/*      $NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $  */

/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)muldi3.c    8.1 (Berkeley) 6/4/93";
#else
__RCSID("$NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $");
#endif
#endif /* LIBC_SCCS and not lint */

#include "quad.h"

ARM_EABI_ALIAS(__aeabi_lmul, __muldi3)  /* no semicolon */

/*
* Multiply two quads.
*
* Our algorithm is based on the following.  Split incoming quad values
* u and v (where u,v >= 0) into
*
*      u = 2^n u1  *  u0       (n = number of bits in `u_int', usu. 32)
*
* and
*
*      v = 2^n v1  *  v0
*
* Then
*
*      uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
*         = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
*
* Now add 2^n u1 v1 to the first term and subtract it from the middle,
* and add 2^n u0 v0 to the last term and subtract it from the middle.
* This gives:
*
*      uv = (2^2n + 2^n) (u1 v1)  +
*               (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
*             (2^n + 1)  (u0 v0)
*
* Factoring the middle a bit gives us:
*
*      uv = (2^2n + 2^n) (u1 v1)  +                    [u1v1 = high]
*               (2^n)    (u1 - u0) (v0 - v1)  +        [(u1-u0)... = mid]
*             (2^n + 1)  (u0 v0)                       [u0v0 = low]
*
* The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
* in just half the precision of the original.  (Note that either or both
* of (u1 - u0) or (v0 - v1) may be negative.)
*
* This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
*
* Since C does not give us a `int * int = quad' operator, we split
* our input quads into two ints, then split the two ints into two
* shorts.  We can then calculate `short * short = int' in native
* arithmetic.
*
* Our product should, strictly speaking, be a `long quad', with 128
* bits, but we are going to discard the upper 64.  In other words,
* we are not interested in uv, but rather in (uv mod 2^2n).  This
* makes some of the terms above vanish, and we get:
*
*      (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
*
* or
*
*      (2^n)(high + mid + low) + low
*
* Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
* of 2^n in either one will also vanish.  Only `low' need be computed
* mod 2^2n, and only because of the final term above.
*/
static quad_t __lmulq(u_int, u_int);

quad_t
__muldi3(quad_t a, quad_t b)
{
       union uu u, v, low, prod;
       u_int high, mid, udiff, vdiff;
       int negall, negmid;
#define u1      u.ul[H]
#define u0      u.ul[L]
#define v1      v.ul[H]
#define v0      v.ul[L]

       /*
        * Get u and v such that u, v >= 0.  When this is finished,
        * u1, u0, v1, and v0 will be directly accessible through the
        * int fields.
        */
       if (a >= 0)
               u.q = a, negall = 0;
       else
               u.q = -a, negall = 1;
       if (b >= 0)
               v.q = b;
       else
               v.q = -b, negall ^= 1;

       if (u1 == 0 && v1 == 0) {
               /*
                * An (I hope) important optimization occurs when u1 and v1
                * are both 0.  This should be common since most numbers
                * are small.  Here the product is just u0*v0.
                */
               prod.q = __lmulq(u0, v0);
       } else {
               /*
                * Compute the three intermediate products, remembering
                * whether the middle term is negative.  We can discard
                * any upper bits in high and mid, so we can use native
                * u_int * u_int => u_int arithmetic.
                */
               low.q = __lmulq(u0, v0);

               if (u1 >= u0)
                       negmid = 0, udiff = u1 - u0;
               else
                       negmid = 1, udiff = u0 - u1;
               if (v0 >= v1)
                       vdiff = v0 - v1;
               else
                       vdiff = v1 - v0, negmid ^= 1;
               mid = udiff * vdiff;

               high = u1 * v1;

               /*
                * Assemble the final product.
                */
               prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
                   low.ul[H];
               prod.ul[L] = low.ul[L];
       }
       return (negall ? -prod.q : prod.q);
#undef u1
#undef u0
#undef v1
#undef v0
}

/*
* Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
* the number of bits in an int (whatever that is---the code below
* does not care as long as quad.h does its part of the bargain---but
* typically N==16).
*
* We use the same algorithm from Knuth, but this time the modulo refinement
* does not apply.  On the other hand, since N is half the size of an int,
* we can get away with native multiplication---none of our input terms
* exceeds (UINT_MAX >> 1).
*
* Note that, for u_int l, the quad-precision result
*
*      l << N
*
* splits into high and low ints as HHALF(l) and LHUP(l) respectively.
*/
static quad_t
__lmulq(u_int u, u_int v)
{
       u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
       u_int prodh, prodl, was;
       union uu prod;
       int neg;

       u1 = HHALF(u);
       u0 = LHALF(u);
       v1 = HHALF(v);
       v0 = LHALF(v);

       low = u0 * v0;

       /* This is the same small-number optimization as before. */
       if (u1 == 0 && v1 == 0)
               return (low);

       if (u1 >= u0)
               udiff = u1 - u0, neg = 0;
       else
               udiff = u0 - u1, neg = 1;
       if (v0 >= v1)
               vdiff = v0 - v1;
       else
               vdiff = v1 - v0, neg ^= 1;
       mid = udiff * vdiff;

       high = u1 * v1;

       /* prod = (high << 2N) + (high << N); */
       prodh = high + HHALF(high);
       prodl = LHUP(high);

       /* if (neg) prod -= mid << N; else prod += mid << N; */
       if (neg) {
               was = prodl;
               prodl -= LHUP(mid);
               prodh -= HHALF(mid) + (prodl > was);
       } else {
               was = prodl;
               prodl += LHUP(mid);
               prodh += HHALF(mid) + (prodl < was);
       }

       /* prod += low << N */
       was = prodl;
       prodl += LHUP(low);
       prodh += HHALF(low) + (prodl < was);
       /* ... + low; */
       if ((prodl += low) < low)
               prodh++;

       /* return 4N-bit product */
       prod.ul[H] = prodh;
       prod.ul[L] = prodl;
       return (prod.q);
}