/*
* Written by J.T. Conklin <[email protected]>
* Public domain.
*/

#include <machine/asm.h>

#if defined(LIBC_SCCS)
       RCSID("$NetBSD: strlen.S,v 1.5 2024/03/30 22:03:39 andvar Exp $")
#endif

ENTRY(strlen)
       movl    4(%esp),%eax

Lalign:
       /* Consider unrolling loop? */
       testb   $3,%al
       je      .Lword_aligned
       cmpb    $0,(%eax)
       je      .Ldone
       incl    %eax
       jmp     .Lalign

       /*
        * There are many well known branch-free sequences which are used
        * for determining whether a zero-byte is contained within a word.
        * These sequences are generally much more efficient than loading
        * and comparing each byte individually.
        *
        * The expression [1,2]:
        *
        * (1)  ~(((x & 0x7f7f7f7f) + 0x7f7f7f7f) | (x | 0x7f7f7f7f))
        *
        * evaluates to a non-zero value if any of the bytes in the
        * original word is zero.
        *
        * It also has the useful property that bytes in the result word
        * that correspond to non-zero bytes in the original word have
        * the value 0x00, while bytes corresponding to zero bytes have
        * the value 0x80. This allows calculation of the first (and
        * last) occurrence of a zero byte within the word (useful for C's
        * str* primitives) by counting the number of leading (or
        * trailing) zeros and dividing the result by 8.  On machines
        * without (or with slow) clz() / ctz() instructions, testing
        * each byte in the result word for zero is necessary.
        *
        * This typically takes 4 instructions (5 on machines without
        * "not-or") not including those needed to load the constant.
        *
        *
        * The expression:
        *
        * (2)  ((x - 0x01010101) & ~x & 0x80808080)
        *
        * evaluates to a non-zero value if any of the bytes in the
        * original word is zero.
        *
        * On little endian machines, the first byte in the result word
        * that corresponds to a zero byte in the original byte is 0x80,
        * so clz() can be used as above.  On big endian machines, and
        * little endian machines without (or with a slow) clz() insn,
        * testing each byte in the original for zero is necessary.
        *
        * This typically takes 3 instructions (4 on machines without
        * "and with complement") not including those needed to load
        * constants.
        *
        *
        * The expression:
        *
        * (3)  ((x - 0x01010101) & 0x80808080)
        *
        * always evaluates to a non-zero value if any of the bytes in
        * the original word is zero.  However, in rare cases, it also
        * evaluates to a non-zero value when none of the bytes in the
        * original word is zero.
        *
        * To account for possible false positives, each byte of the
        * original word must be checked when the expression evaluates to
        * a non-zero value.  However, because it is simpler than those
        * presented above, code that uses it will be faster as long as
        * the rate of false positives is low.
        *
        * This is likely, because the false positive can only occur
        * if the most siginificant bit of a byte within the word is set.
        * The expression will never fail for typical 7-bit ASCII strings.
        *
        * This typically takes 2 instructions not including those needed
        * to load constants.
        *
        *
        * [1] Henry S. Warren Jr., "Hacker's Delight", Addison-Wesley 2003
        *
        * [2] International Business Machines, "The PowerPC Compiler Writer's
        *     Guide", Warthman Associates, 1996
        */

       _ALIGN_TEXT
Lword_aligned:
Lloop:
       movl    (%eax),%ecx
       addl    $4,%eax
       leal    -0x01010101(%ecx),%edx
       testl   $0x80808080,%edx
       je      .Lloop

       /*
        * In rare cases, the above loop may exit prematurely. We must
        * return to the loop if none of the bytes in the word equal 0.
        */

       /*
        * The optimal code for determining whether each byte is zero
        * differs by processor.  This space-optimized code should be
        * acceptable on all, especially since we don't expect it to
        * be run frequently,
        */

       testb   %cl,%cl         /* 1st byte == 0? */
       jne     1f
       subl    $4,%eax
       jmp     .Ldone

1:      testb   %ch,%ch         /* 2nd byte == 0? */
       jne     1f
       subl    $3,%eax
       jmp     .Ldone

1:      shrl    $16,%ecx
       testb   %cl,%cl         /* 3rd byte == 0? */
       jne     1f
       subl    $2,%eax
       jmp     .Ldone

1:      testb   %ch,%ch         /* 4th byte == 0? */
       jne     .Lloop
       decl    %eax

Ldone:
       subl    4(%esp),%eax
       ret
END(strlen)