Path: senator-bedfellow.mit.edu!dreaderd!not-for-mail
Message-ID: <model-rockets/
[email protected]>
Supersedes: <model-rockets/
[email protected]>
Expires: 18 Jun 2002 12:01:34 GMT
References: <model-rockets/
[email protected]>
X-Last-Updated: 1996/08/30
From:
[email protected] (Wolfram v.Kiparski)
Newsgroups: rec.models.rockets,rec.answers,news.answers
Subject: rec.models.rockets FAQ Part 08 - Boost and Rocket Gliders
Followup-To: rec.models.rockets
Organization: none
Distribution: world
Reply-To:
[email protected]
Summary: This posting contains a list of Frequently Asked Questions
(and their answers) about Model and High Power Consumer Rocketry
Approved:
[email protected]
Originator:
[email protected]
Date: 07 May 2002 12:02:27 GMT
Lines: 758
NNTP-Posting-Host: penguin-lust.mit.edu
X-Trace: 1020772947 senator-bedfellow.mit.edu 3933 18.181.0.29
Xref: senator-bedfellow.mit.edu rec.models.rockets:402794 rec.answers:73395 news.answers:229843
Archive-name: model-rockets/gliders
Rec-models-rockets-archive-name: rockets-faq/part08
Posting-Frequency: monthly
Last-modified: 1996 April 26
URL:
http://dtm-corp.com/~sven/rockets/rmrfaq.toc.html
Rec.Models.Rockets FAQ (Frequently Asked Questions): PART 08 OF 14
BOOST GLIDER AND ROCKET GLIDERS
8.1 R/C Rocket Gliders
The D-G powered R/C rocket gliders now available are presenting some new
problems to ModRoc'ers, who are more used to making balsa wings, fins, etc.,
then built-up wings. Here is a set of tips submitted by Iskandar Taib, a long
time model plane enthusiast, and others. There is an excellent FAQ in the
rec.models.rc news group. It includes very good information on how to get
started into R/C flying, tips on where to buy equipment, etc.
------------------------------------------
8.1.1. Have there been any construction reviews of R/C rocket gliders?
Aerotech Phoenix: August, 1992, "Model Builder Magazine"
Estes Astroblaster: September, 1992, "Model Builder Magazine"
Both articles are written from the perspective of experienced R/C
aircraft modelers. They both contain good construction and flying
tips.
------------------------------------------
8.1.2. I'm building the 'XXX' R/C Rocket Glider and it uses foam core wings.
Are there any things I should know about working with foam?
The first thing to know is that certain paints and glues dissolve
foam. Both the stuff made out of white beads (referred to as "bead-
board") and the blue (Dow Styrofoam (tm) ) or pink (DuPont Foamular)
extruded foam will behave in the same way. Once sheeted a foam wing
can sometimes be finished in a paint that ordinarily dissolves foam
if one is careful about not putting too much on at a time. Here is
a list of what will dissolve styrofoam and what won't:
Will dissolve foam:
Nitrate and butyrate dope
Ambroid
"Model Airplane Cement" (you know what I mean)
Polyester resin (sold as "fiberglass resin" at K-Mart)
Thick and thin cyanoacrylates (excepting UFO)
Paints from spray cans
Dope and paint thinners
Gasoline
Dope thinner, acetone
Solvent-based contact cements
Won't dissolve foam:
Polyurethane paints and varnishes (inc. Rustoleum)
White or aliphatic glues (Elmer's, Titebond)
Epoxies
Ethanol or methanol (sometimes used to thin epoxies)
UFO superglues
Water-based contact cements (eg. Southern Sorghum)
Follow the instructions provided and you won't go wrong. Most struc-
tural building is done with white glue and epoxy is used for sheeting
the wing and/or putting down fiberglass, graphite or kevlar cloth.
------------------------------------------
8.1.3. Any tips for sheeting the wings on my Aerotech Phoenix?
The Phoenix kit requires that you sheet the wing with balsa using epoxy
as the glue. Aerotech also recommends that you vacuum-bag the wing for
the lightest wings possible. Vacuum bagging is a fairly new technique
that I will describe later.
The process involves preparing the wing skins, mixing the epoxy (need-
less to say, the 24 hour laminating variety, spreading it on the skins
with a squeegee, scraping most of it off, applying the skins to the
core, then assembling everything together in the core beds (the pieces
left over after the core is cut), and putting lots of weight on top
of the whole thing. Oh yeah.. the wing has to be kept straight so
you'd have to do this on a very flat surface. The more pressure you
can put on this, the better glue joint you'll have, and the less glue
you'll have to use, which makes for a lighter wing.
VACUUM BAGGING
This is where the vacuum bagging comes in. The core bed/sheeting/core
assembly is put into a large bag which is sealed on all sides. Then the
air is pumped out of the bag. This is supposedly the equivalent of pi-
ling hundreds of pounds of weights on the core. In fact they tell you
to limit the vacuum to so many inches Hg otherwise the cores will crush.
Vacuum bagging is also useful if you are going to lay up fiberglass
on top of the balsa wing skins. Fiberglass cloth is now available in
very light weights and people often use it in lieu of a covering film
or fabric.
The way it used to be done was that the cloth was laid down and a thin-
ned (with alcohol) epoxy brushed into it. Then excess epoxy was removed
using rolls of toilet paper (discarding layers as they became saturated).
With vacuum bagging one lays down a sheet of drafting mylar on top of
the wet glass cloth, then puts the assembly in core beds. The assembly
is then vacuum-bagged. After curing the mylar sheets are removed and
you end up with a glass-like finish that is extremely light since all
excess epoxy has been squeezed out. This also obviates the need for
lots of the filling and sanding usually necessary before painting.
------------------------------------------
8.1.4. How about help with my Estes Astroblaster wings?
The Astro Blaster kit uses contact cement for sheeting the wings. The
cement is of the water based variety. It is applied to both skin and core
and is allowed to dry. After this has occurred, the skins and core can
then be brought together. This is a little trickier, since you don't get
a second chance.. Once the core touches the skin you can't separate them
without breaking something. The skins are just 1/32" thick so one
has to be gentle with them.
------------------------------------------
8.1.5. How do you repair damaged foam wings?
Repairing foam is fairly easy. One simply hacks out the damaged piece,
glues in a block of foam and carves and sands to shape. Carving is best
done with a brand new utility knife (the kind that has break-off points)
and sanding can be done with a sanding block. Sheeting is replaced in
the same manner - cut out the damaged piece and glue on a replacement.
A little glass cloth or carbon fiber matte over the break helps too.
------------------------------------------
8.1.6. Some more uses of foam in rocketry...
Foam is interesting stuff to play with. You can cut wing cores using a
hot wire and 1/16" ply or formica templates. Parts for rockets can be
made by simple carving and sanding.
Even more interesting is making lightweight wings and other parts using
foam, silkspan and thinned white glue. Someone called Ron St. Jean built
lots of competition free flight models in this manner. The silkspan is
applied wet over the foam, and thinned white glue is brushed on. When
the silkspan dries it shrinks, and the result is an incredibly strong and
stiff structures. One could conceivably use this method for nose cones
or complex scale models. In England, foam and brown wrapping paper is
used for complex ducted fan models (someone actually flies a seven foot
long scale Concorde constructed like this).
If one uses heavier paper (eg. grocery sacks) perhaps one can dissolve
the foam once the white glue is set (use acetone or dope thinner for
this). For rockets imagine something shaped like a V2 made like this.
Once the foam was dissolved you'd end up with a light weight craft paper
tube of the proper shape, boat tail and all.
------------------------------------------
8.1.7. I need to cut the piano wire control rods. Bolt cutters don't work
well, as the metal is too hard. Any ideas?
From:
[email protected] (Iskandar Taib)
What you want to do is get your hands on a reinforced cutting wheel
like the House of Balsa Tuf-Grind. The Dremel ones tend to shatter and
throw pieces at high speed. If you use them harden them with thin
superglue.
------------------------------------------
8.2 Free Flight Boost and Rocket Gliders
Copyright (c) 1996 by Robert G. Kaplow. Permission granted for non-profit
distribution and may be reproduced by any group or individual for
non-profit use, provided that the source and author of this document is
acknowledged. The distribution and reproduction of this document for
commercial use without permission of the author is specifically denied.
Any other use requires the permission of the author.
Feedback can be sent to
[email protected].
------------------------------------------
8.2.1 What is the difference between a Boost/Glider and a Rocket/Glider?
In a Boost/Glider (referred to as a BG in the rest of the FAQ), only a
portion of the rocket as launched is required to come down gliding. In a
Rocket/Glider (RG), the entire model remains in one piece, and the whole
thing glides down. Typically, this distinction is only important in NAR
competition, where these two classes are distinguished. An RG is a legal
entry in BG events, but a BG is not a legal entry in RG events.
The other thing to distinguish is a philosophical distinction between a
BOOST/glider and a boost/GLIDER. The question is which half of the flight
the emphasis is on. A BOOST/glider is a rocket that happens to have glide
recovery. In reality, it probably doesn't glide that well. The Space Shuttle
kit is a good example of this type of glider. A boost/GLIDER on the other
hand is a high performance glider that is carried aloft by a rocket motor.
These are the type of models typically seen in competition, and the topic of
most of this FAQ.
Also note that regardless of the emphasis, all of these gliders are launched
vertically, like other model rockets. Horizontal launch and shallow climbing
supported by wing lift doesn't work for these models, and is prohibited by
the safety code.
------------------------------------------
8.2.2 What are some types of gliders?
Early BGs were rear engine designs. The first was built by John Schultz and
Vern Estes in 1961. They usually looked like delta-winged jets or X rockets.
The old Estes Space Plane is an example of this style.
In 1963 Larry Renger invented the front engine BG with the Sky Slash design
winner. It was basically a hand launched glider with a motor pod hung on the
front. The old Estes Falcon followed this style. A few years later, Larry
invented the detachable "pop" pod. Almost all gliders today are front engine
design, and pop pods are the most common of the BGs flown today. The old
Centuri Swift and Estes Dragonfly were Pop Pod designs.
Parasite gliders are small gliders attached to the outside of larger
conventional model rockets. They can be as simple as a small foam glider
hooked to an extra launch lug on the side of a standard model rocket. Many
of the popular mass market kits fall into this category, including the Estes
Manta, ARV Condor, Space Shuttle and the old Orbital Transport, and the
Quest Aurora.
Flex-wing (FW) gliders were inspired by the Rogallo wing that was intended
as the recovery device for the Gemini program. They are basically 3 sticks
with a lightweight plastic covering. They fold for boost inside a long
skinny rocket, and eject like a parachute. NAR competition rules prohibit
"flexies" as they are called in BG and RG events, and create a separate
category for them.
Gliders are further broken down into categories describing how they look or
work. Some of them are fixed pod, pop pod, swing wing, slide wing, box wing,
t-rail, slide pod, no moving parts, canard, auto-elevator, variable camber,
flop wing, scissor wing, flying wing, swept wing, delta wing, Rogallo wing,
etc.
------------------------------------------
8.2.3 What are all these funny names I see referenced?
Until the 1979 Pink Book revision, different power classes were designated
by names. For gliders, the names were of flying creatures. Here is a decoder
table:
1/4A Gnat
1/2A Hornet
A Sparrow
B Swift
C Hawk
D [no official name, sometimes called Deagle or Falcon]
E Eagle
F Condor
G [no official name, but commonly referenced as Dragon]
------------------------------------------
8.2.4 I'm just starting. What kits or plans are available?
Several model rocket manufacturers make glider kits. Very few make really
good gliders. Among the non-spectacular performers are the Estes Space
Shuttle and Tomcat, and assorted parasite and foam gliders.
The Quest Flat Cat is an improvement on an old design that can fly
reasonably well. QCR has several glider kits, including a good booklet on
flex-wing gliders. Edmonds Aerospace offers several glider kits. Eclipse has
a few glider kits as well. The Estes Trans-Wing and MRC Thermal Hawk are
reasonable fliers. Apogee had glider kits, but I don't know what their
status is today. NCR glider kits are gone, but plans may resurface in the
future.
My favorite BG plan for the beginner is the Flanigan Flyer, designed by
Chris Flanigan of the MIT Rocket Society. Plans for it can be found in the
MIT Competition Notebook available from NARTS. It is suitable for A-C 18mm
motors. Guppy's Fish & Chips (1/2A) and High Performance Sparrow (A) BG were
some of my favorites, but are very touchy to trim (more about that later).
Try Mark Bundick's Parksley Eagle for 13mm 1/2A & A motors, available from
NARTS in the "NIRA Glider Plans from 'The Leading Edge'" reprint. There are
several other glider related NIRA Reprints also available from NARTS.
[I'm looking for a C/D BG recommendation - rgk]
For a first RG, I recommend the Seattle Special, by George Riebesehl. Plans
for this model are also in the "NIRA Glider Plans from 'The Leading Edge'"
reprint. It flies on A-C 18mm motors.
[I'm looking for a 1/2A RG and C/D RG recommendation - rgk]
For a FW, I recommend the QCR kit and manual. This proved good enough for
NAR V.P. Trip Barber, a fellow FW hater, to take a first place with at
NARAM-37, building the glider on the field. Also refer to George Gassaways
articles in American Spacemodelling, December 1980 and September 1986.
Many more plans are available from NARTS or NARTREK publications.
------------------------------------------
8.2.5 Why do most gliders have the rudder under the fuselage?
This is probably more for historical rather than technical reasons. Since
the motor is on top, a conventionally placed rudder would be in the exhaust.
In reality, some glider tails are far enough from the exhaust that it
doesn't matter. The real question should be "Why do airplanes have the
rudder on top?" :-)
------------------------------------------
8.2.6 These things are very different from what I've built before. Are there
any tips for building them?
Lots of them. The most important things to consider are to build light,
strong, and warp-free. Weight is the enemy of a glider. A weak glider will
break easily. A warped glider is very difficult to make glide properly. All
three of these problems are hard to fix later.
In order to keep surfaces straight, I recommend the use of a building board.
A scrap of kitchen counter, larger than the finished model is perfect for
this purpose. All planing, sanding, cutting, and gluing is done on this work
surface. It should have at least one straight perpendicular edge.
The flying surfaces of a glider need to be airfoiled to work best. Unlike
other rocket parts, a glider wing needs a non-symmetric airfoil. The standard
fin airfoil shape, split in half, is a good place to begin. To rapidly shape
a wing airfoil, use a device called a razor plane. Much like its big brother
used for carpentry, this tool shaves off wood quickly. The difference is
that it uses a razor blade or equivalent to do so. Many different types are
available. My personal favorite is the David Combi. An inexpensive nylon one
is available from Master Airscrew. These and many other handy tools can be
found in model airplane catalogs. The SIG catalog in particular is an
excellent source of many materials needed to build and fly gliders,
including these two razor planes.
Once roughly shaped, a sanding block is needed to get everything smooth. A
6" piece of 1x2 is perfect to wrap 1/6 of a sheet of sandpaper around (or
1/3 of a sheet around a 12" block). Use thumb tacks to hold the sheet in
place. Sanding across the grain removes wood fast, sanding with the grain
gives a nice final finish. Start with 100 grit, and work down to 400. The
stab and rudder are similarly airfoiled, usually symmetrically.
In order to glide, your glider will need dihedral. This is the upward
tilting or curving of the wings. Some designs use multiple joints, trihedral
or polyhedral. To do this, cut the wing in half (or thirds, quarters, etc.
as per the plan). A razor saw is the best tool to do this, but a modelling
knife and a straight egde will do. Tilt each tip up the required amount on
your building board. Use a handy scrap or a piece of 1x2 to prop the wing
pieces up. Now bevel the root edges using a sanding block and the edge of
the building board so that they are once again perpendicular to your work
surface.
The two edges can now be glued together. Standard wood glues can be used for
this, either carpenters, CA, epoxy, or Amberoid or Duco. I particularly like
Amberoid or Duco cement for gliders because it can be dissolved to remove
parts that end up misaligned.
The wing, stab, and rudder are now glued to the fuselage of the glider. Take
care to align things accurately. Typically a design will call for a tilt in
the wing or stab, in order to make the glider gently turn in flight. This
prevents very long chases to retrieve your glider. Also designs will
frequently include a few degrees incidence in the stab. By putting the stab
at a slight angle to the wing, it aids in the transition of the glider from
boost to glide, and prevents the "death dive" where the glider flys straight
down.
------------------------------------------
8.2.7 Should I paint my glider?
Most competition models are not painted in a normal sense. Many gliders are
left unpainted at all. Some modelers will color the model with magic marker
or a thin layer of model airplane dope for visibility. Others will apply a
coat or two of clear dope to prevent warping. I personally prefer Jap Tissue
and dope (discussed later), as it adds both strength and color to the model,
at a very minimal weight penalty.
Conventional finishing techniques of filler, primer, paint, and decals
should be left to models where glide performance is not a concern.
------------------------------------------
8.2.8 Can I convert a hand launched glider (HLG) to rocket power?
Yes. The cheap balsa "snap together" toy gliders (i.e. North Pacific) are
*NOT* strong enough for flight conversion, however many HLG kits and plans
are convertible. Plans for Jetex models are usually too flimsy for model
rocket power. A wealth of HLG plans are available from the Academy of Model
Aeronautics (AMA), National Free Flight Society (NFFS), Zaic yearbooks, and
some of the other RC modeling magazines. I highly recommend the NFFS
newsletter and journals as sources of free flight glider information.
Usually, all you need to do is to add a pop pod to the HLG, and perhaps
invert the rudder.
The references at the end of this part of the FAQ list several good HLG
plans.
------------------------------------------
8.2.9 I'd like to design my own glider. How do I know if it will work? How do
I compute the CP for a glider?
Glider stability is similar to a rocket stability, but a bit more
complicated. The equivalent to a rocket Center of Pressure (CP) is called
the Neutral Point (NP) of a glider. There is an article on how to calculate
this in the 1980 MIT Journal available from NARTS. Just as a rocket CG needs
to be ahead of the CP, a glider CG must be ahead of its NP for it to be
stable. 10-20% of the wing cord (the distance from the leading edge to
trailing edge of the wing) is a good margin for free flight models. RC
models can get by with much smaller margins.
There are several good articles on Boost Glider Stability in old Model
Rocketry Magazine and Model Rocketeers. Reprints of many of these are
available from NARTS and/or NARTREK.
------------------------------------------
8.2.10 What motor should I use to fly my glider?
Typically, you want a short delay, and a low average thrust for a glider.
For example, a B class model would probably do better with a B4-2 than a
B4-4 or a B6-2. Be careful of motors with large ignition spikes, like the
A10-3 or C5-3, unless you want to re-kit your model. Core burning motors,
including most composite motors are not usually suitable for gliders.
------------------------------------------
8.2.11 This thing looks weird sitting on the pad. How do I launch a glider?
Since the motor is near the front of the glider. there isn't much left of a
3' launch rod once you put a glider on the pad. Frequently the glider will
fall off the pod while sitting on the pad. The other big problem is that
once the motor ignites, the clips fall, and can catch in the wings or stab
of the glider.
The solution to all of these problems is to launch gliders from a "Power
Tower". This is nothing more than a 3' dowel with a launch rod on the top.
Sharpen one end of the dowel, and pound it into the ground. You can drill a
hole for the rod, or just tape it in place. I like to bevel the end of the
dowel at a 45 degree angle. A scrap ceramic tile with a hole drilled near an
edge makes a good blast deflector. Make sure that the exhaust is directed
AWAY from the glider, and not back into the wing! The pod now sits on the
deflector, and the glider hangs below the rod, against the dowel.
To prevent the clips from catching the tail, you can either tape the clip
lead to the dowel, or better yet, use a second launch rod about a foot away
as a gantry, so the clips fall away from the glider. A couple more rods are
handy if it is a bit windy to prevent the glider from blowing off the pod,
or twisting on the pad.
I've gone one step farther, and made a miniature version of a Chad Pad,
using 2 2' pieces of 1x2, a 1/4-20 carriage bolt, and a blind nut (T-nut) in
the end of the 3' dowel. The base of the Chad Pad has extra holes in each
"leg" for extra launch rods to hold the wing and ignition leads.
------------------------------------------
8.2.12 My glider looped and crashed into the ground. What is wrong?
First check for a warp or misalignment in the wing or stab. These are the
most common cause of boost problems, and the reason that accurate building
is so critical. If anything is found, fix it.
Most gliders will have some pitch down at ignition and early boost, and
gradually change to a pitch up condition near burnout. This results in an
"S" shaped flight profile. If the deviation is minor, don't worry about it.
A slight roll during boost will keep your glider headed in the right
direction.
Models that have boost problems can often be helped with a longer and/or
heavier pod. Extending the fuselage to put the motor farther in front of the
wing also helps. A longer rod may help boost also, as will avoiding high
winds when launching.
If the model pitches down severely under thrust, the pylon may be too tall
or the thrust may be misaligned. If the model pitches up under thrust, the
pylon may be too low, or the thrust misaligned. If the model starts
straight, then starts pitching up, the wing lift is causing the problem.
------------------------------------------
8.2.13 My glider shredded. What is wrong?
It was either not strong enough, or the motor was too powerful. If the motor
was too powerful, then the fix is obvious. Use a less powerful motor next
time. Beware of cored motors, they love to shred gliders. This includes the
ignition spike of the C5-3, A10-3, B8, and almost all composites. A few
composites, like the AeroTech/Apogee C4, D3, and E6 are designed for
gliders.
There are several things that can be done to strengthen gliders. Spruce is
often used for the fuselage to increase its strength, but at a significant
weight penalty. Wings can be made of thicker wood, although this increases
the weight of the glider. When trying to maximize performance, it becomes
important to select the density of the balsa used in your glider. Lighter
wood (6#/ft^3) will save weight, while denser balsa (10#/ft^3) is stronger.
Use the lighter wood for wings and stabs, the denser for fuselages, which is
still lighter than spruce.
You also need to consider the grain of the balsa. "A" grain wood has the
grain running perpendicular to the surface. It is very flexible. It is not a
good choice for wings, but is excellent for sheeting built up surfaces, or
rolling balsa tubes. "C" grain wood has the grain running parallel to the
surface. It has a mottled appearance, and is very stiff. It is ideal for
wings and stabs. "B" grain is between A and C, and should be used where
stiffness is not an issue, such as fuselages.
The SIG catalog is an excellent reference on the subject of balsa density
and grain.
Higher aspect ratio wings are weaker than low aspect ratio wings. Try
redesigning your wing or tail to lower the aspect ratio.
An excellent way to strengthen balsa without adding much weight is to tissue
the glider wings. This is an art in itself. You will need some "Jap" tissue
(from SIG or Peck Polymers) and some clear dope. I have found that SIG
Nitrate dope is less likely to warp the wings. The tissue comes in assorted
colors to decorate your model. Use 2 colors, with a darker color on the
bottom, for visibility in the air, and a lighter color on top for visibility
on the ground. Green is a poor choice for the top, but Blue surprisingly
looks pretty dark in the sky. A couple primer coats of dope are applied to
the balsa surfaces. Another coat is used to stick the tissue down to the
balsa. More coats over the tissue soak thru and bond the tissue to the
balsa, and fill in the pores.
Two other ways to make lighter wings particularly on large gliders are built
up construction, and foam cores. A wing can be built of balsa strips, and
covered with tissue. This can yield a very strong but lightweight wing. Foam
is commonly used in RC models, and can be used in some of the larger gliders
(C-D and up) covered with fiberglass or tissue. Uncovered foam from meat
trays can be used for some mini-motor designs. These techniques are beyond
the scope of this FAQ.
The leading edge of a wing is prone to nicks and dings from running into
things. This can be reinforced with a thin strip of spruce, or a thin piece
of nylon or Kevlar line glued along the edge.
For the ultimate in strength and low weight, all parts of a glider can be
reinforced with carbon fiber or Kevlar. This is applied either with Amberoid
or an Epoxy resin.
------------------------------------------
8.2.14 The pod stuck on my boost/glider and the thing crashed. What is wrong?
You've just been shot down by the "Red Baron". If it stuck, try sanding to
loosen things up a bit. Check the action of the pod when deploying.
Streamers or parachutes have a nasty habit of catching on things that you
didn't want them to, like glider wings. Sometimes fastening the recovery
system to the pod in a different manner will fix the problem. Some pod
systems are specifically designed to prevent this problem, Try one of them.
You can also have the opposite problem, where the pod falls off too soon,
sometimes under power. First check the fit. If it is too loose, use tape to
make it tighter. This could also happen at launch, where the glider is blown
off the pod by wind, or just after launch due to a structural failure.
------------------------------------------
8.2.15 My glider glides like the space shuttle (or worse). What is wrong?
Unless you are very good and very lucky, your glider will need several
adjustments before it glides well. The process of making these adjustments
is called trimming. The goal is to get a glider that transitions quickly and
flies smoothly, gently circling overhead. If you are right-handed, you will
probably have best luck trimming your glider to circle to the LEFT. If you
are left handed, reverse all the following references to left and right.
All trimming is done with the model in glide configuration. For a BG, this
means without the pod, For an RG, it means with a spent motor casing
installed, and wing, pod, or whatever deployed as it will be in flight.
The first step in trimming is to locate the CG at the proper position. If
you are lucky, the instructions or plans will tell you where to locate the
CG. If not, you will need to compute the Neutral Point (CP), or use a
typical location like 1/3 of the wing cord from the leading edge. Gliders
are often tail heavy. Add weight to the nose if necessary to get the glider
to balance 10-20% of the wing cord in front of the NP.
All the rest of the trimming should be done by controlled warping of the
flying surfaces. Start by getting the model to glide straight, which is much
easier if it was built without any warps. In an open area gently toss the
glider forward, releasing it with both the wings and fuselage level. Note
its action. If the model dives (drops its nose), warp the stab trailing edge
UP a bit. If the model stalls (noses up, then suddenly drops, often straight
into the ground) warp the trailing edge of the stab DOWN a bit. The best
glide us usually right on the edge of a stall.
I like to warp both wing tip trailing edges up to prevent tip stalls, and the
center portion of each wing down to increase the wing lift.
Then add a left turn until the model has a slow flat circular glide. Some
turn is often added during construction by tilting the wing in the direction
of the desired turn, or tilting the stab in the OPPOSITE direction. Turn can
be increased by warping the trailing edge of the OPPOSITE wing down a bit. I
try to avoid warping the inner wing panel trailing edges up at all, as this
can lead to spiral dives. Turn can also be adjusted with the rudder.
For a left roll on boost, warp the left tip of the stab trailing edge up,
and the right tip down. This works at high speed, but has little effect at
glide speeds. Use wing warp, stab tilt, and a bit of rudder to increase or
decrease the turn as needed.
Try a few harder throws. The glider should quickly settle down into a flat
gentle circle. Continue adjusting the surfaces until you get this result.
Now you are ready for a serious hand launch. This is an art form in itself.
Throw the model up as hard as you can, at a 45 degree angle up and to
your right, and with the wing banked at the same 45 degree angle. The model
should slowly roll to the left, changing from a right turn to a left turn.
If you are lucky, the model will be gently circling 30 or more feet
overhead. If not, it probably smacked the ground, so pick it up and try
again. Go back and check the trim with a gentle toss, and if all is OK, try
again. You may want to vary the angles between 30-60 degrees each, until you
find what works best for you and your model.
Now you are ready for the first launch. Pick a reduced power motor, just
enough to get the glider to a reasonable altitude, and launch it. Use a
power tower as described previously. Carefully observe the boost,
transition, and glide. Watch out for a "death dive" where the glider never
transitions and comes straight down. This can be fixed with increased stab
incidence or warping the trailing edge of the stab up. Also watch for
"spiral dive" where the model turns very tightly and crashes into the
ground. This is caused by too much turn, or a wing that isn't producing
enough lift. Try reducing the turn or warping down the inside edge of the
inboard wing.
Continue to adjust the flying surfaces until you get the flight you want.
Now move up to the desired motor size, and fly again. Soon you'll need to
read the answer to the next question.
------------------------------------------
8.2.16 My glider never came down and flew away. What is wrong?
If it went in a straight line, you need to re-trim the glider to circle as
it glides. Perhaps your field was too small. Find a larger place to fly.
If neither of these is the case, you probably just found a thermal. Air is
not static. It moves around due to uneven heating and cooling. A hawk
circling overhead, without flapping its wings is in a thermal. When air is
heated, it rises. Whatever is in that air goes up with it, be it bird,
rocket, or airplane. If the air is rising faster than the sink rate of your
model, the model will rise in the air. In general, this is good, as it
allows your model to fly much longer. It stops being good when you lose the
model!
This is a "good" problem. it means you've solved most of the problems you've
encountered, and have (had?) a pretty good glider. Picking thermals is an
art that is beyond this FAQ. Now we have to find a way to get the glider
back. These devices are called dethermalizers (DT) because they are designed
to get your model out of a thermal.
This is done by transforming a good glider into a bad glider. There are two
parts to this transformation. The first is some sort of timer, to cause the
action to occur when you choose. The second is an actuating device that
de-stabilizes the glide.
Timers come in several forms. Most common is dethermalizer fuse. This looks
more like cotton rope, and burns very slowly, typically 1/4" per minute. By
having this fuse burn a string or rubber band, we can actuate a device in
flight. Be sure to use a snuffer tube with the fuse, to prevent the fuse
from falling free and starting a grass file. Other more sophisticated timers
are built from small spring wound motors, or a viscous fluid like STP or
silly putty with a piston slowly moving thru the fluid.
There are many actuating devices used. The simplest is a drop weight. Since
we often need to add weight to the nose of a glider when trimming, this
weight can be dropped, with a string going either to the tail or INSIDE wing
(if you go to the outside wing, all you will do is change the glider from a
left turn to a right turn, or vice versa). By shifting the weight, the
glider will now severely stall (tail), or spiral (inside wing) into the
ground.
The "beer can" DT was popular at MIT because of its first step, empty a can
of beer! A piece of the aluminum can is deployed as a flap from the INSIDE
of the fuselage. This acts as a drag break, and causes the glider to slowly
spiral down.
Often a DT consists of a flap, either on the wing or stab, that pops up and
alters the trim of a glider, causing it to spiral dive or stall. One problem
with these is that if not set properly, they can mess up the trim of your
glider, eliminating the need for a DT in the first place.
Another problem with many DTs, especially those that produce a stall or
gentle spiral, is that in a strong thermal, they may be insufficient to
recover the model. Finally, the DT action may bring the glider down so hard
that it is damaged on landing.
I like the pop up wing DT used on the Gold Rush (Model Aviation May 1985
page 64). The entire wing is hinged, and pops up about 60 degrees. This
effectively turns the entire wing into a drag break, sending the fuselage
straight down. The model lands nose first, protecting the delicate tail from
damage. A variation of this totally cuts the wing loose, except for a string
that ties the wing to the tail. The fuselage falls like an arrow, nose
first, with the wing fluttering behind. Another nice feature for the serious
competitor is that the hinge pin can be removed, making the model very easy
to pack for shipping.
------------------------------------------
8.2.17 References: (kits, books, publications, catalogs)
Kits:
Apogee Maxima A
Maxima B
Eclipse ???
Edmonds Deltie
Deltie-C
Deltie Thunder
Ivee
Ivee-C
Estes
#2075 ARV Condor
#2097 Manta
#1284 Space Shuttle
#2086 Tomcat
#2112 TransWing
MRC Thermal Hawk
QCR Auta Sight FWs
Easy Slide RGs
Edmonds Canard RGs
Folded Wing RGs
Never Loop BGs
Dethermalizer kit
Quest #3002 Aurora
#3006 Flat Cat
Plans:
Name Number Source
---- ------ ------
Athena NFFS plans
Bo Weevil NFFS 1973
Catharsis BH-151 Bill Hannah ???
Challenger MA August 1985 page 67
Flip SIG kit
Gold Rush MA May 1985 page 64
Pigeon SIG kit
Polly AMA #263 MA May 1979 page 50
Roll Out AMA #201 MA
Roscoe 18 AMA #509 MA May 1986 page 60
Semi Pro AMA #124 MA January 1976 page 22
Stomper AMA #510 MA May 1986 page 60
Supersweep 22 NFFS 1976, AAM December 1974
Sweepette 18 NFFS 1982
Thermic Jetco kit
Wasp VI AMA #343 MA August 1981 page 57, NFFS 85
Zenith AMA #705 MA December 1991 page 61
Books:
"Flying Hand Launched Gliders" John Kaufmann, William Morrow 1974
(out of print, often found in the children's section of libraries)
"Handbook of Model Rocketry", G Harry Stine, Wiley 1994,
"Hey, kid, ya wanna build and airplane?", Bill Hannan, Model
Builder
"Model Rocket Design and Construction", Tim Van Milligan, Kalmbach
1995 email:
[email protected]
"Throw it out of sight" Lawrence Abrams
???, Bill Winter, 1951
Publications:
NARTREK, c/o Lew Proudfoot 310 Dover Court Allen, TX 75002 e-mail
[email protected] or
[email protected]
NARTS, P.O. Box 1482, Saugus, MA 01906 e-mail
[email protected]
NFFS digest, 19 Frederick Dr. Newport News, VA 23601 $15/year
NFFS plans, 10115 Newbold Dr. St. Louis, MO 63137
NFFS publications, 4858 Moorpark Ave. San Jose, CA 95129
Zaic yearbooks, Model Aero Publications, P O Box 135, Northridge, CA
91343
Catalogs:
Apogee Components Inc., 19828 North 43rd Drive, Glendale, AZ 85308
email:
[email protected]
Eclipse Components, 570 Buckeye Dr, Colorado Springs, CO 80919
email:
[email protected]
Edmonds Aerospace, 13326 Preuit Place, Herndon, VA 22070
email:
[email protected]
QCR, 7021 Forest View Drive, Springfield, VA 22150
SIG, 401 S Front St, Montezuma, IA 50171 (800)247-5008
---------------------------------------
Copyright (c) 1996 Wolfram von Kiparski, editor.
Refer to Part 00 for the full copyright notice.