Network Working Group                                          B. Curtin
Request for Comments: 2640            Defense Information Systems Agency
Updates: 959                                                   July 1999
Category: Proposed Standard


          Internationalization of the File Transfer Protocol

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  The File Transfer Protocol, as defined in RFC 959 [RFC959] and RFC
  1123 Section 4 [RFC1123], is one of the oldest and widely used
  protocols on the Internet. The protocol's primary character set, 7
  bit ASCII, has served the protocol well through the early growth
  years of the Internet. However, as the Internet becomes more global,
  there is a need to support character sets beyond 7 bit ASCII.

  This document addresses the internationalization (I18n) of FTP, which
  includes supporting the multiple character sets and languages found
  throughout the Internet community.  This is achieved by extending the
  FTP specification and giving recommendations for proper
  internationalization support.

Table of Contents

  ABSTRACT.......................................................1
  1 INTRODUCTION.................................................2
   1.1 Requirements Terminology..................................2
  2 INTERNATIONALIZATION.........................................3
   2.1 International Character Set...............................3
   2.2 Transfer Encoding Set.....................................4
  3 PATHNAMES....................................................5
   3.1 General compliance........................................5
   3.2 Servers compliance........................................6
   3.3 Clients compliance........................................7
  4 LANGUAGE SUPPORT.............................................7



Curtin                     Proposed Standard                    [Page 1]

RFC 2640                  FTP Internalization                  July 1999


   4.1 The LANG command..........................................8
   4.2 Syntax of the LANG command................................9
   4.3 Feat response for LANG command...........................11
    4.3.1 Feat examples.........................................11
  5 SECURITY CONSIDERATIONS.....................................12
  6 ACKNOWLEDGMENTS.............................................12
  7 GLOSSARY....................................................13
  8 BIBLIOGRAPHY................................................13
  9 AUTHOR'S ADDRESS............................................15
  ANNEX A - IMPLEMENTATION CONSIDERATIONS.......................16
   A.1 General Considerations...................................16
   A.2 Transition Considerations................................18
  ANNEX B - SAMPLE CODE AND EXAMPLES............................19
   B.1 Valid UTF-8 check........................................19
   B.2 Conversions..............................................20
    B.2.1 Conversion from Local Character Set to UTF-8..........20
    B.2.2 Conversion from UTF-8 to Local Character Set..........23
    B.2.3 ISO/IEC 8859-8 Example................................25
    B.2.4 Vendor Codepage Example...............................25
   B.3 Pseudo Code for Translating Servers......................26
  Full Copyright Statement......................................27

1 Introduction

  As the Internet grows throughout the world the requirement to support
  character sets outside of the ASCII [ASCII] / Latin-1 [ISO-8859]
  character set becomes ever more urgent.  For FTP, because of the
  large installed base, it is paramount that this is done without
  breaking existing clients and servers. This document addresses this
  need. In doing so it defines a solution which will still allow the
  installed base to interoperate with new clients and servers.

  This document enhances the capabilities of the File Transfer Protocol
  by removing the 7-bit restrictions on pathnames used in client
  commands and server responses, RECOMMENDs the use of a Universal
  Character Set (UCS) ISO/IEC 10646 [ISO-10646], RECOMMENDs a UCS
  transformation format (UTF) UTF-8 [UTF-8], and defines a new command
  for language negotiation.

  The recommendations made in this document are consistent with the
  recommendations expressed by the IETF policy related to character
  sets and languages as defined in RFC 2277 [RFC2277].

1.1.  Requirements Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14 [BCP14].



Curtin                     Proposed Standard                    [Page 2]

RFC 2640                  FTP Internalization                  July 1999


2 Internationalization

  The File Transfer Protocol was developed when the predominate
  character sets were 7 bit ASCII and 8 bit EBCDIC. Today these
  character sets cannot support the wide range of characters needed by
  multinational systems. Given that there are a number of character
  sets in current use that provide more characters than 7-bit ASCII, it
  makes sense to decide on a convenient way to represent the union of
  those possibilities. To work globally either requires support of a
  number of character sets and to be able to convert between them, or
  the use of a single preferred character set. To assure global
  interoperability this document RECOMMENDS the latter approach and
  defines a single character set, in addition to NVT ASCII and EBCDIC,
  which is understandable by all systems. For FTP this character set
  SHALL be ISO/IEC 10646:1993.  For support of global compatibility it
  is STRONGLY RECOMMENDED that clients and servers use UTF-8 encoding
  when exchanging pathnames.  Clients and servers are, however, under
  no obligation to perform any conversion on the contents of a file for
  operations such as STOR or RETR.

  The character set used to store files SHALL remain a local decision
  and MAY depend on the capability of local operating systems. Prior to
  the exchange of pathnames they SHOULD be converted into a ISO/IEC
  10646 format and UTF-8 encoded. This approach, while allowing
  international exchange of pathnames, will still allow backward
  compatibility with older systems because the code set positions for
  ASCII characters are identical to the one byte sequence in UTF-8.

  Sections 2.1 and 2.2 give a brief description of the international
  character set and transfer encoding RECOMMENDED by this document. A
  more thorough description of UTF-8, ISO/IEC 10646, and UNICODE
  [UNICODE], beyond that given in this document, can be found in RFC
  2279 [RFC2279].

2.1 International Character Set

  The character set defined for international support of FTP SHALL be
  the Universal Character Set as defined in ISO 10646:1993 as amended.
  This standard incorporates the character sets of many existing
  international, national, and corporate standards. ISO/IEC 10646
  defines two alternate forms of encoding, UCS-4 and UCS-2. UCS-4 is a
  four byte (31 bit) encoding containing 2**31 code positions divided
  into 128 groups of 256 planes. Each plane consists of 256 rows of 256
  cells. UCS-2 is a 2 byte (16 bit) character set consisting of plane
  zero or the Basic Multilingual Plane (BMP).  Currently, no codesets
  have been defined outside of the 2 byte BMP.





Curtin                     Proposed Standard                    [Page 3]

RFC 2640                  FTP Internalization                  July 1999


  The Unicode standard version 2.0 [UNICODE] is consistent with the
  UCS-2 subset of ISO/IEC 10646. The Unicode standard version 2.0
  includes the repertoire of IS 10646 characters, amendments 1-7 of IS
  10646, and editorial and technical corrigenda.

2.2 Transfer Encoding

  UCS Transformation Format 8 (UTF-8), in the past referred to as UTF-2
  or UTF-FSS, SHALL be used as a transfer encoding to transmit the
  international character set. UTF-8 is a file safe encoding which
  avoids the use of byte values that have special significance during
  the parsing of pathname character strings. UTF-8 is an 8 bit encoding
  of the characters in the UCS. Some of UTF-8's benefits are that it is
  compatible with 7 bit ASCII, so it doesn't affect programs that give
  special meanings to various ASCII characters; it is immune to
  synchronization errors; its encoding rules allow for easy
  identification; and it has enough space to support a large number of
  character sets.

  UTF-8 encoding represents each UCS character as a sequence of 1 to 6
  bytes in length. For all sequences of one byte the most significant
  bit is ZERO. For all sequences of more than one byte the number of
  ONE bits in the first byte, starting from the most significant bit
  position, indicates the number of bytes in the UTF-8 sequence
  followed by a ZERO bit. For example, the first byte of a 3 byte UTF-8
  sequence would have 1110 as its most significant bits. Each
  additional bytes (continuing bytes) in the UTF-8 sequence, contain a
  ONE bit followed by a ZERO bit as their most significant bits. The
  remaining free bit positions in the continuing bytes are used to
  identify characters in the UCS. The relationship between UCS and
  UTF-8 is demonstrated in the following table:

  UCS-4 range(hex)          UTF-8 byte sequence(binary)
  00000000 - 0000007F       0xxxxxxx
  00000080 - 000007FF       110xxxxx 10xxxxxx
  00000800 - 0000FFFF       1110xxxx 10xxxxxx 10xxxxxx
  00010000 - 001FFFFF       11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
  00200000 - 03FFFFFF       111110xx 10xxxxxx 10xxxxxx 10xxxxxx
                            10xxxxxx
  04000000 - 7FFFFFFF       1111110x 10xxxxxx 10xxxxxx 10xxxxxx
                            10xxxxxx 10xxxxxx

  A beneficial property of UTF-8 is that its single byte sequence is
  consistent with the ASCII character set. This feature will allow a
  transition where old ASCII-only clients can still interoperate with
  new servers that support the UTF-8 encoding.





Curtin                     Proposed Standard                    [Page 4]

RFC 2640                  FTP Internalization                  July 1999


  Another feature is that the encoding rules make it very unlikely that
  a character sequence from a different character set will be mistaken
  for a UTF-8 encoded character sequence. Clients and servers can use a
  simple routine to determine if the character set being exchanged is
  valid UTF-8. Section B.1 shows a code example of this check.

3 Pathnames

3.1 General compliance

  - The 7-bit restriction for pathnames exchanged is dropped.

  - Many operating system allow the use of spaces <SP>, carriage return
    <CR>, and line feed <LF> characters as part of the pathname. The
    exchange of pathnames with these special command characters will
    cause the pathnames to be parsed improperly. This is because ftp
    commands associated with pathnames have the form:

     COMMAND <SP> <pathname> <CRLF>.

  To allow the exchange of pathnames containing these characters, the
  definition of pathname is changed from

    <pathname> ::= <string>   ; in BNF format
  to
    pathname = 1*(%x01..%xFF) ; in ABNF format [ABNF].

  To avoid mistaking these characters within pathnames as special
  command characters the following rules will apply:

  There MUST be only one <SP> between a ftp command and the pathname.
  Implementations MUST assume <SP> characters following the initial
  <SP> as part of the pathname. For example the pathname in STOR
  <SP><SP><SP>foo.bar<CRLF> is <SP><SP>foo.bar.

  Current implementations, which may allow multiple <SP> characters as
  separators between the command and pathname, MUST assure that they
  comply with this single <SP> convention. Note: Implementations which
  treat 3 character commands (e.g. CWD, MKD, etc.) as a fixed 4
  character command by padding the command with a trailing <SP> are in
  non-compliance to this specification.

  When a <CR> character is encountered as part of a pathname it MUST be
  padded with a <NUL> character prior to sending the command. On
  receipt of a pathname containing a <CR><NUL> sequence the <NUL>
  character MUST be stripped away. This approach is described in the
  Telnet protocol [RFC854] on pages 11 and 12. For example, to store a
  pathname foo<CR><LF>boo.bar the pathname would become



Curtin                     Proposed Standard                    [Page 5]

RFC 2640                  FTP Internalization                  July 1999


  foo<CR><NUL><LF>boo.bar prior to sending the command STOR
  <SP>foo<CR><NUL><LF>boo.bar<CRLF>. Upon receipt of the altered
  pathname the <NUL> character following the <CR> would be stripped
  away to form the original pathname.

  - Conforming clients and servers MUST support UTF-8 for the transfer
    and receipt of pathnames. Clients and servers MAY in addition give
    users a choice of specifying interpretation of pathnames in another
    encoding. Note that configuring clients and servers to use
    character sets / encoding other than UTF-8 is outside of the scope
    of this document. While it is recognized that in certain
    operational scenarios this may be desirable, this is left as a
    quality of implementation and operational issue.

  - Pathnames are sequences of bytes.  The encoding of names that are
    valid UTF-8 sequences is assumed to be UTF-8.  The character set of
    other names is undefined. Clients and servers, unless otherwise
    configured to support a specific native character set, MUST check
    for a valid UTF-8 byte sequence to determine if the pathname being
    presented is UTF-8.

  - To avoid data loss, clients and servers SHOULD use the UTF-8
    encoded pathnames when unable to convert them to a usable code set.

  - There may be cases when the code set / encoding presented to the
    server or client cannot be determined. In such cases the raw bytes
    SHOULD be used.

3.2 Servers compliance

  - Servers MUST support the UTF-8 feature in response to the FEAT
    command [RFC2389]. The UTF-8 feature is a line containing the exact
    string "UTF8". This string is not case sensitive, but SHOULD be
    transmitted in upper case. The response to a FEAT command SHOULD
    be:

       C> feat
       S> 211- <any descriptive text>
       S>  ...
       S>  UTF8
       S>  ...
       S> 211 end

  The ellipses indicate placeholders where other features may be
  included, but are NOT REQUIRED. The one space indentation of the
  feature lines is mandatory [RFC2389].





Curtin                     Proposed Standard                    [Page 6]

RFC 2640                  FTP Internalization                  July 1999


  - Mirror servers may want to exactly reflect the site that they are
    mirroring. In such cases servers MAY store and present the exact
    pathname bytes that it received from the main server.

3.3 Clients compliance

  - Clients which do not require display of pathnames are under no
    obligation to do so. Non-display clients do not need to conform to
    requirements associated with display.

  - Clients, which are presented UTF-8 pathnames by the server, SHOULD
    parse UTF-8 correctly and attempt to display the pathname within
    the limitation of the resources available.

  - Clients MUST support the FEAT command and recognize the "UTF8"
    feature (defined in 3.2 above) to determine if a server supports
    UTF-8 encoding.

  - Character semantics of other names shall remain undefined. If a
    client detects that a server is non UTF-8, it SHOULD change its
    display appropriately. How a client implementation handles non
    UTF-8 is a quality of implementation issue. It MAY try to assume
    some other encoding, give the user a chance to try to assume
    something, or save encoding assumptions for a server from one FTP
    session to another.

  - Glyph rendering is outside the scope of this document. How a client
    presents characters it cannot display is a quality of
    implementation issue. This document RECOMMENDS that octets
    corresponding to non-displayable characters SHOULD be presented in
    URL %HH format defined in RFC 1738 [RFC1738]. They MAY, however,
    display them as question marks, with their UCS hexadecimal value,
    or in any other suitable fashion.

  - Many existing clients interpret 8-bit pathnames as being in the
    local character set. They MAY continue to do so for pathnames that
    are not valid UTF-8.

4. Language Support

  The Character Set Workshop Report [RFC2130] suggests that clients and
  servers SHOULD negotiate a language for "greetings" and "error
  messages". This specification interprets the use of the term  "error
  message", by RFC 2130, to mean any explanatory text string returned
  by server-PI in response to a user-PI command.






Curtin                     Proposed Standard                    [Page 7]

RFC 2640                  FTP Internalization                  July 1999


  Implementers SHOULD note that FTP commands and numeric responses are
  protocol elements. As such, their use is not affected by any guidance
  expressed by this specification.

  Language support of greetings and command responses shall be the
  default language supported by the server or the language supported by
  the server and selected by the client.

  It may be possible to achieve language support through a virtual host
  as described in [MLST]. However, an FTP server might not support
  virtual servers, or virtual servers might be configured to support an
  environment without regard for language. To allow language
  negotiation this specification defines a new LANG command. Clients
  and servers that comply with this specification MUST support the LANG
  command.

4.1 The LANG command

  A new command "LANG" is added to the FTP command set to allow
  server-FTP process to determine in which language to present server
  greetings and the textual part of command responses. The parameter
  associated with the LANG command SHALL be one of the language tags
  defined in RFC 1766 [RFC1766]. If a LANG command without a parameter
  is issued the server's default language will be used.

  Greetings and responses issued prior to language negotiation SHALL be
  in the server's default language. Paragraph 4.5 of [RFC2277] state
  that this "default language MUST be understandable by an English-
  speaking person". This specification RECOMMENDS that the server
  default language be English encoded using ASCII. This text may be
  augmented by text from other languages. Once negotiated, server-PI
  MUST return server messages and textual part of command responses in
  the negotiated language and encoded in UTF-8. Server-PI MAY wish to
  re-send previously issued server messages in the newly negotiated
  language.

  The LANG command only affects presentation of greeting messages and
  explanatory text associated with command responses. No attempt should
  be made by the server to translate protocol elements (FTP commands
  and numeric responses) or data transmitted over the data connection.

  User-PI MAY issue the LANG command at any time during an FTP session.
  In order to gain the full benefit of this command, it SHOULD be
  presented prior to authentication. In general, it will be issued
  after the HOST command [MLST]. Note that the issuance of a HOST or






Curtin                     Proposed Standard                    [Page 8]

RFC 2640                  FTP Internalization                  July 1999


  REIN command [RFC959] will negate the affect of the LANG command.
  User-PI SHOULD be capable of supporting UTF-8 encoding for the
  language negotiated. Guidance on interpretation and rendering of
  UTF-8, defined in section 3, SHALL apply.

  Although NOT REQUIRED by this specification, a user-PI SHOULD issue a
  FEAT command [RFC2389] prior to a LANG command. This will allow the
  user-PI to determine if the server supports the LANG command and
  which language options.

  In order to aid the server in identifying whether a connection has
  been established with a client which conforms to this specification
  or an older client, user-PI MUST send a HOST [MLST] and/or LANG
  command prior to issuing any other command (other than FEAT
  [RFC2389]). If user-PI issues a HOST command, and the server's
  default language is acceptable, it need not issue a LANG command.
  However, if the implementation does not support the HOST command, a
  LANG command MUST be issued. Until server-PI is presented with either
  a HOST or LANG command it SHOULD assume that the user-PI does not
  comply with this specification.

4.2 Syntax of the LANG command

  The LANG command is defined as follows:

  lang-command       = "Lang" [(SP lang-tag)] CRLF
  lang-tag           = Primary-tag *( "-" Sub-tag)
  Primary-tag        = 1*8ALPHA
  Sub-tag            = 1*8ALPHA

  lang-response      = lang-ok / error-response
  lang-ok            = "200" [SP *(%x00..%xFF) ] CRLF
  error-response     = command-unrecognized / bad-argument /
                    not-implemented / unsupported-parameter
  command-unrecognized  = "500" [SP *(%x01..%xFF) ] CRLF
  bad-argument       = "501" [SP *(%x01..%xFF) ] CRLF
  not-implemented    = "502" [SP *(%x01..%xFF) ] CRLF
  unsupported-parameter = "504" [SP *(%x01..%xFF) ] CRLF

  The "lang" command word is case independent and may be specified in
  any character case desired. Therefore "LANG", "lang", "Lang", and
  "lAnG" are equivalent commands.

  The OPTIONAL "Lang-tag" given as a parameter specifies the primary
  language tags and zero or more sub-tags as defined in [RFC1766]. As
  described in [RFC1766] language tags are treated as case insensitive.
  If omitted server-PI MUST use the server's default language.




Curtin                     Proposed Standard                    [Page 9]

RFC 2640                  FTP Internalization                  July 1999


  Server-FTP responds to the "Lang" command with either "lang-ok" or
  "error-response". "lang-ok" MUST be sent if Server-FTP supports the
  "Lang" command and can support some form of the "lang-tag". Support
  SHOULD be as follows:

  - If server-FTP receives "Lang" with no parameters it SHOULD return
    messages and command responses in the server default language.

  - If server-FTP receives "Lang" with only a primary tag argument
    (e.g. en, fr, de, ja, zh, etc.), which it can support, it SHOULD
    return messages and command responses in the language associated
    with that primary tag. It is possible that server-FTP will only
    support the primary tag when combined with a sub-tag (e.g. en-US,
    en-UK, etc.). In such cases, server-FTP MAY determine the
    appropriate variant to use during the session. How server-FTP makes
    that determination is outside the scope of this specification. If
    server-FTP cannot determine if a sub-tag variant is appropriate it
    SHOULD return an "unsupported-parameter" (504) response.

  - If server-FTP receives "Lang" with a primary tag and sub-tag(s)
    argument, which is implemented, it SHOULD return messages and
    command responses in support of the language argument. It is
    possible that server-FTP can support the primary tag of the "Lang"
    argument but not the sub-tag(s). In such cases server-FTP MAY
    return messages and command responses in the most appropriate
    variant of the primary tag that has been implemented. How server-
    FTP makes that determination is outside the scope of this
    specification. If server-FTP cannot determine if a sub-tag variant
    is appropriate it SHOULD return an "unsupported-parameter" (504)
    response.

  For example if client-FTP sends a "LANG en-AU" command and server-FTP
  has implemented language tags en-US and en-UK it may decide that the
  most appropriate language tag is en-UK and return "200 en-AU not
  supported. Language set to en-UK". The numeric response is a protocol
  element and can not be changed. The associated string is for
  illustrative purposes only.

  Clients and servers that conform to this specification MUST support
  the LANG command. Clients SHOULD, however, anticipate receiving a 500
  or 502 command response, in cases where older or non-compliant
  servers do not recognize or have not implemented the "Lang". A 501
  response SHOULD be sent if the argument to the "Lang" command is not
  syntactically correct. A 504 response SHOULD be sent if the "Lang"
  argument, while syntactically correct, is not implemented. As noted
  above, an argument may be considered a lexicon match even though it
  is not an exact syntax match.




Curtin                     Proposed Standard                   [Page 10]

RFC 2640                  FTP Internalization                  July 1999


4.3 Feat response for LANG command

  A server-FTP process that supports the LANG command, and language
  support for messages and command responses, MUST include in the
  response to the FEAT command [RFC2389], a feature line indicating
  that the LANG command is supported and a fact list of the supported
  language tags. A response to a FEAT command SHALL be in the following
  format:

       Lang-feat  = SP "LANG" SP lang-fact CRLF
       lang-fact  = lang-tag ["*"] *(";" lang-tag ["*"])

       lang-tag   = Primary-tag *( "-" Sub-tag)
       Primary-tag= 1*8ALPHA
       Sub-tag    = 1*8ALPHA

  The lang-feat response contains the string "LANG" followed by a
  language fact. This string is not case sensitive, but SHOULD be
  transmitted in upper case, as recommended in [RFC2389]. The initial
  space shown in the Lang-feat response is REQUIRED by the FEAT
  command. It MUST be a single space character. More or less space
  characters are not permitted. The lang-fact SHALL include the lang-
  tags which server-FTP can support. At least one lang-tag MUST be
  included with the FEAT response. The lang-tag SHALL be in the form
  described earlier in this document. The OPTIONAL asterisk, when
  present, SHALL indicate the current lang-tag being used by server-FTP
  for messages and responses.

4.3.1 Feat examples

       C> feat
       S> 211- <any descriptive text>
       S>  ...
       S>  LANG EN*
       S>  ...
       S> 211 end

  In this example server-FTP can only support English, which is the
  current language (as shown by the asterisk) being used by the server
  for messages and command responses.

       C> feat
       S> 211- <any descriptive text>
       S>  ...
       S>  LANG EN*;FR
       S>  ...
       S> 211 end




Curtin                     Proposed Standard                   [Page 11]

RFC 2640                  FTP Internalization                  July 1999


       C> LANG fr
       S> 200 Le response sera changez au francais

       C> feat
       S> 211- <quelconque descriptif texte>
       S>  ...
       S>  LANG EN;FR*
       S>  ...
       S> 211 end

  In this example server-FTP supports both English and French as shown
  by the initial response to the FEAT command. The asterisk indicates
  that English is the current language in use by server-FTP. After a
  LANG command is issued to change the language to French, the FEAT
  response shows French as the current language in use.

  In the above examples ellipses indicate placeholders where other
  features may be included, but are NOT REQUIRED.

5 Security Considerations

  This document addresses the support of character sets beyond 1 byte
  and a new language negotiation command. Conformance to this document
  should not induce a security risk.

6 Acknowledgments

  The following people have contributed to this document:

  D. J. Bernstein
  Martin J. Duerst
  Mark Harris
  Paul Hethmon
  Alun Jones
  Gregory Lundberg
  James Matthews
  Keith Moore
  Sandra O'Donnell
  Benjamin Riefenstahl
  Stephen Tihor

  (and others from the FTPEXT working group)









Curtin                     Proposed Standard                   [Page 12]

RFC 2640                  FTP Internalization                  July 1999


7 Glossary

  BIDI - abbreviation for Bi-directional, a reference to mixed right-
  to-left and left-to-right text.

  Character Set - a collection of characters used to represent textual
  information in which each character has a numeric value

  Code Set -  (see character set).

  Glyph - a character image represented on a display device.

  I18N - "I eighteen N", the first and last letters of the word
  "internationalization" and the eighteen letters in between.

  UCS-2 - the ISO/IEC 10646 two octet Universal Character Set form.

  UCS-4 - the ISO/IEC 10646 four octet Universal Character Set form.

  UTF-8 - the UCS Transformation Format represented in 8 bits.

  TF-16 - A 16-bit format including the BMP (directly encoded) and
  surrogate pairs to represent characters in planes 01-16; equivalent
  to Unicode.

8 Bibliography

  [ABNF]       Crocker, D. and P. Overell, "Augmented BNF for Syntax
               Specifications: ABNF", RFC 2234, November 1997.

  [ASCII]      ANSI X3.4:1986 Coded Character Sets - 7 Bit American
               National Standard Code for Information Interchange (7-
               bit ASCII)

  [ISO-8859]   ISO 8859.  International standard -- Information
               processing -- 8-bit single-byte coded graphic character
               sets -- Part 1:Latin alphabet No. 1 (1987) -- Part 2:
               Latin alphabet No. 2 (1987) -- Part 3: Latin alphabet
               No. 3 (1988) -- Part 4: Latin alphabet No. 4 (1988) --
               Part 5: Latin/Cyrillic alphabet (1988) -- Part 6:
               Latin/Arabic alphabet (1987) -- Part : Latin/Greek
               alphabet (1987) -- Part 8: Latin/Hebrew alphabet (1988)
               -- Part 9: Latin alphabet No. 5 (1989) -- Part10: Latin
               alphabet No. 6 (1992)

  [BCP14]      Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.




Curtin                     Proposed Standard                   [Page 13]

RFC 2640                  FTP Internalization                  July 1999


  [ISO-10646]  ISO/IEC 10646-1:1993. International standard --
               Information technology -- Universal multiple-octet coded
               character set (UCS) -- Part 1: Architecture and basic
               multilingual plane.

  [MLST]       Elz, R. and P. Hethmon, "Extensions to FTP", Work in
               Progress.

  [RFC854]     Postel, J. and J. Reynolds, "Telnet Protocol
               Specification", STD 8, RFC 854, May 1983.

  [RFC959]     Postel, J. and J. Reynolds, "File Transfer Protocol
               (FTP)", STD 9, RFC 959, October 1985.

  [RFC1123]    Braden, R., "Requirements for Internet Hosts --
               Application and Support", STD 3, RFC 1123, October 1989.

  [RFC1738]    Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform
               Resource Locators (URL)", RFC 1738, December 1994.

  [RFC1766]    Alvestrand, H., "Tags for the Identification of
               Languages", RFC 1766, March 1995.

  [RFC2130]    Weider, C., Preston, C., Simonsen, K., Alvestrand, H.,
               Atkinson, R., Crispin, M. and P. Svanberg, "Character
               Set Workshop Report", RFC 2130, April 1997.

  [RFC2277]    Alvestrand, H., " IETF Policy on Character Sets and
               Languages", RFC 2277, January 1998.

  [RFC2279]    Yergeau, F., "UTF-8, a transformation format of ISO
               10646", RFC 2279, January 1998.

  [RFC2389]    Elz, R. and P. Hethmon, "Feature Negotiation Mechanism
               for the File Transfer Protocol", RFC 2389, August 1998.

  [UNICODE]    The Unicode Consortium, "The Unicode Standard - Version
               2.0", Addison Westley Developers Press, July 1996.

  [UTF-8]      ISO/IEC 10646-1:1993 AMENDMENT 2 (1996). UCS
               Transformation Format 8 (UTF-8).










Curtin                     Proposed Standard                   [Page 14]

RFC 2640                  FTP Internalization                  July 1999


9 Author's Address

  Bill Curtin
  JIEO
  Attn: JEBBD
  Ft. Monmouth, N.J. 07703-5613

  EMail: [email protected]











































Curtin                     Proposed Standard                   [Page 15]

RFC 2640                  FTP Internalization                  July 1999


Annex A - Implementation Considerations

A.1 General Considerations

  - Implementers should ensure that their code accounts for potential
    problems, such as using a NULL character to terminate a string or
    no longer being able to steal the high order bit for internal use,
    when supporting the extended character set.

  - Implementers should be aware that there is a chance that pathnames
    that are non UTF-8 may be parsed as valid UTF-8. The probabilities
    are low for some encoding or statistically zero to zero for others.
    A recent non-scientific analysis found that EUC encoded Japanese
    words had a 2.7% false reading; SJIS had a 0.0005% false reading;
    other encoding such as ASCII or KOI-8 have a 0% false reading. This
    probability is highest for short pathnames and decreases as
    pathname size increases. Implementers may want to look for signs
    that pathnames which parse as UTF-8 are not valid UTF-8, such as
    the existence of multiple local character sets in short pathnames.
    Hopefully, as more implementations conform to UTF-8 transfer
    encoding there will be a smaller need to guess at the encoding.

  - Client developers should be aware that it will be possible for
    pathnames to contain mixed characters (e.g.
    //Latin1DirectoryName/HebrewFileName). They should be prepared to
    handle the Bi-directional (BIDI) display of these character sets
    (i.e. right to left display for the directory and left to right
    display for the filename). While bi-directional display is outside
    the scope of this document and more complicated than the above
    example, an algorithm for bi-directional display can be found in
    the UNICODE 2.0 [UNICODE] standard. Also note that pathnames can
    have different byte ordering yet be logically and display-wise
    equivalent due to the insertion of BIDI control characters at
    different points during composition. Also note that mixed character
    sets may also present problems with font swapping.

  - A server that copies pathnames transparently from a local
    filesystem may continue to do so. It is then up to the local file
    creators to use UTF-8 pathnames.

  - Servers can supports charset labeling of files and/or directories,
    such that different pathnames may have different charsets. The
    server should attempt to convert all pathnames to UTF-8, but if it
    can't then it should leave that name in its raw form.

  - Some server's OS do not mandate character sets, but allow
    administrators to configure it in the FTP server. These servers
    should be configured to use a particular mapping table (either



Curtin                     Proposed Standard                   [Page 16]

RFC 2640                  FTP Internalization                  July 1999


    external or built-in). This will allow the flexibility of defining
    different charsets for different directories.

  - If the server's OS does not mandate the character set and the FTP
    server cannot be configured, the server should simply use the raw
    bytes in the file name.  They might be ASCII or UTF-8.

  - If the server is a mirror, and wants to look just like the site it
    is mirroring, it should store the exact file name bytes that it
    received from the main server.









































Curtin                     Proposed Standard                   [Page 17]

RFC 2640                  FTP Internalization                  July 1999


A.2 Transition Considerations

  - Servers which support this specification, when presented a pathname
    from an old client (one which does not support this specification),
    can nearly always tell whether the pathname is in UTF-8 (see B.1)
    or in some other code set. In order to support these older clients,
    servers may wish to default to a non UTF-8 code set. However, how a
    server supports non UTF-8 is outside the scope of this
    specification.

  - Clients which support this specification will be able to determine
    if the server can support UTF-8 (i.e. supports this specification)
    by the ability of the server to support the FEAT command and the
    UTF8 feature (defined in 3.2). If the newer clients determine that
    the server does not support UTF-8 it may wish to default to a
    different code set. Client developers should take into
    consideration that pathnames, associated with older servers, might
    be stored in UTF-8. However, how a client supports non UTF-8 is
    outside the scope of this specification.

  - Clients and servers can transition to UTF-8 by either converting
    to/from the local encoding, or the users can store UTF-8 filenames.
    The former approach is easier on tightly controlled file systems
    (e.g. PCs and MACs). The latter approach is easier on more free
    form file systems (e.g. Unix).

  - For interactive use attention should be focused on user interface
    and ease of use. Non-interactive use requires a consistent and
    controlled behavior.

  - There may be many applications which reference files under their
    old raw pathname (e.g. linked URLs). Changing the pathname to UTF-8
    will cause access to the old URL to fail. A solution may be for the
    server to act as if there was 2 different pathnames associated with
    the file. This might be done internal to the server on controlled
    file systems or by using symbolic links on free form systems. While
    this approach may work for single file transfer non-interactive
    use, a non-interactive transfer of all of the files in a directory
    will produce duplicates. Interactive users may be presented with
    lists of files which are double the actual number files.











Curtin                     Proposed Standard                   [Page 18]

RFC 2640                  FTP Internalization                  July 1999


Annex B - Sample Code and Examples

B.1 Valid UTF-8 check

  The following routine checks if a byte sequence is valid UTF-8. This
  is done by checking for the proper tagging of the first and following
  bytes to make sure they conform to the UTF-8 format. It then checks
  to assure that the data part of the UTF-8 sequence conforms to the
  proper range allowed by the encoding. Note: This routine will not
  detect characters that have not been assigned and therefore do not
  exist.

int utf8_valid(const unsigned char *buf, unsigned int len)
{
const unsigned char *endbuf = buf + len;
unsigned char byte2mask=0x00, c;
int trailing = 0;  // trailing (continuation) bytes to follow

while (buf != endbuf)
{
  c = *buf++;
  if (trailing)
   if ((c&0xC0) == 0x80)  // Does trailing byte follow UTF-8 format?
   {if (byte2mask)        // Need to check 2nd byte for proper range?
     if (c&byte2mask)     // Are appropriate bits set?
      byte2mask=0x00;
     else
      return 0;
    trailing--; }
   else
    return 0;
  else
   if ((c&0x80) == 0x00)  continue;      // valid 1 byte UTF-8
   else if ((c&0xE0) == 0xC0)            // valid 2 byte UTF-8
         if (c&0x1E)                     // Is UTF-8 byte in
                                         // proper range?
          trailing =1;
         else
          return 0;
   else if ((c&0xF0) == 0xE0)           // valid 3 byte UTF-8
         {if (!(c&0x0F))                // Is UTF-8 byte in
                                        // proper range?
           byte2mask=0x20;              // If not set mask
                                        // to check next byte
           trailing = 2;}
   else if ((c&0xF8) == 0xF0)           // valid 4 byte UTF-8
         {if (!(c&0x07))                // Is UTF-8 byte in
                                        // proper range?



Curtin                     Proposed Standard                   [Page 19]

RFC 2640                  FTP Internalization                  July 1999


           byte2mask=0x30;              // If not set mask
                                        // to check next byte
           trailing = 3;}
   else if ((c&0xFC) == 0xF8)           // valid 5 byte UTF-8
         {if (!(c&0x03))                // Is UTF-8 byte in
                                        // proper range?
           byte2mask=0x38;              // If not set mask
                                        // to check next byte
           trailing = 4;}
   else if ((c&0xFE) == 0xFC)           // valid 6 byte UTF-8
         {if (!(c&0x01))                // Is UTF-8 byte in
                                        // proper range?
           byte2mask=0x3C;              // If not set mask
                                        // to check next byte
           trailing = 5;}
   else  return 0;
}
 return trailing == 0;
}

B.2 Conversions

  The code examples in this section closely reflect the algorithm in
  ISO 10646 and may not present the most efficient solution for
  converting to / from UTF-8 encoding. If efficiency is an issue,
  implementers should use the appropriate bitwise operators.

  Additional code examples and numerous mapping tables can be found at
  the Unicode site, HTTP://www.unicode.org or FTP://unicode.org.

  Note that the conversion examples below assume that the local
  character set supported in the operating system is something other
  than UCS2/UTF-16. There are some operating systems that already
  support UCS2/UTF-16 (notably Plan 9 and Windows NT). In this case no
  conversion will be necessary from the local character set to the UCS.

B.2.1 Conversion from Local Character Set to UTF-8

  Conversion from the local filesystem character set to UTF-8 will
  normally involve a two step process. First convert the local
  character set to the UCS; then convert the UCS to UTF-8.

  The first step in the process can be performed by maintaining a
  mapping table that includes the local character set code and the
  corresponding UCS code. For instance the ISO/IEC 8859-8 [ISO-8859]
  code for the Hebrew letter "VAV" is 0xE4. The corresponding 4 byte
  ISO/IEC 10646 code is 0x000005D5.




Curtin                     Proposed Standard                   [Page 20]

RFC 2640                  FTP Internalization                  July 1999


  The next step is to convert the UCS character code to the UTF-8
  encoding. The following routine can be used to determine and encode
  the correct number of bytes based on the UCS-4 character code:

  unsigned int ucs4_to_utf8 (unsigned long *ucs4_buf, unsigned int
                             ucs4_len, unsigned char *utf8_buf)

  {
   const unsigned long *ucs4_endbuf = ucs4_buf + ucs4_len;
   unsigned int utf8_len = 0;        // return value for UTF8 size
   unsigned char *t_utf8_buf = utf8_buf; // Temporary pointer
                                         // to load UTF8 values

   while (ucs4_buf != ucs4_endbuf)
   {
    if ( *ucs4_buf <= 0x7F)    // ASCII chars no conversion needed
    {
     *t_utf8_buf++ = (unsigned char) *ucs4_buf;
     utf8_len++;
     ucs4_buf++;
    }
    else
     if ( *ucs4_buf <= 0x07FF ) // In the 2 byte utf-8 range
     {
       *t_utf8_buf++= (unsigned char) (0xC0 + (*ucs4_buf/0x40));
       *t_utf8_buf++= (unsigned char) (0x80 + (*ucs4_buf%0x40));
       utf8_len+=2;
       ucs4_buf++;
     }
     else
       if ( *ucs4_buf <= 0xFFFF ) /* In the 3 byte utf-8 range. The
                                   values 0x0000FFFE, 0x0000FFFF
                                   and 0x0000D800 - 0x0000DFFF do
                                   not occur in UCS-4 */
       {
        *t_utf8_buf++= (unsigned char) (0xE0 +
                       (*ucs4_buf/0x1000));
        *t_utf8_buf++= (unsigned char) (0x80 +
                       ((*ucs4_buf/0x40)%0x40));
        *t_utf8_buf++= (unsigned char) (0x80 + (*ucs4_buf%0x40));
        utf8_len+=3;
        ucs4_buf++;
        }
       else
        if ( *ucs4_buf <= 0x1FFFFF ) //In the 4 byte utf-8 range
        {
         *t_utf8_buf++= (unsigned char) (0xF0 +
                        (*ucs4_buf/0x040000));



Curtin                     Proposed Standard                   [Page 21]

RFC 2640                  FTP Internalization                  July 1999


         *t_utf8_buf++= (unsigned char) (0x80 +
                        ((*ucs4_buf/0x10000)%0x40));
         *t_utf8_buf++= (unsigned char) (0x80 +
                        ((*ucs4_buf/0x40)%0x40));
         *t_utf8_buf++= (unsigned char) (0x80 + (*ucs4_buf%0x40));
         utf8_len+=4;
         ucs4_buf++;

        }
        else
         if ( *ucs4_buf <= 0x03FFFFFF )//In the 5 byte utf-8 range
         {
          *t_utf8_buf++= (unsigned char) (0xF8 +
                         (*ucs4_buf/0x01000000));
          *t_utf8_buf++= (unsigned char) (0x80 +
                         ((*ucs4_buf/0x040000)%0x40));
          *t_utf8_buf++= (unsigned char) (0x80 +
                         ((*ucs4_buf/0x1000)%0x40));
          *t_utf8_buf++= (unsigned char) (0x80 +
                         ((*ucs4_buf/0x40)%0x40));
          *t_utf8_buf++= (unsigned char) (0x80 +
                         (*ucs4_buf%0x40));
          utf8_len+=5;
          ucs4_buf++;
         }
         else
         if ( *ucs4_buf <= 0x7FFFFFFF )//In the 6 byte utf-8 range
          {
            *t_utf8_buf++= (unsigned char)
                           (0xF8 +(*ucs4_buf/0x40000000));
            *t_utf8_buf++= (unsigned char) (0x80 +
                           ((*ucs4_buf/0x01000000)%0x40));
            *t_utf8_buf++= (unsigned char) (0x80 +
                           ((*ucs4_buf/0x040000)%0x40));
            *t_utf8_buf++= (unsigned char) (0x80 +
                           ((*ucs4_buf/0x1000)%0x40));
            *t_utf8_buf++= (unsigned char) (0x80 +
                           ((*ucs4_buf/0x40)%0x40));
            *t_utf8_buf++= (unsigned char) (0x80 +
                           (*ucs4_buf%0x40));
            utf8_len+=6;
            ucs4_buf++;

          }
   }
   return (utf8_len);
  }




Curtin                     Proposed Standard                   [Page 22]

RFC 2640                  FTP Internalization                  July 1999


B.2.2 Conversion from UTF-8 to Local Character Set

  When moving from UTF-8 encoding to the local character set the
  reverse procedure is used. First the UTF-8 encoding is transformed
  into the UCS-4 character set. The UCS-4 is then converted to the
  local character set from a mapping table (i.e. the opposite of the
  table used to form the UCS-4 character code).

  To convert from UTF-8 to UCS-4 the free bits (those that do not
  define UTF-8 sequence size or signify continuation bytes) in a UTF-8
  sequence are concatenated as a bit string. The bits are then
  distributed into a four-byte sequence starting from the least
  significant bits. Those bits not assigned a bit in the four-byte
  sequence are padded with ZERO bits. The following routine converts
  the UTF-8 encoding to UCS-4 character codes:

  int utf8_to_ucs4 (unsigned long *ucs4_buf, unsigned int utf8_len,
                    unsigned char *utf8_buf)
  {

  const unsigned char *utf8_endbuf = utf8_buf + utf8_len;
  unsigned int ucs_len=0;

   while (utf8_buf != utf8_endbuf)
   {

    if ((*utf8_buf & 0x80) == 0x00)  /*ASCII chars no conversion
                                       needed */
    {
     *ucs4_buf++ = (unsigned long) *utf8_buf;
     utf8_buf++;
     ucs_len++;
    }
    else
     if ((*utf8_buf & 0xE0)== 0xC0) //In the 2 byte utf-8 range
     {
       *ucs4_buf++ = (unsigned long) (((*utf8_buf - 0xC0) * 0x40)
                      + ( *(utf8_buf+1) - 0x80));
       utf8_buf += 2;
       ucs_len++;
     }
     else
       if ( (*utf8_buf & 0xF0) == 0xE0 ) /*In the 3 byte utf-8
                                           range */
       {
       *ucs4_buf++ = (unsigned long) (((*utf8_buf - 0xE0) * 0x1000)
                     + (( *(utf8_buf+1) -  0x80) * 0x40)
                     + ( *(utf8_buf+2) - 0x80));



Curtin                     Proposed Standard                   [Page 23]

RFC 2640                  FTP Internalization                  July 1999


        utf8_buf+=3;
        ucs_len++;
       }
       else
        if ((*utf8_buf & 0xF8) == 0xF0) /* In the 4 byte utf-8
                                           range */
        {
         *ucs4_buf++ = (unsigned long)
                         (((*utf8_buf - 0xF0) * 0x040000)
                         + (( *(utf8_buf+1) -  0x80) * 0x1000)
                         + (( *(utf8_buf+2) -  0x80) * 0x40)
                         + ( *(utf8_buf+3) - 0x80));
         utf8_buf+=4;
         ucs_len++;
        }
        else
         if ((*utf8_buf & 0xFC) == 0xF8) /* In the 5 byte utf-8
                                            range */
         {
          *ucs4_buf++ = (unsigned long)
                         (((*utf8_buf - 0xF8) * 0x01000000)
                         + ((*(utf8_buf+1) - 0x80) * 0x040000)
                         + (( *(utf8_buf+2) -  0x80) * 0x1000)
                         + (( *(utf8_buf+3) -  0x80) * 0x40)
                         + ( *(utf8_buf+4) - 0x80));
          utf8_buf+=5;
          ucs_len++;
         }
         else
          if ((*utf8_buf & 0xFE) == 0xFC) /* In the 6 byte utf-8
                                             range */
          {
            *ucs4_buf++ = (unsigned long)
                          (((*utf8_buf - 0xFC) * 0x40000000)
                           + ((*(utf8_buf+1) - 0x80) * 0x010000000)
                           + ((*(utf8_buf+2) - 0x80) * 0x040000)
                           + (( *(utf8_buf+3) -  0x80) * 0x1000)
                           + (( *(utf8_buf+4) -  0x80) * 0x40)
                           + ( *(utf8_buf+5) - 0x80));
            utf8_buf+=6;
            ucs_len++;
          }

   }
  return (ucs_len);
  }





Curtin                     Proposed Standard                   [Page 24]

RFC 2640                  FTP Internalization                  July 1999


B.2.3 ISO/IEC 8859-8 Example

  This example demonstrates mapping ISO/IEC 8859-8 character set to
  UTF-8 and back to ISO/IEC 8859-8. As noted earlier, the Hebrew letter
  "VAV" is convertd from the ISO/IEC 8859-8 character code 0xE4 to the
  corresponding 4 byte ISO/IEC 10646 code of 0x000005D5 by a simple
  lookup of a conversion/mapping file.

  The UCS-4 character code is transformed into UTF-8 using the
  ucs4_to_utf8 routine described earlier by:

  1. Because the UCS-4 character is between 0x80 and 0x07FF it will map
     to a 2 byte UTF-8 sequence.
  2. The first byte is defined by (0xC0 + (0x000005D5 / 0x40)) = 0xD7.

  3. The second byte is defined by (0x80 + (0x000005D5 % 0x40)) = 0x95.

  The UTF-8 encoding is transferred back to UCS-4 by using the
  utf8_to_ucs4 routine described earlier by:

  1. Because the first byte of the sequence, when the '&' operator with
     a value of 0xE0 is applied, will produce 0xC0 (0xD7 & 0xE0 = 0xC0)
     the UTF-8 is a 2 byte sequence.
  2. The four byte UCS-4 character code is produced by (((0xD7 - 0xC0)
     * 0x40) + (0x95 -0x80)) = 0x000005D5.

  Finally, the UCS-4 character code is converted to ISO/IEC 8859-8
  character code (using the mapping table which matches ISO/IEC 8859-8
  to UCS-4 ) to produce the original 0xE4 code for the Hebrew letter
  "VAV".

B.2.4 Vendor Codepage Example

  This example demonstrates the mapping of a codepage to UTF-8 and back
  to a vendor codepage. Mapping between vendor codepages can be done in
  a very similar manner as described above. For instance both the PC
  and Mac codepages reflect the character set from the Thai standard
  TIS 620-2533. The character code on both platforms for the Thai
  letter "SO SO" is 0xAB. This character can then be mapped into the
  UCS-4 by way of a conversion/mapping file to produce the UCS-4 code
  of 0x0E0B.

  The UCS-4 character code is transformed into UTF-8 using the
  ucs4_to_utf8 routine described earlier by:

  1. Because the UCS-4 character is between 0x0800 and 0xFFFF it will
     map to a 3 byte UTF-8 sequence.
  2. The first byte is defined by (0xE0 + (0x00000E0B / 0x1000) = 0xE0.



Curtin                     Proposed Standard                   [Page 25]

RFC 2640                  FTP Internalization                  July 1999


  3. The second byte is defined by (0x80 + ((0x00000E0B / 0x40) %
     0x40))) = 0xB8.
  4. The third byte is defined by (0x80 + (0x00000E0B % 0x40)) = 0x8B.

  The UTF-8 encoding is transferred back to UCS-4 by using the
  utf8_to_ucs4 routine described earlier by:

  1. Because the first byte of the sequence, when the '&' operator with
     a value of 0xF0 is applied, will produce 0xE0 (0xE0 & 0xF0 = 0xE0)
     the UTF-8 is a 3 byte sequence.
  2. The four byte UCS-4 character code is produced by (((0xE0 - 0xE0)
     * 0x1000) + ((0xB8 - 0x80) * 0x40) + (0x8B -0x80) = 0x0000E0B.

  Finally, the UCS-4 character code is converted to either the PC or
  MAC codepage character code (using the mapping table which matches
  codepage to UCS-4 ) to produce the original 0xAB code for the Thai
  letter "SO SO".

B.3 Pseudo Code for a High-Quality Translating Server

  if utf8_valid(fn)
    {
    attempt to convert fn to the local charset, producing localfn
    if (conversion fails temporarily) return error
    if (conversion succeeds)
    {
      attempt to open localfn
      if (open fails temporarily) return error
      if (open succeeds) return success
    }
    }
  attempt to open fn
  if (open fails temporarily) return error
  if (open succeeds) return success
  return permanent error
















Curtin                     Proposed Standard                   [Page 26]

RFC 2640                  FTP Internalization                  July 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Curtin                     Proposed Standard                   [Page 27]