Newsgroups: sci.math,sci.answers,news.answers
Path: senator-bedfellow.mit.edu!bloom-beacon.mit.edu!spool.mu.edu!torn!watserv3.uwaterloo.ca!undergrad.math.uwaterloo.ca!neumann.uwaterloo.ca!alopez-o
From: [email protected] (Alex Lopez-Ortiz)
Subject: sci.math FAQ: Quaternions
Summary: Part 29 of many, New version,
Originator: [email protected]
Message-ID: <[email protected]>
Sender: [email protected] (news spool owner)
Approved: [email protected]
Date: Fri, 17 Nov 1995 17:16:05 GMT
Expires: Fri, 8 Dec 1995 09:55:55 GMT
Reply-To: [email protected]
Nntp-Posting-Host: neumann.uwaterloo.ca
Organization: University of Waterloo
Followup-To: sci.math
Lines: 52
Xref: senator-bedfellow.mit.edu sci.math:124403 sci.answers:3437 news.answers:57838


Archive-Name: sci-math-faq/Quaternions
Last-modified: December 8, 1994
Version: 6.2




                 THEORY OF QUATERNIONIC ANALYTIC FUNCTIONS



  Four-dimensional analog to the theory of complex analytic functions.
  It was developed in the 1930s by the mathematician Fueter. It is based
  on a generalization of the Cauchy-Riemann equations, since the
  possible alternatives of power series expansions or quaternion
  differentiability do not produce useful theories. A number of useful
  integral theorems follow from the theory. Sudbery provides an
  excellent review. Deavours covers some of the same material less
  thoroughly. Brackx discusses a further generalization to arbitrary
  Clifford algebras.



  References

  Anthony Sudbery. Quaternionic Analysis. Proc. Camb. Phil. Soc., vol.
  85, pp 199-225, 1979.



  Cipher A. Deavours. The Quaternion Calculus. Am. Math. Monthly, vol.
  80, pp 995-1008, 1973.



  Clifford analysis. F. Brackx and R. Delanghe and F. Sommen. Pitman,
  1983.






    _________________________________________________________________



   [email protected]
   Tue Apr 04 17:26:57 EDT 1995