/*      $NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $ */

/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)qdivrem.c   8.1 (Berkeley) 6/4/93";
#else
__RCSID("$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $");
#endif
#endif /* LIBC_SCCS and not lint */

/*
* Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
* section 4.3.1, pp. 257--259.
*/

#include "quad.h"

#define B       ((int)1 << (unsigned int)HALF_BITS)     /* digit base */

/* Combine two `digits' to make a single two-digit number. */
#define COMBINE(a, b) (((u_int)(a) << (unsigned int)HALF_BITS) | (b))

/* select a type for digits in base B: use unsigned short if they fit */
#if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
typedef unsigned short digit;
#else
typedef u_int digit;
#endif

static void shl(digit *p, int len, int sh);

/*
* __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
*
* We do this in base 2-sup-HALF_BITS, so that all intermediate products
* fit within u_int.  As a consequence, the maximum length dividend and
* divisor are 4 `digits' in this base (they are shorter if they have
* leading zeros).
*/
u_quad_t
__qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
{
       union uu tmp;
       digit *u, *v, *q;
       digit v1, v2;
       u_int qhat, rhat, t;
       int m, n, d, j, i;
       digit uspace[5], vspace[5], qspace[5];

       /*
        * Take care of special cases: divide by zero, and u < v.
        */
       if (vq == 0) {
               /* divide by zero. */
               static volatile const unsigned int zero = 0;

               tmp.ul[H] = tmp.ul[L] = 1 / zero;
               if (arq)
                       *arq = uq;
               return (tmp.q);
       }
       if (uq < vq) {
               if (arq)
                       *arq = uq;
               return (0);
       }
       u = &uspace[0];
       v = &vspace[0];
       q = &qspace[0];

       /*
        * Break dividend and divisor into digits in base B, then
        * count leading zeros to determine m and n.  When done, we
        * will have:
        *      u = (u[1]u[2]...u[m+n]) sub B
        *      v = (v[1]v[2]...v[n]) sub B
        *      v[1] != 0
        *      1 < n <= 4 (if n = 1, we use a different division algorithm)
        *      m >= 0 (otherwise u < v, which we already checked)
        *      m + n = 4
        * and thus
        *      m = 4 - n <= 2
        */
       tmp.uq = uq;
       u[0] = 0;
       u[1] = (digit)HHALF(tmp.ul[H]);
       u[2] = (digit)LHALF(tmp.ul[H]);
       u[3] = (digit)HHALF(tmp.ul[L]);
       u[4] = (digit)LHALF(tmp.ul[L]);
       tmp.uq = vq;
       v[1] = (digit)HHALF(tmp.ul[H]);
       v[2] = (digit)LHALF(tmp.ul[H]);
       v[3] = (digit)HHALF(tmp.ul[L]);
       v[4] = (digit)LHALF(tmp.ul[L]);
       for (n = 4; v[1] == 0; v++) {
               if (--n == 1) {
                       u_int rbj;      /* r*B+u[j] (not root boy jim) */
                       digit q1, q2, q3, q4;

                       /*
                        * Change of plan, per exercise 16.
                        *      r = 0;
                        *      for j = 1..4:
                        *              q[j] = floor((r*B + u[j]) / v),
                        *              r = (r*B + u[j]) % v;
                        * We unroll this completely here.
                        */
                       t = v[2];       /* nonzero, by definition */
                       q1 = (digit)(u[1] / t);
                       rbj = COMBINE(u[1] % t, u[2]);
                       q2 = (digit)(rbj / t);
                       rbj = COMBINE(rbj % t, u[3]);
                       q3 = (digit)(rbj / t);
                       rbj = COMBINE(rbj % t, u[4]);
                       q4 = (digit)(rbj / t);
                       if (arq)
                               *arq = rbj % t;
                       tmp.ul[H] = COMBINE(q1, q2);
                       tmp.ul[L] = COMBINE(q3, q4);
                       return (tmp.q);
               }
       }

       /*
        * By adjusting q once we determine m, we can guarantee that
        * there is a complete four-digit quotient at &qspace[1] when
        * we finally stop.
        */
       for (m = 4 - n; u[1] == 0; u++)
               m--;
       for (i = 4 - m; --i >= 0;)
               q[i] = 0;
       q += 4 - m;

       /*
        * Here we run Program D, translated from MIX to C and acquiring
        * a few minor changes.
        *
        * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
        */
       d = 0;
       for (t = v[1]; t < B / 2; t <<= (unsigned int)1)
               d++;
       if (d > 0) {
               shl(&u[0], m + n, d);           /* u <<= d */
               shl(&v[1], n - 1, d);           /* v <<= d */
       }
       /*
        * D2: j = 0.
        */
       j = 0;
       v1 = v[1];      /* for D3 -- note that v[1..n] are constant */
       v2 = v[2];      /* for D3 */
       do {
               digit uj0, uj1, uj2;

               /*
                * D3: Calculate qhat (\^q, in TeX notation).
                * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
                * let rhat = (u[j]*B + u[j+1]) mod v[1].
                * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
                * decrement qhat and increase rhat correspondingly.
                * Note that if rhat >= B, v[2]*qhat < rhat*B.
                */
               uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
               uj1 = u[j + 1]; /* for D3 only */
               uj2 = u[j + 2]; /* for D3 only */
               if (uj0 == v1) {
                       qhat = B;
                       rhat = uj1;
                       goto qhat_too_big;
               } else {
                       u_int nn = COMBINE(uj0, uj1);
                       qhat = nn / v1;
                       rhat = nn % v1;
               }
               while (v2 * qhat > COMBINE(rhat, uj2)) {
       qhat_too_big:
                       qhat--;
                       if ((rhat += v1) >= B)
                               break;
               }
               /*
                * D4: Multiply and subtract.
                * The variable `t' holds any borrows across the loop.
                * We split this up so that we do not require v[0] = 0,
                * and to eliminate a final special case.
                */
               for (t = 0, i = n; i > 0; i--) {
                       t = u[i + j] - v[i] * qhat - t;
                       u[i + j] = (digit)LHALF(t);
                       t = (B - HHALF(t)) & (B - 1);
               }
               t = u[j] - t;
               u[j] = (digit)LHALF(t);
               /*
                * D5: test remainder.
                * There is a borrow if and only if HHALF(t) is nonzero;
                * in that (rare) case, qhat was too large (by exactly 1).
                * Fix it by adding v[1..n] to u[j..j+n].
                */
               if (HHALF(t)) {
                       qhat--;
                       for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
                               t += u[i + j] + v[i];
                               u[i + j] = (digit)LHALF(t);
                               t = HHALF(t);
                       }
                       u[j] = (digit)LHALF(u[j] + t);
               }
               q[j] = (digit)qhat;
       } while (++j <= m);             /* D7: loop on j. */

       /*
        * If caller wants the remainder, we have to calculate it as
        * u[m..m+n] >> d (this is at most n digits and thus fits in
        * u[m+1..m+n], but we may need more source digits).
        */
       if (arq) {
               if (d) {
                       for (i = m + n; i > m; --i)
                               u[i] = (digit)(((u_int)u[i] >> d) |
                                   LHALF((u_int)u[i - 1] << (unsigned int)(HALF_BITS - d)));
                       u[i] = 0;
               }
               tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
               tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
               *arq = tmp.q;
       }

       tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
       tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
       return (tmp.q);
}

/*
* Shift p[0]..p[len] left `sh' bits, ignoring any bits that
* `fall out' the left (there never will be any such anyway).
* We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
*/
static void
shl(digit *p, int len, int sh)
{
       int i;

       for (i = 0; i < len; i++)
               p[i] = (digit)(LHALF((u_int)p[i] << sh) |
                   ((u_int)p[i + 1] >> (HALF_BITS - sh)));
       p[i] = (digit)(LHALF((u_int)p[i] << sh));
}