_s_read_private_key_file(char *name, DST_KEY *pk_key, u_int16_t in_id,
                           int in_alg)
{
       int cnt, alg, len, major, minor, file_major, file_minor;
       int ret, id;
       char filename[PATH_MAX];
       u_char in_buff[RAW_KEY_SIZE], *p;
       FILE *fp;
       int dnslen;
       u_char dns[2048];

       if (name == NULL || pk_key == NULL) {
               EREPORT(("dst_read_private_key_file(): No key name given\n"));
               return (0);
       }
       /* Make the filename */
       if (dst_s_build_filename(filename, name, in_id, in_alg, PRIVATE_KEY,
                                PATH_MAX) == -1) {
               EREPORT(("dst_read_private_key(): Cannot make filename from %s, %d, and %s\n",
                        name, in_id, PRIVATE_KEY));
               return (0);
       }
       /* first check if we can find the key file */
       if ((fp = dst_s_fopen(filename, "r", 0)) == NULL) {
               EREPORT(("dst_s_read_private_key_file: Could not open file %s in directory %s\n",
                        filename, dst_path[0] ? dst_path :
                        (char *) getcwd(NULL, PATH_MAX - 1)));
               return (0);
       }
       /* now read the header info from the file */
       if ((cnt = fread(in_buff, 1, sizeof(in_buff), fp)) < 5) {
               fclose(fp);
               EREPORT(("dst_s_read_private_key_file: error reading file %s (empty file)\n",
                        filename));
               return (0);
       }
       /* decrypt key */
       fclose(fp);
       if (memcmp(in_buff, "Private-key-format: v", 20) != 0)
               goto fail;
       len = cnt;
       p = in_buff;

       if (!dst_s_verify_str((const char **) (void *)&p,
                              "Private-key-format: v")) {
               EREPORT(("dst_s_read_private_key_file(): Not a Key file/Decrypt failed %s\n", name));
               goto fail;
       }
       /* read in file format */
       sscanf((char *)p, "%d.%d", &file_major, &file_minor);
       sscanf(KEY_FILE_FORMAT, "%d.%d", &major, &minor);
       if (file_major < 1) {
               EREPORT(("dst_s_read_private_key_file(): Unknown keyfile %d.%d version for %s\n",
                        file_major, file_minor, name));
               goto fail;
       } else if (file_major > major || file_minor > minor)
               EREPORT((
                               "dst_s_read_private_key_file(): Keyfile %s version higher than mine %d.%d MAY FAIL\n",
                               name, file_major, file_minor));

       while (*p++ != '\n') ;  /*%< skip to end of line */

       if (!dst_s_verify_str((const char **) (void *)&p, "Algorithm: "))
               goto fail;

       if (sscanf((char *)p, "%d", &alg) != 1)
               goto fail;
       while (*p++ != '\n') ;  /*%< skip to end of line */

       if (pk_key->dk_key_name && !strcmp(pk_key->dk_key_name, name))
               SAFE_FREE2(pk_key->dk_key_name, strlen(pk_key->dk_key_name));
       pk_key->dk_key_name = (char *) strdup(name);

       /* allocate and fill in key structure */
       if (pk_key->dk_func == NULL || pk_key->dk_func->from_file_fmt == NULL)
               goto fail;

       ret = pk_key->dk_func->from_file_fmt(pk_key, (char *)p, &in_buff[len] - p);
       if (ret < 0)
               goto fail;

       dnslen = dst_key_to_dnskey(pk_key, dns, sizeof(dns));
       id = dst_s_dns_key_id(dns, dnslen);

       /* Make sure the actual key tag matches the input tag used in the filename
        */
       if (id != in_id) {
               EREPORT(("dst_s_read_private_key_file(): actual tag of key read %d != input tag used to build filename %d.\n", id, in_id));
               goto fail;
       }
       pk_key->dk_id = (u_int16_t) id;
       pk_key->dk_alg = alg;
       memset(in_buff, 0, cnt);
       return (1);

fail:
       memset(in_buff, 0, cnt);
       return (0);
}

/*%
*      Generate and store a public/private keypair.
*      Keys will be stored in formatted files.
*
*  Parameters
&
*\par  name    Name of the new key.  Used to create key files
*\li             K&lt;name&gt;+&lt;alg&gt;+&lt;id&gt;.public and K&lt;name&gt;+&lt;alg&gt;+&lt;id&gt;.private.
*\par  bits    Size of the new key in bits.
*\par  exp     What exponent to use:
*\li             0        use exponent 3
*\li             non-zero    use Fermant4
*\par  flags   The default value of the DNS Key flags.
*\li             The DNS Key RR Flag field is defined in RFC2065,
*                section 3.3.  The field has 16 bits.
*\par  protocol
*\li         Default value of the DNS Key protocol field.
*\li             The DNS Key protocol field is defined in RFC2065,
*                section 3.4.  The field has 8 bits.
*\par  alg     What algorithm to use.  Currently defined:
*\li             KEY_RSA       1
*\li             KEY_DSA       3
*\li             KEY_HMAC    157
*\par  out_id The key tag is returned.
*
*  Return
*\li   NULL            Failure
*\li   non-NULL        the generated key pair
*                      Caller frees the result, and its dk_name pointer.
*/
DST_KEY *
dst_generate_key(const char *name, const int bits, const int exp,
                const int flags, const int protocol, const int alg)
{
       DST_KEY *new_key = NULL;
       int dnslen;
       u_char dns[2048];

       if (name == NULL)
               return (NULL);

       if (!dst_check_algorithm(alg)) { /*%< make sure alg is available */
               EREPORT(("dst_generate_key(): Algorithm %d not suppored\n", alg));
               return (NULL);
       }

       new_key = dst_s_get_key_struct(name, alg, flags, protocol, bits);
       if (new_key == NULL)
               return (NULL);
       if (bits == 0) /*%< null key we are done */
               return (new_key);
       if (new_key->dk_func == NULL || new_key->dk_func->generate == NULL) {
               EREPORT(("dst_generate_key_pair():Unsupported algorithm %d\n",
                        alg));
               return (dst_free_key(new_key));
       }
       if (new_key->dk_func->generate(new_key, exp) <= 0) {
               EREPORT(("dst_generate_key_pair(): Key generation failure %s %d %d %d\n",
                        new_key->dk_key_name, new_key->dk_alg,
                        new_key->dk_key_size, exp));
               return (dst_free_key(new_key));
       }

       dnslen = dst_key_to_dnskey(new_key, dns, sizeof(dns));
       if (dnslen != UNSUPPORTED_KEYALG)
               new_key->dk_id = dst_s_dns_key_id(dns, dnslen);
       else
               new_key->dk_id = 0;

       return (new_key);
}

/*%
*      Release all data structures pointed to by a key structure.
*
*  Parameters
*\li   f_key   Key structure to be freed.
*/

DST_KEY *
dst_free_key(DST_KEY *f_key)
{

       if (f_key == NULL)
               return (f_key);
       if (f_key->dk_func && f_key->dk_func->destroy)
               f_key->dk_KEY_struct =
                       f_key->dk_func->destroy(f_key->dk_KEY_struct);
       else {
               EREPORT(("dst_free_key(): Unknown key alg %d\n",
                        f_key->dk_alg));
       }
       if (f_key->dk_KEY_struct) {
               free(f_key->dk_KEY_struct);
               f_key->dk_KEY_struct = NULL;
       }
       if (f_key->dk_key_name)
               SAFE_FREE(f_key->dk_key_name);
       SAFE_FREE(f_key);
       return (NULL);
}

/*%
*      Return the maximim size of signature from the key specified in bytes
*
* Parameters
*\li      key
*
* Returns
*  \li   bytes
*/
int
dst_sig_size(DST_KEY *key) {
       switch (key->dk_alg) {
           case KEY_HMAC_MD5:
               return (16);
           case KEY_HMAC_SHA1:
               return (20);
           case KEY_RSA:
               return (key->dk_key_size + 7) / 8;
           case KEY_DSA:
               return (40);
           default:
               EREPORT(("dst_sig_size(): Unknown key alg %d\n", key->dk_alg));
               return -1;
       }
}

/*! \file */