/*      $NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $        */

/*-
* Copyright (c) 2015 Taylor R. Campbell
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* SHA-3: FIPS-202, Permutation-Based Hash and Extendable-Output Functions
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>

#if defined(_KERNEL) || defined(_STANDALONE)

__KERNEL_RCSID(0, "$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");
#include <lib/libkern/libkern.h>

#define SHA3_ASSERT     KASSERT

#else

__RCSID("$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");

#include "namespace.h"

#include <assert.h>
#include <string.h>

#define SHA3_ASSERT     _DIAGASSERT

#endif

#include <sys/endian.h>
#include <sys/sha3.h>

#include "keccak.h"

/* XXX Disabled for now -- these will be libc-private.  */
#if 0 && !defined(_KERNEL) && !defined(_STANDALONE)
#ifdef __weak_alias
__weak_alias(SHA3_224_Init,_SHA3_224_Init)
__weak_alias(SHA3_224_Update,_SHA3_224_Update)
__weak_alias(SHA3_224_Final,_SHA3_224_Final)
__weak_alias(SHA3_256_Init,_SHA3_256_Init)
__weak_alias(SHA3_256_Update,_SHA3_256_Update)
__weak_alias(SHA3_256_Final,_SHA3_256_Final)
__weak_alias(SHA3_384_Init,_SHA3_384_Init)
__weak_alias(SHA3_384_Update,_SHA3_384_Update)
__weak_alias(SHA3_384_Final,_SHA3_384_Final)
__weak_alias(SHA3_512_Init,_SHA3_512_Init)
__weak_alias(SHA3_512_Update,_SHA3_512_Update)
__weak_alias(SHA3_512_Final,_SHA3_512_Final)
__weak_alias(SHA3_Selftest,_SHA3_Selftest)
__weak_alias(SHAKE128_Init,_SHAKE128_Init)
__weak_alias(SHAKE128_Update,_SHAKE128_Update)
__weak_alias(SHAKE128_Final,_SHAKE128_Final)
__weak_alias(SHAKE256_Init,_SHAKE256_Init)
__weak_alias(SHAKE256_Update,_SHAKE256_Update)
__weak_alias(SHAKE256_Final,_SHAKE256_Final)
#endif  /* __weak_alias */
#endif  /* kernel/standalone */

#define MIN(a,b)        ((a) < (b) ? (a) : (b))
#define arraycount(a)   (sizeof(a)/sizeof((a)[0]))

/*
* Common body.  All the SHA-3 functions share code structure.  They
* differ only in the size of the chunks they split the message into:
* for digest size d, they are split into chunks of 200 - d bytes.
*/

static inline unsigned
sha3_rate(unsigned d)
{
       const unsigned cw = 2*d/8;      /* capacity in words */

       return 25 - cw;
}

static void
sha3_init(struct sha3 *C, unsigned rw)
{
       unsigned iw;

       C->nb = 8*rw;
       for (iw = 0; iw < 25; iw++)
               C->A[iw] = 0;
}

static void
sha3_update(struct sha3 *C, const uint8_t *data, size_t len, unsigned rw)
{
       uint64_t T;
       unsigned ib, iw;                /* index of byte/word */

       assert(0 < C->nb);

       /* If there's a partial word, try to fill it.  */
       if ((C->nb % 8) != 0) {
               T = 0;
               for (ib = 0; ib < MIN(len, C->nb % 8); ib++)
                       T |= (uint64_t)data[ib] << (8*ib);
               C->A[rw - (C->nb + 7)/8] ^= T << (8*(8 - (C->nb % 8)));
               C->nb -= ib;
               data += ib;
               len -= ib;

               /* If we filled the buffer, permute now.  */
               if (C->nb == 0) {
                       keccakf1600(C->A);
                       C->nb = 8*rw;
               }

               /* If that exhausted the input, we're done.  */
               if (len == 0)
                       return;
       }

       /* At a word boundary.  Fill any partial buffer.  */
       assert((C->nb % 8) == 0);
       if (C->nb < 8*rw) {
               for (iw = 0; iw < MIN(len, C->nb)/8; iw++)
                       C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
               C->nb -= 8*iw;
               data += 8*iw;
               len -= 8*iw;

               /* If we filled the buffer, permute now.  */
               if (C->nb == 0) {
                       keccakf1600(C->A);
                       C->nb = 8*rw;
               } else {
                       /* Otherwise, less than a word left.  */
                       assert(len < 8);
                       goto partial;
               }
       }

       /* At a buffer boundary.  Absorb input one buffer at a time.  */
       assert(C->nb == 8*rw);
       while (8*rw <= len) {
               for (iw = 0; iw < rw; iw++)
                       C->A[iw] ^= le64dec(data + 8*iw);
               keccakf1600(C->A);
               data += 8*rw;
               len -= 8*rw;
       }

       /* Partially fill the buffer with as many words as we can.  */
       for (iw = 0; iw < len/8; iw++)
               C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
       C->nb -= 8*iw;
       data += 8*iw;
       len -= 8*iw;

partial:
       /* Partially fill the last word with as many bytes as we can.  */
       assert(len < 8);
       assert(0 < C->nb);
       assert((C->nb % 8) == 0);
       T = 0;
       for (ib = 0; ib < len; ib++)
               T |= (uint64_t)data[ib] << (8*ib);
       C->A[rw - C->nb/8] ^= T;
       C->nb -= ib;
       assert(0 < C->nb);
}

static void
sha3_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
{
       unsigned nw, iw;

       assert(d <= 8*25);
       assert(0 < C->nb);

       /* Append 01, pad with 10*1 up to buffer boundary, LSB first.  */
       nw = (C->nb + 7)/8;
       assert(0 < nw);
       assert(nw <= rw);
       C->A[rw - nw] ^= (uint64_t)0x06 << (8*(8*nw - C->nb));
       C->A[rw - 1] ^= 0x8000000000000000ULL;

       /* Permute one last time.  */
       keccakf1600(C->A);

       /* Reveal the first 8d bits of state, forget 1600-8d of them.  */
       for (iw = 0; iw < d/8; iw++)
               le64enc(h + 8*iw, C->A[iw]);
       h += 8*iw;
       d -= 8*iw;
       if (0 < d) {
               /* For SHA3-224, we need to expose a partial word.  */
               uint64_t T = C->A[iw];
               do {
                       *h++ = T & 0xff;
                       T >>= 8;
               } while (--d);
       }
       (void)explicit_memset(C->A, 0, sizeof C->A);
       C->nb = 0;
}

static void
shake_final(uint8_t *h, size_t d, struct sha3 *C, unsigned rw)
{
       unsigned nw, iw;

       assert(0 < C->nb);

       /* Append 1111, pad with 10*1 up to buffer boundary, LSB first.  */
       nw = (C->nb + 7)/8;
       assert(0 < nw);
       assert(nw <= rw);
       C->A[rw - nw] ^= (uint64_t)0x1f << (8*(8*nw - C->nb));
       C->A[rw - 1] ^= 0x8000000000000000ULL;

       /* Permute, reveal first rw words of state, repeat.  */
       while (8*rw <= d) {
               keccakf1600(C->A);
               for (iw = 0; iw < rw; iw++)
                       le64enc(h + 8*iw, C->A[iw]);
               h += 8*iw;
               d -= 8*iw;
       }

       /*
        * If 8*rw (the output rate in bytes) does not divide d, more
        * words are wanted: permute again and reveal a little more.
        */
       if (0 < d) {
               keccakf1600(C->A);
               for (iw = 0; iw < d/8; iw++)
                       le64enc(h + 8*iw, C->A[iw]);
               h += 8*iw;
               d -= 8*iw;

               /*
                * If 8 does not divide d, more bytes are wanted:
                * reveal them.
                */
               if (0 < d) {
                       uint64_t T = C->A[iw];
                       do {
                               *h++ = T & 0xff;
                               T >>= 8;
                       } while (--d);
               }
       }

       (void)explicit_memset(C->A, 0, sizeof C->A);
       C->nb = 0;
}

void
SHA3_224_Init(SHA3_224_CTX *C)
{

       sha3_init(&C->C224, sha3_rate(SHA3_224_DIGEST_LENGTH));
}

void
SHA3_224_Update(SHA3_224_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C224, data, len, sha3_rate(SHA3_224_DIGEST_LENGTH));
}

void
SHA3_224_Final(uint8_t h[SHA3_224_DIGEST_LENGTH], SHA3_224_CTX *C)
{

       sha3_final(h, SHA3_224_DIGEST_LENGTH, &C->C224,
           sha3_rate(SHA3_224_DIGEST_LENGTH));
}

void
SHA3_256_Init(SHA3_256_CTX *C)
{

       sha3_init(&C->C256, sha3_rate(SHA3_256_DIGEST_LENGTH));
}

void
SHA3_256_Update(SHA3_256_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C256, data, len, sha3_rate(SHA3_256_DIGEST_LENGTH));
}

void
SHA3_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH], SHA3_256_CTX *C)
{

       sha3_final(h, SHA3_256_DIGEST_LENGTH, &C->C256,
           sha3_rate(SHA3_256_DIGEST_LENGTH));
}

void
SHA3_384_Init(SHA3_384_CTX *C)
{

       sha3_init(&C->C384, sha3_rate(SHA3_384_DIGEST_LENGTH));
}

void
SHA3_384_Update(SHA3_384_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C384, data, len, sha3_rate(SHA3_384_DIGEST_LENGTH));
}

void
SHA3_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH], SHA3_384_CTX *C)
{

       sha3_final(h, SHA3_384_DIGEST_LENGTH, &C->C384,
           sha3_rate(SHA3_384_DIGEST_LENGTH));
}

void
SHA3_512_Init(SHA3_512_CTX *C)
{

       sha3_init(&C->C512, sha3_rate(SHA3_512_DIGEST_LENGTH));
}

void
SHA3_512_Update(SHA3_512_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C512, data, len, sha3_rate(SHA3_512_DIGEST_LENGTH));
}

void
SHA3_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH], SHA3_512_CTX *C)
{

       sha3_final(h, SHA3_512_DIGEST_LENGTH, &C->C512,
           sha3_rate(SHA3_512_DIGEST_LENGTH));
}

void
SHAKE128_Init(SHAKE128_CTX *C)
{

       sha3_init(&C->C128, sha3_rate(128/8));
}

void
SHAKE128_Update(SHAKE128_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C128, data, len, sha3_rate(128/8));
}

void
SHAKE128_Final(uint8_t *h, size_t d, SHAKE128_CTX *C)
{

       shake_final(h, d, &C->C128, sha3_rate(128/8));
}

void
SHAKE256_Init(SHAKE256_CTX *C)
{

       sha3_init(&C->C256, sha3_rate(256/8));
}

void
SHAKE256_Update(SHAKE256_CTX *C, const uint8_t *data, size_t len)
{

       sha3_update(&C->C256, data, len, sha3_rate(256/8));
}

void
SHAKE256_Final(uint8_t *h, size_t d, SHAKE256_CTX *C)
{

       shake_final(h, d, &C->C256, sha3_rate(256/8));
}

static void
sha3_selftest_prng(void *buf, size_t len, uint32_t seed)
{
       uint8_t *p = buf;
       size_t n = len;
       uint32_t t, a, b;

       a = 0xdead4bad * seed;
       b = 1;

       while (n--) {
               t = a + b;
               *p++ = t >> 24;
               a = b;
               b = t;
       }
}

int
SHA3_Selftest(void)
{
       static const uint8_t d224_0[] = { /* SHA3-224(0-bit) */
               0x6b,0x4e,0x03,0x42,0x36,0x67,0xdb,0xb7,
               0x3b,0x6e,0x15,0x45,0x4f,0x0e,0xb1,0xab,
               0xd4,0x59,0x7f,0x9a,0x1b,0x07,0x8e,0x3f,
               0x5b,0x5a,0x6b,0xc7,
       };
       static const uint8_t d256_0[] = { /* SHA3-256(0-bit) */
               0xa7,0xff,0xc6,0xf8,0xbf,0x1e,0xd7,0x66,
               0x51,0xc1,0x47,0x56,0xa0,0x61,0xd6,0x62,
               0xf5,0x80,0xff,0x4d,0xe4,0x3b,0x49,0xfa,
               0x82,0xd8,0x0a,0x4b,0x80,0xf8,0x43,0x4a,
       };
       static const uint8_t d384_0[] = { /* SHA3-384(0-bit) */
               0x0c,0x63,0xa7,0x5b,0x84,0x5e,0x4f,0x7d,
               0x01,0x10,0x7d,0x85,0x2e,0x4c,0x24,0x85,
               0xc5,0x1a,0x50,0xaa,0xaa,0x94,0xfc,0x61,
               0x99,0x5e,0x71,0xbb,0xee,0x98,0x3a,0x2a,
               0xc3,0x71,0x38,0x31,0x26,0x4a,0xdb,0x47,
               0xfb,0x6b,0xd1,0xe0,0x58,0xd5,0xf0,0x04,
       };
       static const uint8_t d512_0[] = { /* SHA3-512(0-bit) */
               0xa6,0x9f,0x73,0xcc,0xa2,0x3a,0x9a,0xc5,
               0xc8,0xb5,0x67,0xdc,0x18,0x5a,0x75,0x6e,
               0x97,0xc9,0x82,0x16,0x4f,0xe2,0x58,0x59,
               0xe0,0xd1,0xdc,0xc1,0x47,0x5c,0x80,0xa6,
               0x15,0xb2,0x12,0x3a,0xf1,0xf5,0xf9,0x4c,
               0x11,0xe3,0xe9,0x40,0x2c,0x3a,0xc5,0x58,
               0xf5,0x00,0x19,0x9d,0x95,0xb6,0xd3,0xe3,
               0x01,0x75,0x85,0x86,0x28,0x1d,0xcd,0x26,
       };
       static const uint8_t shake128_0_41[] = { /* SHAKE128(0-bit, 41) */
               0x7f,0x9c,0x2b,0xa4,0xe8,0x8f,0x82,0x7d,
               0x61,0x60,0x45,0x50,0x76,0x05,0x85,0x3e,
               0xd7,0x3b,0x80,0x93,0xf6,0xef,0xbc,0x88,
               0xeb,0x1a,0x6e,0xac,0xfa,0x66,0xef,0x26,
               0x3c,0xb1,0xee,0xa9,0x88,0x00,0x4b,0x93,0x10,
       };
       static const uint8_t shake256_0_73[] = { /* SHAKE256(0-bit, 73) */
               0x46,0xb9,0xdd,0x2b,0x0b,0xa8,0x8d,0x13,
               0x23,0x3b,0x3f,0xeb,0x74,0x3e,0xeb,0x24,
               0x3f,0xcd,0x52,0xea,0x62,0xb8,0x1b,0x82,
               0xb5,0x0c,0x27,0x64,0x6e,0xd5,0x76,0x2f,
               0xd7,0x5d,0xc4,0xdd,0xd8,0xc0,0xf2,0x00,
               0xcb,0x05,0x01,0x9d,0x67,0xb5,0x92,0xf6,
               0xfc,0x82,0x1c,0x49,0x47,0x9a,0xb4,0x86,
               0x40,0x29,0x2e,0xac,0xb3,0xb7,0xc4,0xbe,
               0x14,0x1e,0x96,0x61,0x6f,0xb1,0x39,0x57,0x69,
       };
       static const uint8_t d224_1600[] = { /* SHA3-224(200 * 0xa3) */
               0x93,0x76,0x81,0x6a,0xba,0x50,0x3f,0x72,
               0xf9,0x6c,0xe7,0xeb,0x65,0xac,0x09,0x5d,
               0xee,0xe3,0xbe,0x4b,0xf9,0xbb,0xc2,0xa1,
               0xcb,0x7e,0x11,0xe0,
       };
       static const uint8_t d256_1600[] = { /* SHA3-256(200 * 0xa3) */
               0x79,0xf3,0x8a,0xde,0xc5,0xc2,0x03,0x07,
               0xa9,0x8e,0xf7,0x6e,0x83,0x24,0xaf,0xbf,
               0xd4,0x6c,0xfd,0x81,0xb2,0x2e,0x39,0x73,
               0xc6,0x5f,0xa1,0xbd,0x9d,0xe3,0x17,0x87,
       };
       static const uint8_t d384_1600[] = { /* SHA3-384(200 * 0xa3) */
               0x18,0x81,0xde,0x2c,0xa7,0xe4,0x1e,0xf9,
               0x5d,0xc4,0x73,0x2b,0x8f,0x5f,0x00,0x2b,
               0x18,0x9c,0xc1,0xe4,0x2b,0x74,0x16,0x8e,
               0xd1,0x73,0x26,0x49,0xce,0x1d,0xbc,0xdd,
               0x76,0x19,0x7a,0x31,0xfd,0x55,0xee,0x98,
               0x9f,0x2d,0x70,0x50,0xdd,0x47,0x3e,0x8f,
       };
       static const uint8_t d512_1600[] = { /* SHA3-512(200 * 0xa3) */
               0xe7,0x6d,0xfa,0xd2,0x20,0x84,0xa8,0xb1,
               0x46,0x7f,0xcf,0x2f,0xfa,0x58,0x36,0x1b,
               0xec,0x76,0x28,0xed,0xf5,0xf3,0xfd,0xc0,
               0xe4,0x80,0x5d,0xc4,0x8c,0xae,0xec,0xa8,
               0x1b,0x7c,0x13,0xc3,0x0a,0xdf,0x52,0xa3,
               0x65,0x95,0x84,0x73,0x9a,0x2d,0xf4,0x6b,
               0xe5,0x89,0xc5,0x1c,0xa1,0xa4,0xa8,0x41,
               0x6d,0xf6,0x54,0x5a,0x1c,0xe8,0xba,0x00,
       };
       static const uint8_t shake128_1600_41[] = {
               /* SHAKE128(200 * 0xa3, 41) */
               0x13,0x1a,0xb8,0xd2,0xb5,0x94,0x94,0x6b,
               0x9c,0x81,0x33,0x3f,0x9b,0xb6,0xe0,0xce,
               0x75,0xc3,0xb9,0x31,0x04,0xfa,0x34,0x69,
               0xd3,0x91,0x74,0x57,0x38,0x5d,0xa0,0x37,
               0xcf,0x23,0x2e,0xf7,0x16,0x4a,0x6d,0x1e,0xb4,
       };
       static const uint8_t shake256_1600_73[] = {
               /* SHAKE256(200 * 0xa3, 73) */
               0xcd,0x8a,0x92,0x0e,0xd1,0x41,0xaa,0x04,
               0x07,0xa2,0x2d,0x59,0x28,0x86,0x52,0xe9,
               0xd9,0xf1,0xa7,0xee,0x0c,0x1e,0x7c,0x1c,
               0xa6,0x99,0x42,0x4d,0xa8,0x4a,0x90,0x4d,
               0x2d,0x70,0x0c,0xaa,0xe7,0x39,0x6e,0xce,
               0x96,0x60,0x44,0x40,0x57,0x7d,0xa4,0xf3,
               0xaa,0x22,0xae,0xb8,0x85,0x7f,0x96,0x1c,
               0x4c,0xd8,0xe0,0x6f,0x0a,0xe6,0x61,0x0b,
               0x10,0x48,0xa7,0xf6,0x4e,0x10,0x74,0xcd,0x62,
       };
       static const uint8_t d0[] = {
               0x5d,0x3e,0x45,0xdd,0x9b,0x6b,0xda,0xf8,
               0xe6,0xe6,0xb8,0x72,0xfb,0xc5,0x0d,0x0a,
               0x4f,0x52,0x65,0xb4,0x11,0xf1,0xa1,0x0c,
               0x00,0xa4,0x74,0x6c,0x0f,0xc0,0xdc,0xe0,
               0x97,0x73,0xd6,0x70,0xaf,0xd4,0x64,0x0b,
               0x8c,0x52,0x32,0x4c,0x87,0x8c,0xfa,0x4a,
               0xdc,0x11,0x66,0x91,0x66,0x5a,0x1e,0xa4,
               0xd6,0x69,0x97,0xc7,0xcb,0xe2,0x73,0xca,
       };
       static const unsigned mlen[] = { 0, 3, 128, 129, 255 };
       uint8_t m[255], d[73];
       struct sha3 sha3;
       SHA3_224_CTX *sha3224 = (SHA3_224_CTX *)&sha3;
       SHA3_256_CTX *sha3256 = (SHA3_256_CTX *)&sha3;
       SHA3_384_CTX *sha3384 = (SHA3_384_CTX *)&sha3;
       SHA3_512_CTX *sha3512 = (SHA3_512_CTX *)&sha3;
       SHAKE128_CTX *shake128 = (SHAKE128_CTX *)&sha3;
       SHAKE256_CTX *shake256 = (SHAKE256_CTX *)&sha3;
       SHA3_512_CTX ctx;
       unsigned mi;

       /*
        * NIST test vectors from
        * <http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing>:
        * 0-bit, 1600-bit repeated 0xa3 (= 0b10100011).
        */
       SHA3_224_Init(sha3224);
       SHA3_224_Final(d, sha3224);
       if (memcmp(d, d224_0, 28) != 0)
               return -1;
       SHA3_256_Init(sha3256);
       SHA3_256_Final(d, sha3256);
       if (memcmp(d, d256_0, 32) != 0)
               return -1;
       SHA3_384_Init(sha3384);
       SHA3_384_Final(d, sha3384);
       if (memcmp(d, d384_0, 48) != 0)
               return -1;
       SHA3_512_Init(sha3512);
       SHA3_512_Final(d, sha3512);
       if (memcmp(d, d512_0, 64) != 0)
               return -1;
       SHAKE128_Init(shake128);
       SHAKE128_Final(d, 41, shake128);
       if (memcmp(d, shake128_0_41, 41) != 0)
               return -1;
       SHAKE256_Init(shake256);
       SHAKE256_Final(d, 73, shake256);
       if (memcmp(d, shake256_0_73, 73) != 0)
               return -1;

       (void)memset(m, 0xa3, 200);
       SHA3_224_Init(sha3224);
       SHA3_224_Update(sha3224, m, 200);
       SHA3_224_Final(d, sha3224);
       if (memcmp(d, d224_1600, 28) != 0)
               return -1;
       SHA3_256_Init(sha3256);
       SHA3_256_Update(sha3256, m, 200);
       SHA3_256_Final(d, sha3256);
       if (memcmp(d, d256_1600, 32) != 0)
               return -1;
       SHA3_384_Init(sha3384);
       SHA3_384_Update(sha3384, m, 200);
       SHA3_384_Final(d, sha3384);
       if (memcmp(d, d384_1600, 48) != 0)
               return -1;
       SHA3_512_Init(sha3512);
       SHA3_512_Update(sha3512, m, 200);
       SHA3_512_Final(d, sha3512);
       if (memcmp(d, d512_1600, 64) != 0)
               return -1;
       SHAKE128_Init(shake128);
       SHAKE128_Update(shake128, m, 200);
       SHAKE128_Final(d, 41, shake128);
       if (memcmp(d, shake128_1600_41, 41) != 0)
               return -1;
       SHAKE256_Init(shake256);
       SHAKE256_Update(shake256, m, 200);
       SHAKE256_Final(d, 73, shake256);
       if (memcmp(d, shake256_1600_73, 73) != 0)
               return -1;

       /*
        * Hand-crufted test vectors with unaligned message lengths.
        */
       SHA3_512_Init(&ctx);
       for (mi = 0; mi < arraycount(mlen); mi++) {
               sha3_selftest_prng(m, mlen[mi], (224/8)*mlen[mi]);
               SHA3_224_Init(sha3224);
               SHA3_224_Update(sha3224, m, mlen[mi]);
               SHA3_224_Final(d, sha3224);
               SHA3_512_Update(&ctx, d, 224/8);
       }
       for (mi = 0; mi < arraycount(mlen); mi++) {
               sha3_selftest_prng(m, mlen[mi], (256/8)*mlen[mi]);
               SHA3_256_Init(sha3256);
               SHA3_256_Update(sha3256, m, mlen[mi]);
               SHA3_256_Final(d, sha3256);
               SHA3_512_Update(&ctx, d, 256/8);
       }
       for (mi = 0; mi < arraycount(mlen); mi++) {
               sha3_selftest_prng(m, mlen[mi], (384/8)*mlen[mi]);
               SHA3_384_Init(sha3384);
               SHA3_384_Update(sha3384, m, mlen[mi]);
               SHA3_384_Final(d, sha3384);
               SHA3_512_Update(&ctx, d, 384/8);
       }
       for (mi = 0; mi < arraycount(mlen); mi++) {
               sha3_selftest_prng(m, mlen[mi], (512/8)*mlen[mi]);
               SHA3_512_Init(sha3512);
               SHA3_512_Update(sha3512, m, mlen[mi]);
               SHA3_512_Final(d, sha3512);
               SHA3_512_Update(&ctx, d, 512/8);
       }
       SHA3_512_Final(d, &ctx);
       if (memcmp(d, d0, 64) != 0)
               return -1;

       return 0;
}