Path: senator-bedfellow.mit.edu!dreaderd!not-for-mail
Message-ID: <LANs/[email protected]>
Supersedes: <LANs/[email protected]>
Expires: 31 May 2004 11:22:46 GMT
X-Last-Updated: 1995/03/12
Organization: none
From: [email protected] (Peter Macaulay)
Newsgroups: comp.dcom.cabling,comp.answers,news.answers
Subject: Data Communications Cabling FAQ
Followup-To: poster
Approved: [email protected]
Summary: This article is a collection of information sources,
 standards, implementation methods and definitions for
 data communications cabling.
Originator: [email protected]
Date: 17 Apr 2004 11:26:28 GMT
Lines: 1269
NNTP-Posting-Host: penguin-lust.mit.edu
X-Trace: 1082201188 senator-bedfellow.mit.edu 568 18.181.0.29
Xref: senator-bedfellow.mit.edu comp.dcom.cabling:35446 comp.answers:56850 news.answers:269737

Archive-name: LANs/cabling-faq
Posting-Frequency: monthly
Last-modified: 1995/03/05

        C A B L I N G    F A Q

     Version 950305

    This is a Frequently Asked Questions (FAQ) document for the
    comp.dcom.cabling  newsgroup.   Topics  covered include the
    types of cables (fiber, coax,  copper,  unshielded  twisted
    pair-UTP, shielded twisted pair),  installation techniques,
    standards as well as fire and building safety codes.

    Prepared and maintained by Peter Macaulay ([email protected])
    Constructive comments/updates are welcomed.

0.1 Recent Updates

    The most recent changes are on the top of this list for easier
    identification of the new stuff (push down stack).  Format of
    the version is year, month, day.

    950305 - added rtfm.mit.edu approval, cable testing
    950124 - added bending radius specs, ISDN cabling
    950110 - added headers required for rtfm.mit posting
    - expanded references with much help from Evan Gamblin

0.2 Copyright

    Copyright (c) 1995 by Peter Macaulay, all rights reserved.

    This FAQ may be posted to any USENET newsgroup, on-line service,
    or BBS as long as it is posted in its entirety and includes this
    copyright statement.

0.3 Disclaimer

    This article is provided as is without any express or implied
    warranties.  While every effort has been taken to ensure the
    accuracy of the information contained in this article, the
    author and contributors assume no responsibility for errors
    or omissions, or for damages resulting from the use of the
    information contained herein.

    THIS DOCUMENT IS A GUIDELINE ONLY -- SEEK PROFESSIONAL ADVICE,
    CHECK LOCAL BUILDING CODES AND APPLICABLE STANDARDS.

0.4 Acknowledgments

    [email protected] (Bill Hughes)
    [email protected] (Evan Gamblin)
    [email protected] (John Lundgren)
    [email protected] (Mike Barker)
    [email protected] (Henriecus Koeman)

TABLE OF CONTENTS
0.1 Recent Updates
0.2 Copyright
0.3 Disclaimer
0.4 Acknowledgments
1.0 Cable Types
2.0 Cable Ratings
3.0 National Electrical Code (NEC)
4.0 Not Used (Blank)
5.0 Specific Cable Classifications
6.0 Cable Conductors
7.0 Vendor Specific Suggestions
8.0 Cabling Standards
9.0 Standard EIA/TIA 568
10.0 Birds and Bees (Plugs vs. Jacks)
11.0 Standard Networking Configurations
12.0 Ethernet 10Base-T Cabling
13.0 Category Specifications
14.0 Sources for the EIA/TIA 568 Standards Documents
15.0 Cable Test Equipment
16.0 Cable Testers for Category 5
17.0 Typical Wiring Layout
18.0 How Far Away Should Cable be Installed from an EMI Source
19.0 What is the Minimum Bending Radius for a Cable?
20.0 Fiber Optic Cable
21.0 ISDN Cabling
22.0 Testing Unshielded Twisted Pair Cables
23.0 - 29.0 Not Used (Blank)
30.0 Sources of Additional Information

---------------------------

Subject: 1.0 Cable Types

    Communications Cable: primarily for telephone cable
    Class 2 Cable: signaling cable primarily for data communications
    Riser: vertical shaft used to route cable between floors
    Plenum: Heating, Ventilation, Air Conditioning (HVAC) air return
     area -- mostly drop ceilings. Also below raised floors
     (where the underfloor area is used for ventilation).

------------------------------

Subject: 2.0 Cable Ratings

    (Or What Are Those Codes Printed On My Cables?)
    In the Hollywood movie _Towering Infernio_ (starring O.J.Simpson)
    a fire spread from floor to floor using the building cables.  This
    will not happen again (we hope) since everyone is using fire rated
    cables!  These are important specifications if you are responsible
    for defining a cable installation.

    If interfloor penetrations are properly _firestopped_, the
    cables can burn, but the fire will not pass the firestopping.

    UL-910, FT-4 and FT-6 say nothing about the type or volume of toxic
    combustion products produced. All they cover is performance on a
    flamespread test.

 THIS DOCUMENT IS A GUIDELINE ONLY -- SEEK PROFESSIONAL
 ADVICE, CHECK LOCAL BUILDING CODES AND APPLICABLE STANDARDS.

    The US National Fire Protection Association (NFPA) revises the
    National Electrical Code (NEC) every 3 years.  The NEC defines
    classifications of cable as per UL tests.

    The Canadian Standards Association (CSA) defines Premise Communication
    Cord (PCC) standards for physical wire tests.  These are printed
    on the cable as CSA-PCC-FT6.

    FT4 = Flame Test 4 is described in CSA C22.2 0.3-1992
    FT6 = Flame Test 6 is described in NFPA 262-1985 and ULC S102.4
    Physical Wire Tests C22.2 214-M-1990.  These CSA documents can
    be ordered from the CSA.  See sources below.

    <<<Any comments on standards from other parts of the world?>>>

------------------------------

Subject: 3.0 National Electrical Code (NEC)

    1993 National Electrical Code

    Article 725, Class 2
  725-38(b)1      CL2X    Class 2 cable, limited use
  725-38(b)1      CL2     Class 2 cable
  725-38(b)2      CL2R    Class 2 riser cable
  725-38(b)3      CL2P    Class 2 plenum cable

    Article 800
  800-3(b)1       CMX     Communications cable limited use
  800-3(b)1       CM      Communications cable
  800-3(b)2       CMR     Communications riser cable
  800-3(b)3       CMP     Communications plenum cable

    OFNP (Optical Fiber Nonconductive Plenum)
    OFNR (Optical Fiber Nonconductive Riser)

------------------------------

Subject: 4.0 Not Used (Blank)

------------------------------

Subject: 5.0 Specific Cable Classifications

  CMS, CL2X (Restricted Cable) must be enclosed in conduit,
  up to 10 feet exposed; must pass UL 1581 VW-1 test

  CM, CL2 (General Purpose Cable) for use in areas other
  than risers or plenums; must pass UL 1581 vertical tray test

  CMR, CL2R (Riser Cable) for cable in vertical shafts;
  must pass UL test method 1666

  CMP, CL2P (Plenum Cable) for use in plenum areas (air ducts);
  must pass UL 910 test for smoke and flame spread

------------------------------

Subject: 6.0 Cable Conductors

    Cable conductor gauge is specified as AWG (American Wire Gauge).
    A higher number is a smaller diameter.  Telephone cable used indoors
    is typically 24 or 26 AWG, whereas household electrical wiring is
    typically 12 or 14 AWG.

------------------------------

Subject: 7.0 Vendor Specific Suggestions

     AMP NETCONNECT Open Cabling System
     HP SiteWire
     AT&T PDS
     DEC MMJ
     IBM STP (Type 1, Type 2, etc)
     Northern Telcom IBDN

------------------------------

Subject: 8.0 Cabling Standards

    American National Standards Institute (ANSI)
    Electronic Industry Association (EIA)
    Telecommunications Industry Association (TIA)

    Current specification is the ANSI/EIA/TIA-568-1991 Standard
    _Commercial Building Telecommunications Wiring Standard_ and
    two Tech Sys Bulletins:

    _Additional Cable Specifications for Unshielded Twisted-Pair Cables_
    EIA/TIA Tech Sys Bulletin TSB-36, Nov 1991
    [Transmission Characteristics of Category 3-5 UTP cables]

    _Additional Transmission Specifications for UTP Connecting Hardware_
    EIA/TIA Tech Sys Bulletin TSB-40A, Dec 1993
    (Performance of Connectors and Patch Panels Above 20 MHz)

    Extended Specifications for 150-ohm STP Cables and Data
    Connectors - EIA/TIA Tech Sys Bulletin TSB-53, 1992 [Type 1A cable]

    EIA-570: Residential and Light Commercial Telecommunications
    Wiring Standard - EIA/TIA, 1991

    EIA-606: Telecommunications Administration Standard for Commercial
    Buildings - EIA/TIA (was PN-2290)

    EIA-607: - Commercial Building Grounding and Bonding Requirements
    for Telecommunications - EIA/TIA

    EIA/TIA PN-2840 - [draft for the EIA-568-A standard, incorporating
    TSB-36 and -40A, expected in early 1995]

    EIA/TIA PN-2840A - [draft for next version of the EIA-568-A standard]

    American National Standards Institute (ANSI)/
    National Fire Protection Assoc. (NFPA):
   70     National Electrical Code (1993)
   78     Lightning Protection Code

    Canadian Standards Association (CSA):
   C22.1-1994   Canadian Electrical Code, Part 1

    CAN/CSA-T527: Bonding and Grounding for Telecommunications
    in Commercial Buildings - Canadian Standards Assoc.
    [harmonized with EIA-607]

    CAN/CSA-T528: Telecommunications Administration Standards for
    Commercial Buildings - CSA, Jan 1993 [harmonized with EIA-606]

    CAN/CSA-T529-M91: Design Guidelines for Telecommunications Wiring
    System in Commercial Buildings, - CSA [harmonized with EIA-568]

    CAN/CSA-T530-M90: Building Facilities, Design Guidelines for
    Telecommunications - CSA, 1990  [harmonized with EIA-569]

    ISO/IEC 11801: [international equivalent of EIA-568 and CSA T-529,
    includes 120 ohm Screened Twisted Pair cable]

    IEC 603-7, Part 7 - [Modular connector physical dimensions, mechanical
    and electrical characteristics. Level A: 750 mating cycles min;
    B: 2,500 min; C: 10,000 min.]

    ISO 8877: Information Processing Systems - Interface Connector and
    Contact Assignment for ISDN Basic access interface located at
    reference points S and T - International Organization for
    Standardization [same pin/pair assignments for 8-line modular
    connector as EIA T-568A]

    National Electrical Safety Code Handbook (NESC):
    Institute of Electrical and Electronic Engineers (IEEE)/
    American National Standards Institute (ANSI):
     C2-1993      National Electrical Safety Code
    ISBN 1-55937-210-9 (order # SH15172)
    [In USA, governs the area between the property line and the
    building entrance]

    National Research Council of Canada, Institute for Research in
    Construction (NRC-IRC):
   National Building Code of Canada (1990) - order NRCC 30619
   Supplement to the National Building Code of Canada (1990)
   - order NRCC 30629
   National Fire Code of Canada (1990) - order NRCC 30621

    A Guide to Premises Distribution
    - NCR/AT&T order #555-400-021, Apr 1988

    Building Network Design - Bell Canada, 1992

    The Corporate Cabling Guide - M. McElroy,
    Artech House, ISBN 0-89006-663-9, Dec 1992

    Telecommunications Distribution Methods Manual (1050 pages)
    - Building Industries Consulting Service International (BICSI), 1994

    Universal Transport System Design Guide, Release II
    - Siecor Corp, 1991 [fiber-optic cable plant]

    Requirements Beyond Jacks and Cable: an Installation Guide
    - Leviton Telecom, Second edition, T15-00004-003, Jan 1994

    SiteWire Twisted-pair Installation Guide
    - Hewlett-Packard,  p/n 5959-2208, Jan 1988

    SiteWire Planning Guide - Hewlett-Packard, p/n 5959-2201,
    Sept 1989

    Tech Ref Guide for Workgroup LANs
    - Hewlett-Packard, p/n 5091-0663E, Apr 1991

    Tech Ref Guide for Site LANs and MultiSite LANs
    - Hewlett-Packard, p/n 5091-0666E, Apr 1991

    Understanding Fiber Optics - J. Hecht
    Howard Sams & Co., ISBN 0-672-27066-8, 1988

    Optical Fiber Communications, I & II - S. Miller
    Academic Press, ISBN 0-12-497350-7 & -5

    Optical Fiber Splices and Connectors: Theory & Methods -
    C. M. Miller, Marcel Dekker, 1986

    Principles of Optical Fiber Measurements - D. Marcuse
    Academic Press, ISBN 0-12-470-980-X, 1981

    Single-Mode Fibers: Fundamentals - E. G. Neumann
    Springer-Verlag, ISBN 0-387-18745-6, 1988

    CATV Cable Construction Manual, 3rd edition - Comm/Scope Inc., 1980
    [Outside Plant tools and procedures: trenching, boring, installing
    aerial and buried cable]

    Marking Guide: Wire and Cable - Underwriters Labs, 1993
    [How to interpret UL cable jacket markings]

------------------------------

Subject: 9.0 Standard EIA/TIA 568

    The ANSI/EIA/TIA-568-1991 Standard _Commercial Building
    Telecommunications Wiring Standard_ defines pinouts;

    9.1 Standard EIA/TIA T568A
 (also called ISDN, previously called EIA)

       Pin  Wire Color
       ===  ==========
        /--T3  1   White/Green
  Pair3 \--R3  2   Green
       /----------T2  3   White/Orange
      /         /-R1  4   Blue
pair2 \   pair1 \-T1  5   White/Blue
       \----------R2  6   Orange
        /--T4  7   White/Brown
  pair4 \--R4  8   Brown


    9.2 Standard EIA/TIA T568B
 (also called AT&T specification, previously called 258A)

        /--T2  1   White/Orange
  pair2 \--R2  2   Orange
       /----------T3  3   White/Green
      /         /-R1  4   Blue
pair3 \   pair1 \-T1  5   White/Blue
       \----------R3  6   Green
        /--T4  7   White/Brown
  pair4 \--R4  8   Brown


    9.3 USOC (Universal Service Order Code)

  8-pins    6-pins
        |  |
    /-------------T4  1     White/Brown
   /    /---------T3  2  1  White/Green
  /    /    /-----T2  3  2  White/Orange
 /    /    /    /-R1  4  3  Blue
     pr4\ pr3\ pr2\ pr1\-T1  5  4  White/Blue
  \    \    \-----R2  6  5  Orange
   \    \---------R3  7  6  Green
    \-------------R4  8     Brown

------------------------------

Subject: 10.0 Birds and Bees (Plugs vs. Jacks)

    The EIA/TIA specifies an RJ-45 (ISO 8877) connector for Unshielded
    Twisted Pair (UTP) cable.  The plug is the male component crimped
    on the end of the cable while the jack is the female component in
    a wall plate or patch panel, etc.  Here is the pin numbering to
    answer the question, where is pin one?

 Plug                          Jack
 (Looking at connector          (Looking at cavity
  end with the cable             in the wall)
  running away from you)

     ---------- /                   ----------
    | 87654321 |                   | 12345678 |
    |__      __|/                  |/_      /_|
       |____|                         |/___|

------------------------------

Subject: 11.0 Standard Networking Configurations

    With reference to T568B above;
     ATM 155Mbps uses pairs 2 and 4 (pins 1-2, 7-8)
     Ethernet 10Base-T uses pairs 2 and 3 (pins 1-2, 3-6)
     Ethernet 100Base-T4 uses pairs 2 and 3 (4T+) (pins 1-2, 3-6)
     Ethernet 100Base-T8 uses pairs 1,2,3 and 4 (pins 4-5, 1-2, 3-6, 7-8)
     Token-Ring uses pairs 1 and 3 (pins 4-5, 3-6)
     TP-PMD uses pairs 2 and 4 (pins 1-2, 7-8)
     100VG-AnyLAN uses pairs 1,2,3 and 4 (pins 4-5, 1-2, 3-6, 7-8)

------------------------------

Subject: 12.0 Ethernet 10Base-T Cabling

    12.1 Ethernet 10Base-T Straight Thru patch cord (T568B colors);

        RJ45 Plug        RJ45 Plug
        =========        =========
        /--T2  1  ... White/Orange .... 1  TxData +
  pair2 \--R2  2  ... Orange .......... 2  TxData -
       /----------T3  3  ... White/Green ..... 3  RecvData +
      /           R1  4      Blue              4
      \  pair3    T1  5      White/Blue        5
       \----------R3  6  ... Green ........... 6  RecvData -
    T4  7      White/Brown       7
    R4  8      Brown             8

    12.2 Ethernet 10Base-T Crossover patch cord;
   This cable can be used to cascade hubs, or for connecting
   two Ethernet stations back-to-back without a hub (ideal for
   two station Doom!)  Note pin numbering in item 10.0 above.

    RJ45 Plug  1 Tx+ -------------- Rx+ 3  RJ45 Plug
        2 Tx- -------------- Rx- 6
        3 Rx+ -------------- Tx+ 1
        6 Rx- -------------- Tx- 2

    12.3 Ethernet 10Base-T to USOC Crossover patch cord;

     RJ45 8-pin Plug  1 ---White/Orange--- 2  USOC 6-pin Plug
   ^           2 ------Orange------ 5       ^
        3 ---White/Green---- 1
        6 ------Green------- 6

    12.4 Crossover Implementation
  A simple way to make a crossover patch cable is to take a
  dual-jack surface mount box and make the crossover between
  the two jacks. This allows using standard patch cables, and
  avoids the nuisance of having a crossover cable find its way
  into use in place of a regular patch cable.

    12.5 Stranded Patch Cables
  The color code used in stranded patch cables is different from
  solid-conductor cables. For NorTel Digital Patch Cable (DPC),
  the coding is;
  Pair 1: Green & Red
  Pair 2: Yellow & Black
  Pair 3: Blue & Orange
  Pair 4: Brown & Gray

------------------------------

Subject: 13.0 Category Specifications

    EIA/TIA Category Specification provide for the following cable
    transmission speeds with specifications (Note prior to Jan94
    UL and Anixter developed a LEVEL system which has been dropped
    or harmonized with the CATEGORY system);

Category 1 = No performance criteria
Category 2 = Rated to 1 MHz (used for telephone wiring)
Category 3 = Rated to 16 MHz (used for Ethernet 10Base-T)
Category 4 = Rated to 20 MHz (used for Token-Ring, 10Base-T)
Category 5 = Rated to 100 MHz (used for 100Base-T, 10Base-T)

    UL LAN Cable Certification Program - Underwriters Laboratories
    publication 200-120 30M/3/92, 1992 [characteristics of Cat 3-5 UTP]

------------------------------

Subject: 14.0 Sources for the EIA/TIA 568 Standards Documents

    EIA Standards Sales Office -or-
    Global Engineering Documents (east or west coast offices)
    (See addresses in sources below)

------------------------------

Subject: 15.0 Cable Test Equipment

    15.1 DVM
    DVM = Digital Volt Meter (measures volts)

    15.2 DMM
    DMM = Digital Multi Meter (measures volts, ohm, capacitance,
   and some measure frequency)

    15.3 TDR
    TDR = Time Domain Reflectometer (measures cable lengths,
   locates impedance mismatches).

    15.4 Tone Generator
    Tone Generator and Inductive Amplifier = Used to trace cable pairs,
    follow cables hidden in walls or ceiling. The tone generator will
    typically put a 2 kHz audio tone on the cable under test, the
    inductive amp detects and plays this through a built-in speaker.

    15.5 Wirmap Tester
    Wiremap tester: checks a cable for open or short circuits, reversed
    pairs, crossed pairs and split pairs.

    A least-cost wiremap type tester that detects split pairs correctly
    (using a NEXT test) is the Fluke 610, at $400.  MOD-TAP and UNICOM
    make a similar device.

    15.6 Noise Tester
    Noise tests, 10Base-T: the standard sets limits for how often
    noise events can occur, and their size, in several frequency ranges.
    Various handheld cable testers are able to perform these tests.

    15.7 Butt-in
    Butt-in set: a telephone handset that when placed in series with a
    battery (such as the one in a tone generator), allows voice communication
    over a copper cable pair. Can be used for temporary phone service in a
    wiring closet.

    15.7 Fiber Testing
    See section 20.7 for fiber optic test equipment.

------------------------------

Subject: 16.0 Cable Testers for Category 5

   _LANcat V_     by Datacom Technologies
       Everett, WA
       Tel: 800/468-5557

   _DSP100_       by Fluke Corporation
       P.O. Box 9090
       Everett, WA 98206-9090
       Tel: 206/356-5400  800/44-FLUKE

   _PentaScanner_ by Microtest, Inc
       4747 North 22nd St,
       Phoenix, AZ  85016
       Tel: 602/952-6400  800/526-9675

   _WireScope100_ by Scope Communications, Inc
       100 Otis St,
       Northboro, MA  01532
       Tel: 508/393-1236

   _LANTech PRO_  by Wavetek, Inc
       9145 Balboa Ave
       San Diego, CA  92123
       Tel: 619/279-2200  800/854-2708


   At present some vendors are calling their instruments _CAT 5
   conformance_ testing devices. Be aware that there is an on-going
   standards process to define field testing of CAT 5 cables.  These
   standards or guidelines (currently called PN-3287) will not be
   complete until the June 1995 timeframe.

   The TIA TSB number will be TSB-67 when PN-3287 is approved.

   The standard is expected to define two accuracy levels of test
   equipment, and provide minimum performance standards for each.
   Current test equipment is likely to fall in the lower level. The
   higher class (_Accuracy Level II_) is intended for subsequent
   generations of test equipment capable of performing the
   increasingly numerous and stringent tests now being developed.

------------------------------

Subject: 17.0 Typical Wiring Layout

   17.1 Wiring Layout

   ......Wiring Closet..............                ....User Work Area....
   [HUB]<=====>[PANEL]+=====+[BLOCK]+==============+[WALL]<=====>[STATION]

   Where ...
  HUB = concentrator
  PANEL = RJ-45 Modular Patch Panel

  BLOCK = Telco Splice Block (Typically 25-pair)

  Crossconnect: NorTel BIX1A, AT&T 110 and similar crossconnect
  blocks accommodate 4-pair, 25-pair or larger cables on the
  same mount. The same type of mount can be used for the voice
  field as well as data.

  Telephone-only (66) blocks are seldom used except for
  low-speed data circuits such as are used for IBM 3270 terminals.
  The newer types of crossconnect mentioned above cost about the
  same and accommodates growth much better. (The standard AT&T 110
  and its BIX equivalent are rated at Cat 5).

  LOBE CABLE = Cable run from user wall plate to wiring closet
  WALL = User area wall face plate
  STATION = User workstation network adapter
  =====>  = RJ-45 connector
  =====+  = Punch down termination (also called an insulation-
     displacement/displacing connector, or IDC).

    17.2 Crossconnect Field Colors
    The color of label used on a crossconnect field identifies the
    field's function. The cabling administration standard (CSA T-528
    & EIA-606) lists the colors and functions as:

  Blue  Horizontal voice cables
  Brown  Interbuilding backbone
  Gray  Second-level backbone
  Green  Network connections & auxiliary circuits
  Orange Demarcation point, telephone cable from Central Office
  Purple  First-level backbone
  Red  Key-type telephone systems
  Silver or
  White  Horizontal data cables, computer & PBX equipment
  Yellow Auxiliary, maintenance & security alarms

------------------------------

Subject: 18.0 How Far Away Should Cable be Installed from an EMI Source

    Northern Telecom IBDN User Manual contains an Appendix D titled
    _UTP Separation Guidelines From EMI Sources_. The values are the
    same as the cabling pathways standard, EIA-569, table 4.8-5.

     Minimum Separation Distance
          from Power Source at 480V or less
    CONDITION                           <2kVA      2-5kVA       >5kVA
    Unshielded power lines or
    electrical equipment in proximity
    to open or non-metal pathways         5 in.     12 in.     24 in.
     (12.7 cm)  (30.5 cm)  (61 cm)
    Unshielded power lines or
    electrical equipment in proximity
    to grounded metal conduit pathway    2.5 in.     6 in.     12 in.
     (6.4 cm)  (15.2 cm)   (30.5 cm)
    Power lines enclosed in a grounded
    metal conduit (or equivalent
    shielding) in proximity
    to grounded metal conduit pathway      -         6 in.     12 in.
        -      (15.2 cm)   (30.5 cm)

    Transformers & electric motors       <------- 40-in (1.02 m) ----->

    Fluorescent lighting                 <------- 12-in (30.5 cm) ---->

    Source: Integrated Building Distribution Network (IBDN) User Manual
    - Northern Telecom, doc # IBDN-UM-9105, 1991.

    The EIA/TIA working group revising the EIA-569 standard is using the
    results of field and lab tests to update the recommendations. The
    target date for completion is Dec 1995.

------------------------------

Subject: 19.0 What is the Minimum Bending Radius for a Cable?

    According to EIA SP-2840A (a draft version of EIA-568-x) the minimum
    bend radius for UTP is 4 x cable outside diameter, about one inch.
    For multipair cables the minimum bending radius is 10 x outside
    diameter.

    SP-2840A gives minimum bend radii for Type 1A Shielded Twisted Pair
    (100 Mb/s STP) of 7.5 cm (3-in) for non-plenum cable, 15 cm (6-in)
    for the stiffer plenum-rated kind.

    For fiber optic cables not in tension, the minimum bend radius is 10 x
    diameter; cables loaded in tension may not be bent at less than 20 x
    diameter. SP-2840A states that no f/o cable will be bent on a radius
    less than 3.0 cm (1.18-in).

    The ISO DIS 11801 standard, Section 7.1 General specs for 100 ohm
    and 120 ohm balanced cable lists three different minimum bend radii.
    Minimum for pulling during installation is 8x cable diameter, min
    installed radius is 6x for riser cable, 4x for horizontal.

    For fiber optic cables not in tension, the minimum bend radius is
    10 x diameter; cables loaded in tension may not be bent at less
    than 20 x diameter. SP-2840A states that no f/o cable will be
    bent on a radius less than 3.0 cm (1.18-in).

    Some manufacturers recommendations differ from the above, so it is
    worth checking the spec sheet for the cable you plan to use.

------------------------------

Subject: 20.0 Fiber Optic Cable

    20.1 Multimode (MM) Fiber
    Step index or graded index fiber. In North America the most common
    size is 62.5/125; in Europe, 50/125 is often used.  These numbers
    represent the diameter of the core (62.5) and diameter of the
    cladding (125) in microns.  Multimode fiber is typically used in
    applications such as local area networks, at distances less than 2 km.

    20.2 Single Mode (SM) Fiber
    Single mode fiber has a very small core.  Typical values are
    5-10 microns.  Single mode fiber has a much higher capacity and
    allows longer distances than multimode fiber.  Typically used
    for wide area networks such as telephone company switch to switch
    connections and cable TV (CATV).

    20.3 Loose Buffer
    The fiber is contained in a plastic tube for protection.
    To give better waterproofing protection to the fiber, the space
    between the tubes is sometimes gel-filled. Typical applications
    are outside installations. One drawback of loose buffer construction
    is a larger bending radius. Gel-filled cable requires the installer
    to spend time cleaning and drying the individual cables, and
    cleaning up the site afterwards.

    20.4 Tight Buffer
    Buffer layers of plastic and yarn material are applied over the fiber.
    Results in a smaller cable diameter with a smaller bending radius.
    Typical applications are patch cords and local area network connections.
    At least one mfr. produces this type of cable for inside/outside use.

    20.5 Ribbon Cable
    Typically 12 coated fibers are bonded together to form a
    ribbon.  There are higher density ribbons (x100) which have
    the advantage of being mass-terminated into array connectors.
    A disadvantage is that they are often harder, and require special
    tools to terminate and splice.

    20.6 Fiber Connectors
    There are a lot of different types of connectors, but the ones
    commonly found in LAN/MAN/WAN installations are:

    FSD - Fixed Shroud Device, such as the FDDI MIC dual-fiber connector.
    SC  - A push-pull connector. The international standard.
   The SC connectors are recommended in SP-2840A.  The SC
   connector has the advantage (over ST) of being duplexed
   into a single connector clip with both transmit/receive fibers.
    SMA - Threaded connector, not much used anymore because of losses
   that change with each disconnection and reconnection.
    ST  - Keyed, bayonet-style connector, very commonly used.


    20.7 Fiber Optic Test Equipment
    Continuity tester: used to identify a fiber, and detect a break.
    One type resembles a f/o connector attached to a flashlight.

    Fault locator:  used to determine exact location of a break.
    Works by shining a very bright visible light into the strand.
    At the break, this light is visible through the cable jacket.

    Tone Generator and Tracer: used to identify a cable midspan or
    to locate a strand at its far end. Similar in purpose to the
    tone testers used on copper cable. The tone generator imposes
    a steady or warbling audio tone on light passing down the cable.
    The tracer detects and recovers the tone from light lost through
    the cable jacket as a result of bending the cable slightly.

    Optical Source and Power Meter: used to measure the end-to-end
    loss through a f/o strand, or system of cable, connectors and
    patch cables. Measurements are more accurate than an OTDR.

    Optical Time Domain Reflectometer (OTDR): used to measure the length
    of a cable, and detect any flaws in it. Can also be used to measure
    end-to-end loss, although less accurately than a power meter.

    Fiber Talk set: allows using a pair of f/o strands as a telephone line.

    Fiber Optic Testing, standards: see EIA-455-171 (FOTP-171), EIA 526-14.

------------------------------

Subject: 21.0 ISDN Cabling

    21.1 ISDN U-loop
    ISDN Basic Rate Interface (BRI) is provided by a carrier from
    a central office (CO) switch to the customer premise with a
    two wire U-loop RJ-45 connector on the center pins 4-5.

        RJ45 Plug
        =========
        1  N/C
        2  N/C
        3  N/C
        4  U-loop network connection
        5  U-loop network connection
        6  N/C
        7  N/C
        8  N/C

    21.2 ISDN Network Termination (NT)
    The Network Termination is a Power Supply and NT1.  In North
    America this functionality can be provided in the terminal
    equipment (i.e. ISDN digital modem) or separate as follows;
 ________              ________
       | Power  |            |        |========== TE
     =========| Supply |============|  NT1   |
U-loop |________|   U+PS2    |________|========  S/T bus
2-wire              4-wire                       4-wire

        RJ45 Plug for U+PS2
        ===================
        1  N/C
        2  N/C
        3  N/C
        4  U-loop network connection
        5  U-loop network connection
        6  N/C
        7  -48 VDC
        8  -48 VDC Return

    The ISDN cables can be silver satin patch cables (the kind that
    make 10Base-T Ethernet installers cringe).  The S/T bus can also
    be silver satin but most installers use CAT 3 or CAT 5 with one
    drop per terminal equipment.  It is true that only 4-wires are
    needed on the S/T bus but see below for optional power needs.

    21.3 ISDN S/T Bus (Point-to-Point)
    One logical terminal is on the S/T bus which can be 1km long.

    21.4 ISDN S/T Bus (Short Passive)
    Up to eight terminals on the S/T bus which can be within 100 to
    200m.

    21.5 ISDN S/T Bus (Extended Passive)
    Up to eight terminals on the S/T bus which can be up to 500m.

    21.6 ISDN S/T Bus (NT1 Star)
    Up to eight terminals on the S/T bus which are wired from a
    central NT1 and can be up to 1km in length each.

    21.7 ISDN S/T Bus Pinout
    The S/T bus connects the NT1 with the terminal equipment.  See
    section 10.0 for plug identification and pin numbering.  Note,
    if power is not required an RJ11 (6-pin) plug could be used.
    Some NT1 devices have a switch to turn off power if it is not
    required by the terminal equipment.  For safety reasons the
    power should not be put on the S/T bus if it is not required.
    Typically, ISDN PC cards do not require power from the S/T bus,
    but ISDN telephones do require power from the S/T bus.  Check
    your vendor equipment specifications carefully.

        RJ45 Plug for ISDN S/T bus
        ==========================
        1  N/C
        2  N/C
        3  White/Green .....  Receive +
        4  Blue ............  Transmit+
        5  White/Blue ......  Transmit-
        6  Green ...........  Receive -
        7  White/Brown .....  -48VDC (option)
        8  Brown ...........  -48VDC Return (option)

    21.8 ISDN Cabling Guidelines
    The North American ISDN Users Forum (NIUF) has produced a document
    titled _ISDN Wiring and Powering Guidelines_ NIUF #433-94 which
    describes residence and small business ISDN cabling.  See section
    30.0 for the NIUF document ordering address.

------------------------------

Subject: 22.0 Testing Unshielded Twisted Pair Cables

    22.1 Testing UTP Introduction
    Many of the problems encountered in UTP cable plants are a result
    of miswired patch cables, jacks and crossconnects.

    Horizontal and riser distribution cables and patch cables are wired
    straight through end-to-end -- pin 1 at one end should be connected
    to pin 1 at the other. (Crossover patch cables are an exception, as
    described later). Normally, jacks and crossconnects are designed so
    that the installer always punches down the cable pairs in a standard
    order, from left to right: pair 1 (Blue), pair 2 (Orange), pair 3
    (Green) and pair 4 (Brown). The white striped lead is usually punched
    down first, followed by the solid color. The jack's internal wiring
    connects each pair to the correct pins, according to the assignment
    scheme for which the jack is designed: EIA-568A, 568B, USOC or
    whatever. (One source of problems is an installation in which USOC
    jacks are mixed with EIA-568A or 568B. Everything appears to be
    punched down correctly, but some cables work and others do not).

    22.2 Wiremap Tests
    Wiremap tests will check all lines in the cable for all of the
    following errors:

      Open:          Lack of continuity between pins at both ends of
       the cable.
      Short:         Two or more lines short-circuited together.
      Crossed pair:  A pair is connected to different pins at each
       end (example: pair 1 is connected to pins 4&5
       at one end, and pins 1&2 at the other).
      Reversed pair: The two lines in a pair are connected to opposite
       pins at each end of the cable (example: the line
       on pin 1 is connected to pin 2 at the other end,
       the line on pin 2 is connected to line 1). Also
       called a polarity reversal or tip-and-ring reversal.
      Split pair:    One line from each of two pairs is connected as if
       it were a pair (example: the Blue and White-Orange
       lines are connected to pins 4&5, White-Blue and
       Orange to pins 3&6). The result is excessive Near
       End Crosstalk (NEXT), which wastes 10Base-T
       bandwidth and usually prevents 16 Mb/s token-ring
       from working at all.

    22.3 Length Tests
    Checking cable length is usually done using a time domain
    reflectometer (TDR), which transmits a pulse down the cable, and
    measures the elapsed time until it receives a reflection from the
    far end of the cable. Each type of cable transmits signals at
    something less than the speed of light.  This factor is called the
    nominal velocity of propagation (NVP), expressed as a decimal
    fraction of the speed of light. (UTP has an NVP of approximately
    0.59-0.65). From the elapsed time and the NVP, the TDR calculates
    the cable's length. A TDR may be a special-purpose unit such as
    the Tektronix 1503, or may be built into a handheld cable tester.

    22.4 Testing for Impulse Noise
    The 10Base-T standard defines limits for the voltage and number of
    occurrences/minute of impulse noise occurring in several frequency
    ranges. Many of the handheld cable testers include the capability
    to test for this.

    22.5 Near-End Crosstalk (NEXT)
    What's NEXT, you ask? Imagine yourself speaking into a telephone.
    Normally, as you speak you can hear the person on the other end
    and also hear yourself through the handset. Imagine how it would
    sound if your voice was amplified so it was louder than the other
    person's. Each time you spoke you'd be deaf to anything coming from
    the other end. A cable with inadequate immunity to NEXT couples so
    much of the signal being transmitted back onto the receive pair
    (or pairs) that incoming signals are unintelligible.

    Cable and connecting hardware installed using poor practices can have
    their NEXT performance reduced by as much as a whole Category.

    22.6 Attenuation
    A signal traveling on a cable becomes weaker the further it travels.
    Each interconnection also reduces its strength. At some point the
    signal becomes too weak for the network hardware to interpret reliably.
    Particularly at higher frequencies (10MHz and up) UTP cable attenuates
    signals much sooner than does co-axial or shielded twisted pair cable.
    Knowing the attenuation (and NEXT) of a link allows you to determine
    whether it will function for a particular access method, and how much
    margin is available to accommodate increased losses due to temperature
    changes, aging, etc.

    Forthcoming updates to cabling standards call for a number of new
    tests which will add to this list.

------------------------------

Subject: 23.0 - 29.0 Not Used (Blank)

    These sections are blank for future topics.

------------------------------

Subject: 30.0 Sources of Additional Information

AMP
    Addr: Harrisburg, PA  17105-3608
    Tel:  1-800-722-1111
   1-800-245-4356 (Faxback service, USA)
   (905) 470-4425 Canada
   (617) 270-3774 (Faxback service, Canada)

Anixter
   (An international cable products distributor)
   see _Anixter 199x Cabling Systems Catalog_
    Addr: Anixter, Inc
   4711 Golf Road
   Skokie, IL  60076
    Tel:  (708) 677-2600
   1-800-323-8167 USA
   1-800-361-0250 Canada
   32-3-457-3570 Europe
   44-81-561-8118 UK
   65-756-7011 Singapore

ANSI:
    Addr: American National Standards Institute
   11 W. 42nd St, 13th floor
   New York, NY 10036
    Tel:  (212) 642-4900

 AT&T Canada:
    Addr: Network Cables Div
   1255 route Transcanadienne
   Dorval, QC H3P 2V4
    Tel:  (514) 421-8213
    Fax:  (514) 421-8224

 AT&T documents:
    Addr: AT&T Customer Information Center
   Order Entry
   2855 N. Franklin Road
   Indianapolis, IN 46219 USA
    Tel:  (800) 432-6600 (USA)
   (800) 255-1242 (CDN)
   (317) 352-8557 (International)
    Fax:  (317) 352-8484

 Belden Wire & Cable:
    Addr: POB 1980
   Richmond, IN 47375
    Tel:  (317) 983-5200

 Bell Canada:
    Addr: Bell Canada
   Building Network Design
   Floor 2, 2 Fieldway Road
   Etobicoke, Ontario
   Canada M8Z 3L2
    Tel:  (416) 234-4223
    Fax:  (416) 236-3033

 Bell Communications Research (Bellcore):
    Addr: Customer Service
   60 New England Ave
   Piscataway, NJ 08854
    Tel:  (800) 521-2673
    Fax:  (908) 336-2559

 Berk-Tek: (copper & f/o cable)
    Addr: 312 White Oak Rd
   New Holland, PA 17557
    Tel:  (717) 354-6200, 1-800-BERK-TEK
    Fax:  (717) 354-7944

 BICSI:   A telecommunications cabling professional association.
   Offers education, and administers the RCDD (Registered
   Communications Distribution Designer) certification.
    Addr: Building Industries Consulting Service International
   10500 University Center Drive, Ste 100
   Tampa, FL 33612-6415
    Tel:  (813) 979-1991, 1-800-BICSI-05
    Fax:  (813) 971-4311

 Blackbox
   Black Box Catalog: The Source for Connectivity (r)
    Addr: Black Box Inc
   P.O. Box 12800
   Pittsburgh, PA  15241
    Tel:  1-800-552-6816 USA
   (412) 746-5500 Tech Support USA
   (416) 736-8013 Tech Support Canada
    Inet: [email protected]

 CABA:
    Addr: Canadian Automated Buildings Association
   M-20, 1200 Montreal Rd
   Ottawa, ON K1A 0R6
    Tel:  (613) 990-7407
    Fax:  (613) 954-5984

 CableTalk: (racks & physical cable management)
    Addr: 18 Chelsea Lane
   Brampton, ON L6T 3Y4
    Tel:  (800) 267-7282
   (905) 791-9123
    Fax:  (905) 791-9126

 Cabling Business:
    Addr: Cabling Business Magazine
   12035 Shiloh Road, Ste 350
   Dallas, TX 75228
    Tel:  (214) 328-1717
    Fax:  (214) 319-6077

 Cabling Installation & Maintenance Magazine:
    Addr: Cabling Installation & Maintenance
   Editorial Offices
   One Technology Park Dr
   POB 992
   Westford, MA 01886
    Tel:  (508) 692-0700
   Subscriptions:
    Tel:  (918) 832-9349
    Fax:  (918) 832-9295

 CCITT:   See ITU

 Comm/Scope Inc.
    Addr: POB 1729,
   Hickory, NC 28603
    Tel:  (800) 982-1708 (USA)
   (704) 324-2200
    Fax:  (704) 328-3400

 Corning:
    Addr: Corning Optical Fiber Information Center
   1-800-525-2524
    Guidelines - publication/newsletter on fiber technology
    FiberFax-on-Demand: ???
    Inet: [email protected]

 CSA:
    Addr: Canadian Standards Association
   178 Rexdale Blvd
    Rexdale, Ont
    Canada M9W 1R3
    Tel:  (416) 747-4000, Documents Orders: (416) 747-4044
    Fax:  (416) 747-2475

 EIA:
    Addr: EIA Standards Sales Office
   2001 Pennsylvania Ave., N.W.
   Washington, DC  20006
    Tel:  (202) 457-4966

 GED:
    Addr: Global Engineering Documents
   1990 M Street W, Suite 400
   Washington, DC 20036
    Tel:  (800) 854-7179 (CDN/USA)
   (202) 429-2860 (International)
   (714) 261-1455 (International)
    Fax:  (317) 352-8484

   Global Engineering Documents (West Coast)
   2805 McGaw Ave.
   Irvine, CA  92714
   800-854-7179

 Graybar:
   (An international cable products distributor)
   1-800-825-5517
    Tel:  (519) 576-4050 in Ontario
    Fax:  (519) 576-2402

 Hubbell:
    Addr: Hubbell Premise Wiring Inc.
   14 Lords Hill Rd
   Stonington, CT 06378
    Tel:  (203) 535-8326
    Fax:  (203) 535-8328

 IEC:
    Addr: International Electrotechnical Commission
   rue de Varembre, Case Postale 131,3
   CH-1211
   Geneva 20, Switzerland

 ISO:
    Addr: International Organization for Standardization
   1, rue de Varembre, Case Postale 56
   CH-1211
   Geneva 20, Switzerland
    Tel:  +41 22 34 12 40

 ITU:
   (Previously called CCITT)
    Addr: International Telephone Union
   Place des Nations
   CH-1211
   Geneva 20, Switzerland

 MOD-TAP:
   (Cable and Equipment Suplier)
    Addr: Mod-Tap
   285 Ayer Rd, P.O. Box 706
   Harvard, MA  01451
    Tel:  (508) 772-5630
    Fax:  (508) 772-2011

 NFPA (US National Electrical Code (NEC) and other docs):
    Addr: National Fire Protection Association
   One Battery March Park, P.O. Box 9146
   Quincy, MA 02269-9959
    Tel:  (800) 344-3555
    Fax:  (617) 984-7057

 NIST:
    Addr: U.S. Dept. of Commerce
   National Institute of Standards and Technology
   Technology Building 225
   Gaithersburg, MD 20899

 NIUF:
    Addr: North American ISDN Users Forum
   NIUF Secretariat
   National Institute of Standards and Technology
   Bldg 223, Room B364
   Gaithersburg, MD 20899
    Tel:  (301) 975-2937
    Fax:  (301) 926-9675
Internet:  [email protected]

 Northern Telecom (cable and physical network products):
    Addr: Business Networks Div.
   105 Boulevard Laurentien
   St. Laurent, QC H4N 2M3
    Tel:  (514) 744-8693, 1-800-262-9334
    Fax:  (514) 744-8644

 NTIS:
    Addr: U.S. Dept. of Commerce
   National Technical Information Service
   5285 Port Royal Rd
   Springfield, VA 22161
    Tel:  (703) 487-4650
   (800) 336-4700 (rush orders)
    Fax:  (703) 321-8547

 NRC of Canada:
    Addr: Client Services
   Institute for Research in Construction
   National Research Council of Canada
   Ottawa, ON K1A 0R6
    Tel:  (613) 993-2463
    Fax:  (613) 952-7673

 Ortronics:
    Addr: 595 Greenhaven Rd
   Pawcatuck, CT 06379
     Tel: (203) 599-1760
     Fax: (203) 599-1774

 RCDD:    See BICSI

 Saunders Telecom: (racks, tray and accessories)
    Addr: 8520 Wellsford Place
   Santa Fe Springs, CA
    Tel:  (800) 927-3595
    Fax:  (310) 698-6510

 SCC:
    Addr: Standards Council of Canada
   1200-45 O/Connor St
   Ottawa, Ont Canada K1P 6N7
    Tel:  (613) 238-3222
    Fax:  (613) 995-4564

 Siecor:
    Addr: 489 Siecor Park, POB 489
   Hickory, NC 28603-0489
    Tel:  (704) 327-5000
    Fax:  (704) 327-5973

 Siemon:
   The Siemon Co (Cabling System Supplier)
    Addr: 76 Westbury Park Rd
   Watertown, CT  06795
     Tel: (203) 274-2523
     Fax: (203) 945-4225

 TIA:
    Addr: Telecommunications Industries Association (TIA)
   2500 Wilson Boulevard, Suite 300,
   Arlington, VA 22201
     Tel: (703) 907-7700
     Fax: (703) 907-7727

 UL:
   Underwriters Labs (UL) documents:
    Addr: Underwriters Labs Inc
   333 Pfingsten Road,
   Northbrook, Illinois 60062-2096 USA
    Tel:  (800) 676-9473 (from CDN/USA East coast)
   (800) 786-9473 (from CDN/USA West coast)
   (708) 272-8800 (International)
    Fax:  (708) 272-8129
    Inet: [email protected]
    MCI Mail: 254-3343

--------------------------END OF CABLING FAQ---------------------------