/*      $NetBSD: umul.S,v 1.1 2005/12/20 19:28:50 christos Exp $        */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: umul.s,v 1.4 92/06/25 13:24:05 torek Exp
*/

#include <machine/asm.h>
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
       .asciz "@(#)umul.s      8.1 (Berkeley) 6/4/93"
#else
       RCSID("$NetBSD: umul.S,v 1.1 2005/12/20 19:28:50 christos Exp $")
#endif
#endif /* LIBC_SCCS and not lint */

/*
* Unsigned multiply.  Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the
* upper 32 bits of the 64-bit product).
*
* This code optimizes short (less than 13-bit) multiplies.  Short
* multiplies require 25 instruction cycles, and long ones require
* 45 instruction cycles.
*
* On return, overflow has occurred (%o1 is not zero) if and only if
* the Z condition code is clear, allowing, e.g., the following:
*
*      call    .umul
*      nop
*      bnz     overflow        (or tnz)
*/

FUNC(.umul)
       or      %o0, %o1, %o4
       mov     %o0, %y         ! multiplier -> Y
       andncc  %o4, 0xfff, %g0 ! test bits 12..31 of *both* args
       be      Lmul_shortway   ! if zero, can do it the short way
       andcc   %g0, %g0, %o4   ! zero the partial product and clear N and V

       /*
        * Long multiply.  32 steps, followed by a final shift step.
        */
       mulscc  %o4, %o1, %o4   ! 1
       mulscc  %o4, %o1, %o4   ! 2
       mulscc  %o4, %o1, %o4   ! 3
       mulscc  %o4, %o1, %o4   ! 4
       mulscc  %o4, %o1, %o4   ! 5
       mulscc  %o4, %o1, %o4   ! 6
       mulscc  %o4, %o1, %o4   ! 7
       mulscc  %o4, %o1, %o4   ! 8
       mulscc  %o4, %o1, %o4   ! 9
       mulscc  %o4, %o1, %o4   ! 10
       mulscc  %o4, %o1, %o4   ! 11
       mulscc  %o4, %o1, %o4   ! 12
       mulscc  %o4, %o1, %o4   ! 13
       mulscc  %o4, %o1, %o4   ! 14
       mulscc  %o4, %o1, %o4   ! 15
       mulscc  %o4, %o1, %o4   ! 16
       mulscc  %o4, %o1, %o4   ! 17
       mulscc  %o4, %o1, %o4   ! 18
       mulscc  %o4, %o1, %o4   ! 19
       mulscc  %o4, %o1, %o4   ! 20
       mulscc  %o4, %o1, %o4   ! 21
       mulscc  %o4, %o1, %o4   ! 22
       mulscc  %o4, %o1, %o4   ! 23
       mulscc  %o4, %o1, %o4   ! 24
       mulscc  %o4, %o1, %o4   ! 25
       mulscc  %o4, %o1, %o4   ! 26
       mulscc  %o4, %o1, %o4   ! 27
       mulscc  %o4, %o1, %o4   ! 28
       mulscc  %o4, %o1, %o4   ! 29
       mulscc  %o4, %o1, %o4   ! 30
       mulscc  %o4, %o1, %o4   ! 31
       mulscc  %o4, %o1, %o4   ! 32
       mulscc  %o4, %g0, %o4   ! final shift


       /*
        * Normally, with the shift-and-add approach, if both numbers are
        * positive you get the correct result.  WIth 32-bit two's-complement
        * numbers, -x is represented as
        *
        *                x                 32
        *      ( 2  -  ------ ) mod 2  *  2
        *                 32
        *                2
        *
        * (the `mod 2' subtracts 1 from 1.bbbb).  To avoid lots of 2^32s,
        * we can treat this as if the radix point were just to the left
        * of the sign bit (multiply by 2^32), and get
        *
        *      -x  =  (2 - x) mod 2
        *
        * Then, ignoring the `mod 2's for convenience:
        *
        *   x *  y     = xy
        *  -x *  y     = 2y - xy
        *   x * -y     = 2x - xy
        *  -x * -y     = 4 - 2x - 2y + xy
        *
        * For signed multiplies, we subtract (x << 32) from the partial
        * product to fix this problem for negative multipliers (see mul.s).
        * Because of the way the shift into the partial product is calculated
        * (N xor V), this term is automatically removed for the multiplicand,
        * so we don't have to adjust.
        *
        * But for unsigned multiplies, the high order bit wasn't a sign bit,
        * and the correction is wrong.  So for unsigned multiplies where the
        * high order bit is one, we end up with xy - (y << 32).  To fix it
        * we add y << 32.
        */
       tst     %o1
       bl,a    1f              ! if %o1 < 0 (high order bit = 1),
       add     %o4, %o0, %o4   ! %o4 += %o0 (add y to upper half)
1:      rd      %y, %o0         ! get lower half of product
       retl
       addcc   %o4, %g0, %o1   ! put upper half in place and set Z for %o1==0

Lmul_shortway:
       /*
        * Short multiply.  12 steps, followed by a final shift step.
        * The resulting bits are off by 12 and (32-12) = 20 bit positions,
        * but there is no problem with %o0 being negative (unlike above),
        * and overflow is impossible (the answer is at most 24 bits long).
        */
       mulscc  %o4, %o1, %o4   ! 1
       mulscc  %o4, %o1, %o4   ! 2
       mulscc  %o4, %o1, %o4   ! 3
       mulscc  %o4, %o1, %o4   ! 4
       mulscc  %o4, %o1, %o4   ! 5
       mulscc  %o4, %o1, %o4   ! 6
       mulscc  %o4, %o1, %o4   ! 7
       mulscc  %o4, %o1, %o4   ! 8
       mulscc  %o4, %o1, %o4   ! 9
       mulscc  %o4, %o1, %o4   ! 10
       mulscc  %o4, %o1, %o4   ! 11
       mulscc  %o4, %o1, %o4   ! 12
       mulscc  %o4, %g0, %o4   ! final shift

       /*
        * %o4 has 20 of the bits that should be in the result; %y has
        * the bottom 12 (as %y's top 12).  That is:
        *
        *        %o4               %y
        * +----------------+----------------+
        * | -12- |   -20-  | -12- |   -20-  |
        * +------(---------+------)---------+
        *         -----result-----
        *
        * The 12 bits of %o4 left of the `result' area are all zero;
        * in fact, all top 20 bits of %o4 are zero.
        */

       rd      %y, %o5
       sll     %o4, 12, %o0    ! shift middle bits left 12
       srl     %o5, 20, %o5    ! shift low bits right 20
       or      %o5, %o0, %o0
       retl
       addcc   %g0, %g0, %o1   ! %o1 = zero, and set Z