/* $NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $ */
/*      $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $    */

/*
* sha2.c
*
* Version 1.0.0beta1
*
* Written by Aaron D. Gifford <[email protected]>
*
* Copyright 2000 Aaron D. Gifford.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>

#if defined(_KERNEL) || defined(_STANDALONE)
__KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $");

#include <sys/param.h>  /* XXX: to pull <machine/macros.h> for vax memset(9) */
#include <lib/libkern/libkern.h>

#else

#if defined(LIBC_SCCS) && !defined(lint)
__RCSID("$NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $");
#endif /* LIBC_SCCS and not lint */

#include "namespace.h"
#include <string.h>

#endif

#ifndef _LIBC_INTERNAL
#define _LIBC_INTERNAL
#endif

#include <sys/types.h>
#include <sys/sha2.h>

#if HAVE_SYS_ENDIAN_H
# include <sys/endian.h>
#endif

/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)

/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n)  { \
       (w)[0] += (uint64_t)(n); \
       if ((w)[0] < (n)) { \
               (w)[1]++; \
       } \
}

/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
*   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
*   S is a ROTATION) because the SHA-256/384/512 description document
*   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
*   same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x)          ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))

/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))

/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
#define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))

/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
static void SHA512_Last(SHA512_CTX *);


/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const uint32_t K256[64] = {
       0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
       0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
       0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
       0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
       0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
       0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
       0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
       0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
       0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
       0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
       0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
       0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
       0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
       0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
       0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
       0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

/* Initial hash value H for SHA-224: */
static const uint32_t sha224_initial_hash_value[8] = {
       0xc1059ed8UL,
       0x367cd507UL,
       0x3070dd17UL,
       0xf70e5939UL,
       0xffc00b31UL,
       0x68581511UL,
       0x64f98fa7UL,
       0xbefa4fa4UL
};

/* Initial hash value H for SHA-256: */
static const uint32_t sha256_initial_hash_value[8] = {
       0x6a09e667UL,
       0xbb67ae85UL,
       0x3c6ef372UL,
       0xa54ff53aUL,
       0x510e527fUL,
       0x9b05688cUL,
       0x1f83d9abUL,
       0x5be0cd19UL
};

/* Hash constant words K for SHA-384 and SHA-512: */
static const uint64_t K512[80] = {
       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
       0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
       0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
       0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
       0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
       0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
       0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
       0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
       0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
       0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
       0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
       0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
       0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
       0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
       0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
       0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
       0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
       0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
       0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
       0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
       0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
       0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
       0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
       0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
       0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
       0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
       0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
       0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
       0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
       0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
       0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};

/* Initial hash value H for SHA-384 */
static const uint64_t sha384_initial_hash_value[8] = {
       0xcbbb9d5dc1059ed8ULL,
       0x629a292a367cd507ULL,
       0x9159015a3070dd17ULL,
       0x152fecd8f70e5939ULL,
       0x67332667ffc00b31ULL,
       0x8eb44a8768581511ULL,
       0xdb0c2e0d64f98fa7ULL,
       0x47b5481dbefa4fa4ULL
};

/* Initial hash value H for SHA-512 */
static const uint64_t sha512_initial_hash_value[8] = {
       0x6a09e667f3bcc908ULL,
       0xbb67ae8584caa73bULL,
       0x3c6ef372fe94f82bULL,
       0xa54ff53a5f1d36f1ULL,
       0x510e527fade682d1ULL,
       0x9b05688c2b3e6c1fULL,
       0x1f83d9abfb41bd6bULL,
       0x5be0cd19137e2179ULL
};

#if !defined(_KERNEL) && !defined(_STANDALONE)
#if defined(__weak_alias)
__weak_alias(SHA224_Init,_SHA224_Init)
__weak_alias(SHA224_Update,_SHA224_Update)
__weak_alias(SHA224_Final,_SHA224_Final)
__weak_alias(SHA224_Transform,_SHA224_Transform)

__weak_alias(SHA256_Init,_SHA256_Init)
__weak_alias(SHA256_Update,_SHA256_Update)
__weak_alias(SHA256_Final,_SHA256_Final)
__weak_alias(SHA256_Transform,_SHA256_Transform)

__weak_alias(SHA384_Init,_SHA384_Init)
__weak_alias(SHA384_Update,_SHA384_Update)
__weak_alias(SHA384_Final,_SHA384_Final)
__weak_alias(SHA384_Transform,_SHA384_Transform)

__weak_alias(SHA512_Init,_SHA512_Init)
__weak_alias(SHA512_Update,_SHA512_Update)
__weak_alias(SHA512_Final,_SHA512_Final)
__weak_alias(SHA512_Transform,_SHA512_Transform)
#endif
#endif

/*** SHA-256: *********************************************************/
int
SHA256_Init(SHA256_CTX *context)
{
       if (context == NULL)
               return 1;

       memcpy(context->state, sha256_initial_hash_value,
           (size_t)(SHA256_DIGEST_LENGTH));
       memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
       context->bitcount = 0;

       return 1;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-256 round macros: */

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
       W256[j] = be32dec(data);                \
       ++data;                                 \
       T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
            K256[j] + W256[j]; \
       (d) += T1; \
       (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
       j++

#define ROUND256(a,b,c,d,e,f,g,h)       \
       s0 = W256[(j+1)&0x0f]; \
       s0 = sigma0_256(s0); \
       s1 = W256[(j+14)&0x0f]; \
       s1 = sigma1_256(s1); \
       T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
            (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
       (d) += T1; \
       (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
       j++

void
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
{
       uint32_t        a, b, c, d, e, f, g, h, s0, s1;
       uint32_t        T1, *W256;
       int             j;

       W256 = (uint32_t *)context->buffer;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
               /* Rounds 0 to 15 (unrolled): */
               ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
               ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
               ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
               ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
               ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
               ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
               ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
               ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
       } while (j < 16);

       /* Now for the remaining rounds to 64: */
       do {
               ROUND256(a,b,c,d,e,f,g,h);
               ROUND256(h,a,b,c,d,e,f,g);
               ROUND256(g,h,a,b,c,d,e,f);
               ROUND256(f,g,h,a,b,c,d,e);
               ROUND256(e,f,g,h,a,b,c,d);
               ROUND256(d,e,f,g,h,a,b,c);
               ROUND256(c,d,e,f,g,h,a,b);
               ROUND256(b,c,d,e,f,g,h,a);
       } while (j < 64);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void
SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
{
       uint32_t        a, b, c, d, e, f, g, h, s0, s1;
       uint32_t        T1, T2, *W256;
       int             j;

       W256 = (uint32_t *)(void *)context->buffer;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
               W256[j] = be32dec(data);
               ++data;
               /* Apply the SHA-256 compression function to update a..h */
               T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
               T2 = Sigma0_256(a) + Maj(a, b, c);
               h = g;
               g = f;
               f = e;
               e = d + T1;
               d = c;
               c = b;
               b = a;
               a = T1 + T2;

               j++;
       } while (j < 16);

       do {
               /* Part of the message block expansion: */
               s0 = W256[(j+1)&0x0f];
               s0 = sigma0_256(s0);
               s1 = W256[(j+14)&0x0f];
               s1 = sigma1_256(s1);

               /* Apply the SHA-256 compression function to update a..h */
               T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
                    (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
               T2 = Sigma0_256(a) + Maj(a, b, c);
               h = g;
               g = f;
               f = e;
               e = d + T1;
               d = c;
               c = b;
               b = a;
               a = T1 + T2;

               j++;
       } while (j < 64);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

int
SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
{
       unsigned int    freespace, usedspace;

       if (len == 0) {
               /* Calling with no data is valid - we do nothing */
               return 1;
       }

       usedspace = (unsigned int)((context->bitcount >> 3) %
                                   SHA256_BLOCK_LENGTH);
       if (usedspace > 0) {
               /* Calculate how much free space is available in the buffer */
               freespace = SHA256_BLOCK_LENGTH - usedspace;

               if (len >= freespace) {
                       /* Fill the buffer completely and process it */
                       memcpy(&context->buffer[usedspace], data,
                           (size_t)(freespace));
                       context->bitcount += freespace << 3;
                       len -= freespace;
                       data += freespace;
                       SHA256_Transform(context,
                           (uint32_t *)(void *)context->buffer);
               } else {
                       /* The buffer is not yet full */
                       memcpy(&context->buffer[usedspace], data, len);
                       context->bitcount += len << 3;
                       /* Clean up: */
                       usedspace = freespace = 0;
                       return 1;
               }
       }
       /*
        * Process as many complete blocks as possible.
        *
        * Check alignment of the data pointer. If it is 32bit aligned,
        * SHA256_Transform can be called directly on the data stream,
        * otherwise enforce the alignment by copy into the buffer.
        */
       if ((uintptr_t)data % 4 == 0) {
               while (len >= SHA256_BLOCK_LENGTH) {
                       SHA256_Transform(context,
                           (const uint32_t *)(const void *)data);
                       context->bitcount += SHA256_BLOCK_LENGTH << 3;
                       len -= SHA256_BLOCK_LENGTH;
                       data += SHA256_BLOCK_LENGTH;
               }
       } else {
               while (len >= SHA256_BLOCK_LENGTH) {
                       memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
                       SHA256_Transform(context,
                           (const uint32_t *)(const void *)context->buffer);
                       context->bitcount += SHA256_BLOCK_LENGTH << 3;
                       len -= SHA256_BLOCK_LENGTH;
                       data += SHA256_BLOCK_LENGTH;
               }
       }
       if (len > 0) {
               /* There's left-overs, so save 'em */
               memcpy(context->buffer, data, len);
               context->bitcount += len << 3;
       }
       /* Clean up: */
       usedspace = freespace = 0;

       return 1;
}

static int
SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
{
       unsigned int    usedspace;
       size_t i;

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != NULL) {
               usedspace = (unsigned int)((context->bitcount >> 3) %
                   SHA256_BLOCK_LENGTH);
               context->bitcount = htobe64(context->bitcount);
               if (usedspace > 0) {
                       /* Begin padding with a 1 bit: */
                       context->buffer[usedspace++] = 0x80;

                       if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
                               /* Set-up for the last transform: */
                               memset(&context->buffer[usedspace], 0,
                                   (size_t)(SHA256_SHORT_BLOCK_LENGTH -
                                   usedspace));
                       } else {
                               if (usedspace < SHA256_BLOCK_LENGTH) {
                                       memset(&context->buffer[usedspace], 0,
                                           (size_t)(SHA256_BLOCK_LENGTH -
                                           usedspace));
                               }
                               /* Do second-to-last transform: */
                               SHA256_Transform(context,
                                   (uint32_t *)(void *)context->buffer);

                               /* And set-up for the last transform: */
                               memset(context->buffer, 0,
                                   (size_t)(SHA256_SHORT_BLOCK_LENGTH));
                       }
               } else {
                       /* Set-up for the last transform: */
                       memset(context->buffer, 0,
                           (size_t)(SHA256_SHORT_BLOCK_LENGTH));

                       /* Begin padding with a 1 bit: */
                       *context->buffer = 0x80;
               }
               /* Set the bit count: */
               memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
                   &context->bitcount, sizeof(context->bitcount));

               /* Final transform: */
               SHA256_Transform(context, (uint32_t *)(void *)context->buffer);

               for (i = 0; i < len / 4; i++)
                       be32enc(digest + 4 * i, context->state[i]);
       }

       /* Clean up state data: */
       memset(context, 0, sizeof(*context));
       usedspace = 0;

       return 1;
}

int
SHA256_Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
{
       return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
}

/*** SHA-224: *********************************************************/
int
SHA224_Init(SHA224_CTX *context)
{
       if (context == NULL)
               return 1;

       /* The state and buffer size are driven by SHA256, not by SHA224. */
       memcpy(context->state, sha224_initial_hash_value,
           (size_t)(SHA256_DIGEST_LENGTH));
       memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
       context->bitcount = 0;

       return 1;
}

int
SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
{
       return SHA256_Update((SHA256_CTX *)context, data, len);
}

void
SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
{
       SHA256_Transform((SHA256_CTX *)context, data);
}

int
SHA224_Final(uint8_t digest[SHA224_DIGEST_LENGTH], SHA224_CTX *context)
{
       return SHA224_256_Final(digest, (SHA256_CTX *)context,
           SHA224_DIGEST_LENGTH);
}

/*** SHA-512: *********************************************************/
int
SHA512_Init(SHA512_CTX *context)
{
       if (context == NULL)
               return 1;

       memcpy(context->state, sha512_initial_hash_value,
           (size_t)(SHA512_DIGEST_LENGTH));
       memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
       context->bitcount[0] = context->bitcount[1] =  0;

       return 1;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-512 round macros: */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
       W512[j] = be64dec(data);                \
       ++data;                                 \
       T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
            K512[j] + W512[j]; \
       (d) += T1, \
       (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
       j++

#define ROUND512(a,b,c,d,e,f,g,h)       \
       s0 = W512[(j+1)&0x0f]; \
       s0 = sigma0_512(s0); \
       s1 = W512[(j+14)&0x0f]; \
       s1 = sigma1_512(s1); \
       T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
            (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
       (d) += T1; \
       (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
       j++

void
SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
{
       uint64_t        a, b, c, d, e, f, g, h, s0, s1;
       uint64_t        T1, *W512 = (uint64_t *)context->buffer;
       int             j;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
               ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
               ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
               ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
               ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
               ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
               ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
               ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
               ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
       } while (j < 16);

       /* Now for the remaining rounds up to 79: */
       do {
               ROUND512(a,b,c,d,e,f,g,h);
               ROUND512(h,a,b,c,d,e,f,g);
               ROUND512(g,h,a,b,c,d,e,f);
               ROUND512(f,g,h,a,b,c,d,e);
               ROUND512(e,f,g,h,a,b,c,d);
               ROUND512(d,e,f,g,h,a,b,c);
               ROUND512(c,d,e,f,g,h,a,b);
               ROUND512(b,c,d,e,f,g,h,a);
       } while (j < 80);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void
SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
{
       uint64_t        a, b, c, d, e, f, g, h, s0, s1;
       uint64_t        T1, T2, *W512 = (void *)context->buffer;
       int             j;

       /* Initialize registers with the prev. intermediate value */
       a = context->state[0];
       b = context->state[1];
       c = context->state[2];
       d = context->state[3];
       e = context->state[4];
       f = context->state[5];
       g = context->state[6];
       h = context->state[7];

       j = 0;
       do {
               W512[j] = be64dec(data);
               ++data;
               /* Apply the SHA-512 compression function to update a..h */
               T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
               T2 = Sigma0_512(a) + Maj(a, b, c);
               h = g;
               g = f;
               f = e;
               e = d + T1;
               d = c;
               c = b;
               b = a;
               a = T1 + T2;

               j++;
       } while (j < 16);

       do {
               /* Part of the message block expansion: */
               s0 = W512[(j+1)&0x0f];
               s0 = sigma0_512(s0);
               s1 = W512[(j+14)&0x0f];
               s1 =  sigma1_512(s1);

               /* Apply the SHA-512 compression function to update a..h */
               T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
                    (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
               T2 = Sigma0_512(a) + Maj(a, b, c);
               h = g;
               g = f;
               f = e;
               e = d + T1;
               d = c;
               c = b;
               b = a;
               a = T1 + T2;

               j++;
       } while (j < 80);

       /* Compute the current intermediate hash value */
       context->state[0] += a;
       context->state[1] += b;
       context->state[2] += c;
       context->state[3] += d;
       context->state[4] += e;
       context->state[5] += f;
       context->state[6] += g;
       context->state[7] += h;

       /* Clean up */
       a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

int
SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
{
       unsigned int    freespace, usedspace;

       if (len == 0) {
               /* Calling with no data is valid - we do nothing */
               return 1;
       }

       usedspace = (unsigned int)((context->bitcount[0] >> 3) %
           SHA512_BLOCK_LENGTH);
       if (usedspace > 0) {
               /* Calculate how much free space is available in the buffer */
               freespace = SHA512_BLOCK_LENGTH - usedspace;

               if (len >= freespace) {
                       /* Fill the buffer completely and process it */
                       memcpy(&context->buffer[usedspace], data,
                           (size_t)(freespace));
                       ADDINC128(context->bitcount, freespace << 3);
                       len -= freespace;
                       data += freespace;
                       SHA512_Transform(context,
                           (uint64_t *)(void *)context->buffer);
               } else {
                       /* The buffer is not yet full */
                       memcpy(&context->buffer[usedspace], data, len);
                       ADDINC128(context->bitcount, len << 3);
                       /* Clean up: */
                       usedspace = freespace = 0;
                       return 1;
               }
       }
       /*
        * Process as many complete blocks as possible.
        *
        * Check alignment of the data pointer. If it is 64bit aligned,
        * SHA512_Transform can be called directly on the data stream,
        * otherwise enforce the alignment by copy into the buffer.
        */
       if ((uintptr_t)data % 8 == 0) {
               while (len >= SHA512_BLOCK_LENGTH) {
                       SHA512_Transform(context,
                           (const uint64_t*)(const void *)data);
                       ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
                       len -= SHA512_BLOCK_LENGTH;
                       data += SHA512_BLOCK_LENGTH;
               }
       } else {
               while (len >= SHA512_BLOCK_LENGTH) {
                       memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
                       SHA512_Transform(context,
                           (const void *)context->buffer);
                       ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
                       len -= SHA512_BLOCK_LENGTH;
                       data += SHA512_BLOCK_LENGTH;
               }
       }
       if (len > 0) {
               /* There's left-overs, so save 'em */
               memcpy(context->buffer, data, len);
               ADDINC128(context->bitcount, len << 3);
       }
       /* Clean up: */
       usedspace = freespace = 0;

       return 1;
}

static void
SHA512_Last(SHA512_CTX *context)
{
       unsigned int    usedspace;

       usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
       context->bitcount[0] = htobe64(context->bitcount[0]);
       context->bitcount[1] = htobe64(context->bitcount[1]);
       if (usedspace > 0) {
               /* Begin padding with a 1 bit: */
               context->buffer[usedspace++] = 0x80;

               if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
                       /* Set-up for the last transform: */
                       memset(&context->buffer[usedspace], 0,
                           (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
               } else {
                       if (usedspace < SHA512_BLOCK_LENGTH) {
                               memset(&context->buffer[usedspace], 0,
                                   (size_t)(SHA512_BLOCK_LENGTH - usedspace));
                       }
                       /* Do second-to-last transform: */
                       SHA512_Transform(context,
                           (uint64_t *)(void *)context->buffer);

                       /* And set-up for the last transform: */
                       memset(context->buffer, 0,
                           (size_t)(SHA512_BLOCK_LENGTH - 2));
               }
       } else {
               /* Prepare for final transform: */
               memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));

               /* Begin padding with a 1 bit: */
               *context->buffer = 0x80;
       }
       /* Store the length of input data (in bits): */
       memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
           &context->bitcount[1], sizeof(context->bitcount[1]));
       memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
           &context->bitcount[0], sizeof(context->bitcount[0]));

       /* Final transform: */
       SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
}

int
SHA512_Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
{
       size_t i;

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != NULL) {
               SHA512_Last(context);

               /* Save the hash data for output: */
               for (i = 0; i < 8; ++i)
                       be64enc(digest + 8 * i, context->state[i]);
       }

       /* Zero out state data */
       memset(context, 0, sizeof(*context));

       return 1;
}

/*** SHA-384: *********************************************************/
int
SHA384_Init(SHA384_CTX *context)
{
       if (context == NULL)
               return 1;

       memcpy(context->state, sha384_initial_hash_value,
           (size_t)(SHA512_DIGEST_LENGTH));
       memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
       context->bitcount[0] = context->bitcount[1] = 0;

       return 1;
}

int
SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
{
       return SHA512_Update((SHA512_CTX *)context, data, len);
}

void
SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
{
       SHA512_Transform((SHA512_CTX *)context, data);
}

int
SHA384_Final(uint8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
{
       size_t i;

       /* If no digest buffer is passed, we don't bother doing this: */
       if (digest != NULL) {
               SHA512_Last((SHA512_CTX *)context);

               /* Save the hash data for output: */
               for (i = 0; i < 6; ++i)
                       be64enc(digest + 8 * i, context->state[i]);
       }

       /* Zero out state data */
       memset(context, 0, sizeof(*context));

       return 1;
}