/*      $NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $   */

/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <[email protected]>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#if !defined(_KERNEL) && !defined(_STANDALONE)
#include <sys/types.h>
#include <stddef.h>
#include <assert.h>
#include <stdbool.h>
#ifdef RBDEBUG
#define KASSERT(s)      assert(s)
#define __rbt_unused
#else
#define KASSERT(s)      do { } while (/*CONSTCOND*/ 0)
#define __rbt_unused    __unused
#endif
__RCSID("$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
#else
#include <lib/libkern/libkern.h>
__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
#ifndef DIAGNOSTIC
#define __rbt_unused    __unused
#else
#define __rbt_unused
#endif
#endif

#ifdef _LIBC
__weak_alias(rb_tree_init, _rb_tree_init)
__weak_alias(rb_tree_find_node, _rb_tree_find_node)
__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
__weak_alias(rb_tree_iterate, _rb_tree_iterate)
#ifdef RBDEBUG
__weak_alias(rb_tree_check, _rb_tree_check)
__weak_alias(rb_tree_depths, _rb_tree_depths)
#endif

#include "namespace.h"
#endif

#ifdef RBTEST
#include "rbtree.h"
#else
#include <sys/rbtree.h>
#endif

static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
       unsigned int);
#ifdef RBDEBUG
static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
       const struct rb_node *, const unsigned int);
static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
       const struct rb_node *, bool);
#else
#define rb_tree_check_node(a, b, c, d)  true
#endif

#define RB_NODETOITEM(rbto, rbn)        \
   ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
#define RB_ITEMTONODE(rbto, rbn)        \
   ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))

#define RB_SENTINEL_NODE        NULL

void
rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
{

       rbt->rbt_ops = ops;
       rbt->rbt_root = RB_SENTINEL_NODE;
       RB_TAILQ_INIT(&rbt->rbt_nodes);
#ifndef RBSMALL
       rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;   /* minimum node */
       rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;  /* maximum node */
#endif
#ifdef RBSTATS
       rbt->rbt_count = 0;
       rbt->rbt_insertions = 0;
       rbt->rbt_removals = 0;
       rbt->rbt_insertion_rebalance_calls = 0;
       rbt->rbt_insertion_rebalance_passes = 0;
       rbt->rbt_removal_rebalance_calls = 0;
       rbt->rbt_removal_rebalance_passes = 0;
#endif
}

void *
rb_tree_find_node(struct rb_tree *rbt, const void *key)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
       struct rb_node *parent = rbt->rbt_root;

       while (!RB_SENTINEL_P(parent)) {
               void *pobj = RB_NODETOITEM(rbto, parent);
               const signed int diff = (*compare_key)(rbto->rbto_context,
                   pobj, key);
               if (diff == 0)
                       return pobj;
               parent = parent->rb_nodes[diff < 0];
       }

       return NULL;
}

void *
rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
       struct rb_node *parent = rbt->rbt_root, *last = NULL;

       while (!RB_SENTINEL_P(parent)) {
               void *pobj = RB_NODETOITEM(rbto, parent);
               const signed int diff = (*compare_key)(rbto->rbto_context,
                   pobj, key);
               if (diff == 0)
                       return pobj;
               if (diff > 0)
                       last = parent;
               parent = parent->rb_nodes[diff < 0];
       }

       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
}

void *
rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
       struct rb_node *parent = rbt->rbt_root, *last = NULL;

       while (!RB_SENTINEL_P(parent)) {
               void *pobj = RB_NODETOITEM(rbto, parent);
               const signed int diff = (*compare_key)(rbto->rbto_context,
                   pobj, key);
               if (diff == 0)
                       return pobj;
               if (diff < 0)
                       last = parent;
               parent = parent->rb_nodes[diff < 0];
       }

       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
}

void *
rb_tree_insert_node(struct rb_tree *rbt, void *object)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
       struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
       unsigned int position;
       bool rebalance;

       RBSTAT_INC(rbt->rbt_insertions);

       tmp = rbt->rbt_root;
       /*
        * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
        * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
        * avoid a lot of tests for root and know that even at root,
        * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
        * update rbt->rbt_root.
        */
       parent = (struct rb_node *)(void *)&rbt->rbt_root;
       position = RB_DIR_LEFT;

       /*
        * Find out where to place this new leaf.
        */
       while (!RB_SENTINEL_P(tmp)) {
               void *tobj = RB_NODETOITEM(rbto, tmp);
               const signed int diff = (*compare_nodes)(rbto->rbto_context,
                   tobj, object);
               if (__predict_false(diff == 0)) {
                       /*
                        * Node already exists; return it.
                        */
                       return tobj;
               }
               parent = tmp;
               position = (diff < 0);
               tmp = parent->rb_nodes[position];
       }

#ifdef RBDEBUG
       {
               struct rb_node *prev = NULL, *next = NULL;

               if (position == RB_DIR_RIGHT)
                       prev = parent;
               else if (tmp != rbt->rbt_root)
                       next = parent;

               /*
                * Verify our sequential position
                */
               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
               KASSERT(next == NULL || !RB_SENTINEL_P(next));
               if (prev != NULL && next == NULL)
                       next = TAILQ_NEXT(prev, rb_link);
               if (prev == NULL && next != NULL)
                       prev = TAILQ_PREV(next, rb_node_qh, rb_link);
               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
               KASSERT(next == NULL || !RB_SENTINEL_P(next));
               KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
                   RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
               KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
                   RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
       }
#endif

       /*
        * Initialize the node and insert as a leaf into the tree.
        */
       RB_SET_FATHER(self, parent);
       RB_SET_POSITION(self, position);
       if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
               RB_MARK_BLACK(self);            /* root is always black */
#ifndef RBSMALL
               rbt->rbt_minmax[RB_DIR_LEFT] = self;
               rbt->rbt_minmax[RB_DIR_RIGHT] = self;
#endif
               rebalance = false;
       } else {
               KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
#ifndef RBSMALL
               /*
                * Keep track of the minimum and maximum nodes.  If our
                * parent is a minmax node and we on their min/max side,
                * we must be the new min/max node.
                */
               if (parent == rbt->rbt_minmax[position])
                       rbt->rbt_minmax[position] = self;
#endif /* !RBSMALL */
               /*
                * All new nodes are colored red.  We only need to rebalance
                * if our parent is also red.
                */
               RB_MARK_RED(self);
               rebalance = RB_RED_P(parent);
       }
       KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
       self->rb_left = parent->rb_nodes[position];
       self->rb_right = parent->rb_nodes[position];
       parent->rb_nodes[position] = self;
       KASSERT(RB_CHILDLESS_P(self));

       /*
        * Insert the new node into a sorted list for easy sequential access
        */
       RBSTAT_INC(rbt->rbt_count);
#ifdef RBDEBUG
       if (RB_ROOT_P(rbt, self)) {
               RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
       } else if (position == RB_DIR_LEFT) {
               KASSERT((*compare_nodes)(rbto->rbto_context,
                   RB_NODETOITEM(rbto, self),
                   RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
               RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
       } else {
               KASSERT((*compare_nodes)(rbto->rbto_context,
                   RB_NODETOITEM(rbto, RB_FATHER(self)),
                   RB_NODETOITEM(rbto, self)) < 0);
               RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
                   self, rb_link);
       }
#endif
       KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));

       /*
        * Rebalance tree after insertion
        */
       if (rebalance) {
               rb_tree_insert_rebalance(rbt, self);
               KASSERT(rb_tree_check_node(rbt, self, NULL, true));
       }

       /* Successfully inserted, return our node pointer. */
       return object;
}

/*
* Swap the location and colors of 'self' and its child @ which.  The child
* can not be a sentinel node.  This is our rotation function.  However,
* since it preserves coloring, it great simplifies both insertion and
* removal since rotation almost always involves the exchanging of colors
* as a separate step.
*/
static void
rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
       struct rb_node *old_father, const unsigned int which)
{
       const unsigned int other = which ^ RB_DIR_OTHER;
       struct rb_node * const grandpa = RB_FATHER(old_father);
       struct rb_node * const old_child = old_father->rb_nodes[which];
       struct rb_node * const new_father = old_child;
       struct rb_node * const new_child = old_father;

       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);

       KASSERT(!RB_SENTINEL_P(old_child));
       KASSERT(RB_FATHER(old_child) == old_father);

       KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
       KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
       KASSERT(RB_ROOT_P(rbt, old_father) ||
           rb_tree_check_node(rbt, grandpa, NULL, false));

       /*
        * Exchange descendant linkages.
        */
       grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
       new_child->rb_nodes[which] = old_child->rb_nodes[other];
       new_father->rb_nodes[other] = new_child;

       /*
        * Update ancestor linkages
        */
       RB_SET_FATHER(new_father, grandpa);
       RB_SET_FATHER(new_child, new_father);

       /*
        * Exchange properties between new_father and new_child.  The only
        * change is that new_child's position is now on the other side.
        */
#if 0
       {
               struct rb_node tmp;
               tmp.rb_info = 0;
               RB_COPY_PROPERTIES(&tmp, old_child);
               RB_COPY_PROPERTIES(new_father, old_father);
               RB_COPY_PROPERTIES(new_child, &tmp);
       }
#else
       RB_SWAP_PROPERTIES(new_father, new_child);
#endif
       RB_SET_POSITION(new_child, other);

       /*
        * Make sure to reparent the new child to ourself.
        */
       if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
               RB_SET_FATHER(new_child->rb_nodes[which], new_child);
               RB_SET_POSITION(new_child->rb_nodes[which], which);
       }

       KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
       KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
       KASSERT(RB_ROOT_P(rbt, new_father) ||
           rb_tree_check_node(rbt, grandpa, NULL, false));
}

static void
rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
{
       struct rb_node * father = RB_FATHER(self);
       struct rb_node * grandpa = RB_FATHER(father);
       struct rb_node * uncle;
       unsigned int which;
       unsigned int other;

       KASSERT(!RB_ROOT_P(rbt, self));
       KASSERT(RB_RED_P(self));
       KASSERT(RB_RED_P(father));
       RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);

       for (;;) {
               KASSERT(!RB_SENTINEL_P(self));

               KASSERT(RB_RED_P(self));
               KASSERT(RB_RED_P(father));
               /*
                * We are red and our parent is red, therefore we must have a
                * grandfather and he must be black.
                */
               grandpa = RB_FATHER(father);
               KASSERT(RB_BLACK_P(grandpa));
               KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
               which = (father == grandpa->rb_right);
               other = which ^ RB_DIR_OTHER;
               uncle = grandpa->rb_nodes[other];

               if (RB_BLACK_P(uncle))
                       break;

               RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
               /*
                * Case 1: our uncle is red
                *   Simply invert the colors of our parent and
                *   uncle and make our grandparent red.  And
                *   then solve the problem up at his level.
                */
               RB_MARK_BLACK(uncle);
               RB_MARK_BLACK(father);
               if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
                       /*
                        * If our grandpa is root, don't bother
                        * setting him to red, just return.
                        */
                       KASSERT(RB_BLACK_P(grandpa));
                       return;
               }
               RB_MARK_RED(grandpa);
               self = grandpa;
               father = RB_FATHER(self);
               KASSERT(RB_RED_P(self));
               if (RB_BLACK_P(father)) {
                       /*
                        * If our greatgrandpa is black, we're done.
                        */
                       KASSERT(RB_BLACK_P(rbt->rbt_root));
                       return;
               }
       }

       KASSERT(!RB_ROOT_P(rbt, self));
       KASSERT(RB_RED_P(self));
       KASSERT(RB_RED_P(father));
       KASSERT(RB_BLACK_P(uncle));
       KASSERT(RB_BLACK_P(grandpa));
       /*
        * Case 2&3: our uncle is black.
        */
       if (self == father->rb_nodes[other]) {
               /*
                * Case 2: we are on the same side as our uncle
                *   Swap ourselves with our parent so this case
                *   becomes case 3.  Basically our parent becomes our
                *   child.
                */
               rb_tree_reparent_nodes(rbt, father, other);
               KASSERT(RB_FATHER(father) == self);
               KASSERT(self->rb_nodes[which] == father);
               KASSERT(RB_FATHER(self) == grandpa);
               self = father;
               father = RB_FATHER(self);
       }
       KASSERT(RB_RED_P(self) && RB_RED_P(father));
       KASSERT(grandpa->rb_nodes[which] == father);
       /*
        * Case 3: we are opposite a child of a black uncle.
        *   Swap our parent and grandparent.  Since our grandfather
        *   is black, our father will become black and our new sibling
        *   (former grandparent) will become red.
        */
       rb_tree_reparent_nodes(rbt, grandpa, which);
       KASSERT(RB_FATHER(self) == father);
       KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
       KASSERT(RB_RED_P(self));
       KASSERT(RB_BLACK_P(father));
       KASSERT(RB_RED_P(grandpa));

       /*
        * Final step: Set the root to black.
        */
       RB_MARK_BLACK(rbt->rbt_root);
}

static void
rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
{
       const unsigned int which = RB_POSITION(self);
       struct rb_node *father = RB_FATHER(self);
#ifndef RBSMALL
       const bool was_root = RB_ROOT_P(rbt, self);
#endif

       KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
       KASSERT(!rebalance || RB_BLACK_P(self));
       KASSERT(RB_CHILDLESS_P(self));
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));

       /*
        * Since we are childless, we know that self->rb_left is pointing
        * to the sentinel node.
        */
       father->rb_nodes[which] = self->rb_left;

       /*
        * Remove ourselves from the node list, decrement the count,
        * and update min/max.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
               rbt->rbt_minmax[RB_POSITION(self)] = father;
               /*
                * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
                * updated automatically, but we also need to update
                * rbt->rbt_minmax[RB_DIR_RIGHT];
                */
               if (__predict_false(was_root)) {
                       rbt->rbt_minmax[RB_DIR_RIGHT] = father;
               }
       }
       RB_SET_FATHER(self, NULL);
#endif

       /*
        * Rebalance if requested.
        */
       if (rebalance)
               rb_tree_removal_rebalance(rbt, father, which);
       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
}

/*
* When deleting an interior node
*/
static void
rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
       struct rb_node *standin)
{
       const unsigned int standin_which = RB_POSITION(standin);
       unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
       struct rb_node *standin_son;
       struct rb_node *standin_father = RB_FATHER(standin);
       bool rebalance = RB_BLACK_P(standin);

       if (standin_father == self) {
               /*
                * As a child of self, any childen would be opposite of
                * our parent.
                */
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
               standin_son = standin->rb_nodes[standin_which];
       } else {
               /*
                * Since we aren't a child of self, any childen would be
                * on the same side as our parent.
                */
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
               standin_son = standin->rb_nodes[standin_other];
       }

       /*
        * the node we are removing must have two children.
        */
       KASSERT(RB_TWOCHILDREN_P(self));
       /*
        * If standin has a child, it must be red.
        */
       KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));

       /*
        * Verify things are sane.
        */
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));

       if (__predict_false(RB_RED_P(standin_son))) {
               /*
                * We know we have a red child so if we flip it to black
                * we don't have to rebalance.
                */
               KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
               RB_MARK_BLACK(standin_son);
               rebalance = false;

               if (standin_father == self) {
                       KASSERT(RB_POSITION(standin_son) == standin_which);
               } else {
                       KASSERT(RB_POSITION(standin_son) == standin_other);
                       /*
                        * Change the son's parentage to point to his grandpa.
                        */
                       RB_SET_FATHER(standin_son, standin_father);
                       RB_SET_POSITION(standin_son, standin_which);
               }
       }

       if (standin_father == self) {
               /*
                * If we are about to delete the standin's father, then when
                * we call rebalance, we need to use ourselves as our father.
                * Otherwise remember our original father.  Also, sincef we are
                * our standin's father we only need to reparent the standin's
                * brother.
                *
                * |    R      -->     S    |
                * |  Q   S    -->   Q   T  |
                * |        t  -->          |
                */
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
               KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
               KASSERT(self->rb_nodes[standin_which] == standin);
               /*
                * Have our son/standin adopt his brother as his new son.
                */
               standin_father = standin;
       } else {
               /*
                * |    R          -->    S       .  |
                * |   / \  |   T  -->   / \  |  /   |
                * |  ..... | S    -->  ..... | T    |
                *
                * Sever standin's connection to his father.
                */
               standin_father->rb_nodes[standin_which] = standin_son;
               /*
                * Adopt the far son.
                */
               standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
               RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
               KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
               /*
                * Use standin_other because we need to preserve standin_which
                * for the removal_rebalance.
                */
               standin_other = standin_which;
       }

       /*
        * Move the only remaining son to our standin.  If our standin is our
        * son, this will be the only son needed to be moved.
        */
       KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
       standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
       RB_SET_FATHER(standin->rb_nodes[standin_other], standin);

       /*
        * Now copy the result of self to standin and then replace
        * self with standin in the tree.
        */
       RB_COPY_PROPERTIES(standin, self);
       RB_SET_FATHER(standin, RB_FATHER(self));
       RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;

       /*
        * Remove ourselves from the node list, decrement the count,
        * and update min/max.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
               rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
       RB_SET_FATHER(self, NULL);
#endif

       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
       KASSERT(RB_FATHER_SENTINEL_P(standin)
               || rb_tree_check_node(rbt, standin_father, NULL, false));
       KASSERT(RB_LEFT_SENTINEL_P(standin)
               || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
       KASSERT(RB_RIGHT_SENTINEL_P(standin)
               || rb_tree_check_node(rbt, standin->rb_right, NULL, false));

       if (!rebalance)
               return;

       rb_tree_removal_rebalance(rbt, standin_father, standin_which);
       KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
}

/*
* We could do this by doing
*      rb_tree_node_swap(rbt, self, which);
*      rb_tree_prune_node(rbt, self, false);
*
* But it's more efficient to just evalate and recolor the child.
*/
static void
rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
       unsigned int which)
{
       struct rb_node *father = RB_FATHER(self);
       struct rb_node *son = self->rb_nodes[which];
#ifndef RBSMALL
       const bool was_root = RB_ROOT_P(rbt, self);
#endif

       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
       KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
       KASSERT(!RB_TWOCHILDREN_P(son));
       KASSERT(RB_CHILDLESS_P(son));
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
       KASSERT(rb_tree_check_node(rbt, son, NULL, false));

       /*
        * Remove ourselves from the tree and give our former child our
        * properties (position, color, root).
        */
       RB_COPY_PROPERTIES(son, self);
       father->rb_nodes[RB_POSITION(son)] = son;
       RB_SET_FATHER(son, father);

       /*
        * Remove ourselves from the node list, decrement the count,
        * and update minmax.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
       if (__predict_false(was_root)) {
               KASSERT(rbt->rbt_minmax[which] == son);
               rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
       } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
               rbt->rbt_minmax[RB_POSITION(self)] = son;
       }
       RB_SET_FATHER(self, NULL);
#endif

       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
       KASSERT(rb_tree_check_node(rbt, son, NULL, true));
}

void
rb_tree_remove_node(struct rb_tree *rbt, void *object)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
       unsigned int which;

       KASSERT(!RB_SENTINEL_P(self));
       RBSTAT_INC(rbt->rbt_removals);

       /*
        * In the following diagrams, we (the node to be removed) are S.  Red
        * nodes are lowercase.  T could be either red or black.
        *
        * Remember the major axiom of the red-black tree: the number of
        * black nodes from the root to each leaf is constant across all
        * leaves, only the number of red nodes varies.
        *
        * Thus removing a red leaf doesn't require any other changes to a
        * red-black tree.  So if we must remove a node, attempt to rearrange
        * the tree so we can remove a red node.
        *
        * The simpliest case is a childless red node or a childless root node:
        *
        * |    T  -->    T  |    or    |  R  -->  *  |
        * |  s    -->  *    |
        */
       if (RB_CHILDLESS_P(self)) {
               const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
               rb_tree_prune_node(rbt, self, rebalance);
               return;
       }
       KASSERT(!RB_CHILDLESS_P(self));
       if (!RB_TWOCHILDREN_P(self)) {
               /*
                * The next simpliest case is the node we are deleting is
                * black and has one red child.
                *
                * |      T  -->      T  -->      T  |
                * |    S    -->  R      -->  R      |
                * |  r      -->    s    -->    *    |
                */
               which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
               KASSERT(RB_BLACK_P(self));
               KASSERT(RB_RED_P(self->rb_nodes[which]));
               KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
               rb_tree_prune_blackred_branch(rbt, self, which);
               return;
       }
       KASSERT(RB_TWOCHILDREN_P(self));

       /*
        * We invert these because we prefer to remove from the inside of
        * the tree.
        */
       which = RB_POSITION(self) ^ RB_DIR_OTHER;

       /*
        * Let's find the node closes to us opposite of our parent
        * Now swap it with ourself, "prune" it, and rebalance, if needed.
        */
       standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
       rb_tree_swap_prune_and_rebalance(rbt, self, standin);
}

static void
rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
       unsigned int which)
{
       KASSERT(!RB_SENTINEL_P(parent));
       KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
       RBSTAT_INC(rbt->rbt_removal_rebalance_calls);

       while (RB_BLACK_P(parent->rb_nodes[which])) {
               unsigned int other = which ^ RB_DIR_OTHER;
               struct rb_node *brother = parent->rb_nodes[other];

               RBSTAT_INC(rbt->rbt_removal_rebalance_passes);

               KASSERT(!RB_SENTINEL_P(brother));
               /*
                * For cases 1, 2a, and 2b, our brother's children must
                * be black and our father must be black
                */
               if (RB_BLACK_P(parent)
                   && RB_BLACK_P(brother->rb_left)
                   && RB_BLACK_P(brother->rb_right)) {
                       if (RB_RED_P(brother)) {
                               /*
                                * Case 1: Our brother is red, swap its
                                * position (and colors) with our parent.
                                * This should now be case 2b (unless C or E
                                * has a red child which is case 3; thus no
                                * explicit branch to case 2b).
                                *
                                *    B         ->        D
                                *  A     d     ->    b     E
                                *      C   E   ->  A   C
                                */
                               KASSERT(RB_BLACK_P(parent));
                               rb_tree_reparent_nodes(rbt, parent, other);
                               brother = parent->rb_nodes[other];
                               KASSERT(!RB_SENTINEL_P(brother));
                               KASSERT(RB_RED_P(parent));
                               KASSERT(RB_BLACK_P(brother));
                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
                       } else {
                               /*
                                * Both our parent and brother are black.
                                * Change our brother to red, advance up rank
                                * and go through the loop again.
                                *
                                *    B         ->   *B
                                * *A     D     ->  A     d
                                *      C   E   ->      C   E
                                */
                               RB_MARK_RED(brother);
                               KASSERT(RB_BLACK_P(brother->rb_left));
                               KASSERT(RB_BLACK_P(brother->rb_right));
                               if (RB_ROOT_P(rbt, parent))
                                       return; /* root == parent == black */
                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
                               which = RB_POSITION(parent);
                               parent = RB_FATHER(parent);
                               continue;
                       }
               }
               /*
                * Avoid an else here so that case 2a above can hit either
                * case 2b, 3, or 4.
                */
               if (RB_RED_P(parent)
                   && RB_BLACK_P(brother)
                   && RB_BLACK_P(brother->rb_left)
                   && RB_BLACK_P(brother->rb_right)) {
                       KASSERT(RB_RED_P(parent));
                       KASSERT(RB_BLACK_P(brother));
                       KASSERT(RB_BLACK_P(brother->rb_left));
                       KASSERT(RB_BLACK_P(brother->rb_right));
                       /*
                        * We are black, our father is red, our brother and
                        * both nephews are black.  Simply invert/exchange the
                        * colors of our father and brother (to black and red
                        * respectively).
                        *
                        *      |    f        -->    F        |
                        *      |  *     B    -->  *     b    |
                        *      |      N   N  -->      N   N  |
                        */
                       RB_MARK_BLACK(parent);
                       RB_MARK_RED(brother);
                       KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
                       break;          /* We're done! */
               } else {
                       /*
                        * Our brother must be black and have at least one
                        * red child (it may have two).
                        */
                       KASSERT(RB_BLACK_P(brother));
                       KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
                               RB_RED_P(brother->rb_nodes[other]));
                       if (RB_BLACK_P(brother->rb_nodes[other])) {
                               /*
                                * Case 3: our brother is black, our near
                                * nephew is red, and our far nephew is black.
                                * Swap our brother with our near nephew.
                                * This result in a tree that matches case 4.
                                * (Our father could be red or black).
                                *
                                *      |    F      -->    F      |
                                *      |  x     B  -->  x   B    |
                                *      |      n    -->        n  |
                                */
                               KASSERT(RB_RED_P(brother->rb_nodes[which]));
                               rb_tree_reparent_nodes(rbt, brother, which);
                               KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
                               brother = parent->rb_nodes[other];
                               KASSERT(RB_RED_P(brother->rb_nodes[other]));
                       }
                       /*
                        * Case 4: our brother is black and our far nephew
                        * is red.  Swap our father and brother locations and
                        * change our far nephew to black.  (these can be
                        * done in either order so we change the color first).
                        * The result is a valid red-black tree and is a
                        * terminal case.  (again we don't care about the
                        * father's color)
                        *
                        * If the father is red, we will get a red-black-black
                        * tree:
                        *      |  f      ->  f      -->    b    |
                        *      |    B    ->    B    -->  F   N  |
                        *      |      n  ->      N  -->         |
                        *
                        * If the father is black, we will get an all black
                        * tree:
                        *      |  F      ->  F      -->    B    |
                        *      |    B    ->    B    -->  F   N  |
                        *      |      n  ->      N  -->         |
                        *
                        * If we had two red nephews, then after the swap,
                        * our former father would have a red grandson.
                        */
                       KASSERT(RB_BLACK_P(brother));
                       KASSERT(RB_RED_P(brother->rb_nodes[other]));
                       RB_MARK_BLACK(brother->rb_nodes[other]);
                       rb_tree_reparent_nodes(rbt, parent, other);
                       break;          /* We're done! */
               }
       }
       KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
}

void *
rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       const unsigned int other = direction ^ RB_DIR_OTHER;
       struct rb_node *self;

       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);

       if (object == NULL) {
#ifndef RBSMALL
               if (RB_SENTINEL_P(rbt->rbt_root))
                       return NULL;
               return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
#else
               self = rbt->rbt_root;
               if (RB_SENTINEL_P(self))
                       return NULL;
               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
                       self = self->rb_nodes[direction];
               return RB_NODETOITEM(rbto, self);
#endif /* !RBSMALL */
       }
       self = RB_ITEMTONODE(rbto, object);
       KASSERT(!RB_SENTINEL_P(self));
       /*
        * We can't go any further in this direction.  We proceed up in the
        * opposite direction until our parent is in direction we want to go.
        */
       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
               while (!RB_ROOT_P(rbt, self)) {
                       if (other == RB_POSITION(self))
                               return RB_NODETOITEM(rbto, RB_FATHER(self));
                       self = RB_FATHER(self);
               }
               return NULL;
       }

       /*
        * Advance down one in current direction and go down as far as possible
        * in the opposite direction.
        */
       self = self->rb_nodes[direction];
       KASSERT(!RB_SENTINEL_P(self));
       while (!RB_SENTINEL_P(self->rb_nodes[other]))
               self = self->rb_nodes[other];
       return RB_NODETOITEM(rbto, self);
}

#ifdef RBDEBUG
static const struct rb_node *
rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
       const unsigned int direction)
{
       const unsigned int other = direction ^ RB_DIR_OTHER;
       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);

       if (self == NULL) {
#ifndef RBSMALL
               if (RB_SENTINEL_P(rbt->rbt_root))
                       return NULL;
               return rbt->rbt_minmax[direction];
#else
               self = rbt->rbt_root;
               if (RB_SENTINEL_P(self))
                       return NULL;
               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
                       self = self->rb_nodes[direction];
               return self;
#endif /* !RBSMALL */
       }
       KASSERT(!RB_SENTINEL_P(self));
       /*
        * We can't go any further in this direction.  We proceed up in the
        * opposite direction until our parent is in direction we want to go.
        */
       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
               while (!RB_ROOT_P(rbt, self)) {
                       if (other == RB_POSITION(self))
                               return RB_FATHER(self);
                       self = RB_FATHER(self);
               }
               return NULL;
       }

       /*
        * Advance down one in current direction and go down as far as possible
        * in the opposite direction.
        */
       self = self->rb_nodes[direction];
       KASSERT(!RB_SENTINEL_P(self));
       while (!RB_SENTINEL_P(self->rb_nodes[other]))
               self = self->rb_nodes[other];
       return self;
}

static unsigned int
rb_tree_count_black(const struct rb_node *self)
{
       unsigned int left, right;

       if (RB_SENTINEL_P(self))
               return 0;

       left = rb_tree_count_black(self->rb_left);
       right = rb_tree_count_black(self->rb_right);

       KASSERT(left == right);

       return left + RB_BLACK_P(self);
}

static bool
rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
       const struct rb_node *prev, bool red_check)
{
       const rb_tree_ops_t *rbto = rbt->rbt_ops;
       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;

       KASSERT(!RB_SENTINEL_P(self));
       KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
           RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);

       /*
        * Verify our relationship to our parent.
        */
       if (RB_ROOT_P(rbt, self)) {
               KASSERT(self == rbt->rbt_root);
               KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
               KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
               KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
       } else {
               int diff = (*compare_nodes)(rbto->rbto_context,
                   RB_NODETOITEM(rbto, self),
                   RB_NODETOITEM(rbto, RB_FATHER(self)));

               KASSERT(self != rbt->rbt_root);
               KASSERT(!RB_FATHER_SENTINEL_P(self));
               if (RB_POSITION(self) == RB_DIR_LEFT) {
                       KASSERT(diff < 0);
                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
               } else {
                       KASSERT(diff > 0);
                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
               }
       }

       /*
        * Verify our position in the linked list against the tree itself.
        */
       {
               const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
               const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
               KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
               KASSERT(next0 == TAILQ_NEXT(self, rb_link));
#ifndef RBSMALL
               KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
               KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
#endif
       }

       /*
        * The root must be black.
        * There can never be two adjacent red nodes.
        */
       if (red_check) {
               KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
               (void) rb_tree_count_black(self);
               if (RB_RED_P(self)) {
                       const struct rb_node *brother;
                       KASSERT(!RB_ROOT_P(rbt, self));
                       brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
                       KASSERT(RB_BLACK_P(RB_FATHER(self)));
                       /*
                        * I'm red and have no children, then I must either
                        * have no brother or my brother also be red and
                        * also have no children.  (black count == 0)
                        */
                       KASSERT(!RB_CHILDLESS_P(self)
                               || RB_SENTINEL_P(brother)
                               || RB_RED_P(brother)
                               || RB_CHILDLESS_P(brother));
                       /*
                        * If I'm not childless, I must have two children
                        * and they must be both be black.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || (RB_TWOCHILDREN_P(self)
                                   && RB_BLACK_P(self->rb_left)
                                   && RB_BLACK_P(self->rb_right)));
                       /*
                        * If I'm not childless, thus I have black children,
                        * then my brother must either be black or have two
                        * black children.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || RB_BLACK_P(brother)
                               || (RB_TWOCHILDREN_P(brother)
                                   && RB_BLACK_P(brother->rb_left)
                                   && RB_BLACK_P(brother->rb_right)));
               } else {
                       /*
                        * If I'm black and have one child, that child must
                        * be red and childless.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || RB_TWOCHILDREN_P(self)
                               || (!RB_LEFT_SENTINEL_P(self)
                                   && RB_RIGHT_SENTINEL_P(self)
                                   && RB_RED_P(self->rb_left)
                                   && RB_CHILDLESS_P(self->rb_left))
                               || (!RB_RIGHT_SENTINEL_P(self)
                                   && RB_LEFT_SENTINEL_P(self)
                                   && RB_RED_P(self->rb_right)
                                   && RB_CHILDLESS_P(self->rb_right)));

                       /*
                        * If I'm a childless black node and my parent is
                        * black, my 2nd closet relative away from my parent
                        * is either red or has a red parent or red children.
                        */
                       if (!RB_ROOT_P(rbt, self)
                           && RB_CHILDLESS_P(self)
                           && RB_BLACK_P(RB_FATHER(self))) {
                               const unsigned int which = RB_POSITION(self);
                               const unsigned int other = which ^ RB_DIR_OTHER;
                               const struct rb_node *relative0, *relative;

                               relative0 = rb_tree_iterate_const(rbt,
                                   self, other);
                               KASSERT(relative0 != NULL);
                               relative = rb_tree_iterate_const(rbt,
                                   relative0, other);
                               KASSERT(relative != NULL);
                               KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
#if 0
                               KASSERT(RB_RED_P(relative)
                                       || RB_RED_P(relative->rb_left)
                                       || RB_RED_P(relative->rb_right)
                                       || RB_RED_P(RB_FATHER(relative)));
#endif
                       }
               }
               /*
                * A grandparent's children must be real nodes and not
                * sentinels.  First check out grandparent.
                */
               KASSERT(RB_ROOT_P(rbt, self)
                       || RB_ROOT_P(rbt, RB_FATHER(self))
                       || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
               /*
                * If we are have grandchildren on our left, then
                * we must have a child on our right.
                */
               KASSERT(RB_LEFT_SENTINEL_P(self)
                       || RB_CHILDLESS_P(self->rb_left)
                       || !RB_RIGHT_SENTINEL_P(self));
               /*
                * If we are have grandchildren on our right, then
                * we must have a child on our left.
                */
               KASSERT(RB_RIGHT_SENTINEL_P(self)
                       || RB_CHILDLESS_P(self->rb_right)
                       || !RB_LEFT_SENTINEL_P(self));

               /*
                * If we have a child on the left and it doesn't have two
                * children make sure we don't have great-great-grandchildren on
                * the right.
                */
               KASSERT(RB_TWOCHILDREN_P(self->rb_left)
                       || RB_CHILDLESS_P(self->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));

               /*
                * If we have a child on the right and it doesn't have two
                * children make sure we don't have great-great-grandchildren on
                * the left.
                */
               KASSERT(RB_TWOCHILDREN_P(self->rb_right)
                       || RB_CHILDLESS_P(self->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));

               /*
                * If we are fully interior node, then our predecessors and
                * successors must have no children in our direction.
                */
               if (RB_TWOCHILDREN_P(self)) {
                       const struct rb_node *prev0;
                       const struct rb_node *next0;

                       prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
                       KASSERT(prev0 != NULL);
                       KASSERT(RB_RIGHT_SENTINEL_P(prev0));

                       next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
                       KASSERT(next0 != NULL);
                       KASSERT(RB_LEFT_SENTINEL_P(next0));
               }
       }

       return true;
}

void
rb_tree_check(const struct rb_tree *rbt, bool red_check)
{
       const struct rb_node *self;
       const struct rb_node *prev;
#ifdef RBSTATS
       unsigned int count = 0;
#endif

       KASSERT(rbt->rbt_root != NULL);
       KASSERT(RB_LEFT_P(rbt->rbt_root));

#if defined(RBSTATS) && !defined(RBSMALL)
       KASSERT(rbt->rbt_count > 1
           || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
#endif

       prev = NULL;
       TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
               rb_tree_check_node(rbt, self, prev, false);
#ifdef RBSTATS
               count++;
#endif
       }
#ifdef RBSTATS
       KASSERT(rbt->rbt_count == count);
#endif
       if (red_check) {
               KASSERT(RB_BLACK_P(rbt->rbt_root));
               KASSERT(RB_SENTINEL_P(rbt->rbt_root)
                       || rb_tree_count_black(rbt->rbt_root));

               /*
                * The root must be black.
                * There can never be two adjacent red nodes.
                */
               TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
                       rb_tree_check_node(rbt, self, NULL, true);
               }
       }
}
#endif /* RBDEBUG */

#ifdef RBSTATS
static void
rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
       size_t *depths, size_t depth)
{
       if (RB_SENTINEL_P(self))
               return;

       if (RB_TWOCHILDREN_P(self)) {
               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
               return;
       }
       depths[depth]++;
       if (!RB_LEFT_SENTINEL_P(self)) {
               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
       }
       if (!RB_RIGHT_SENTINEL_P(self)) {
               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
       }
}

void
rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
{
       rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
}
#endif /* RBSTATS */