/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/

/*
*  ALGORITHM
*
*      The "deflation" process depends on being able to identify portions
*      of the input text which are identical to earlier input (within a
*      sliding window trailing behind the input currently being processed).
*
*      The most straightforward technique turns out to be the fastest for
*      most input files: try all possible matches and select the longest.
*      The key feature of this algorithm is that insertions into the string
*      dictionary are very simple and thus fast, and deletions are avoided
*      completely. Insertions are performed at each input character, whereas
*      string matches are performed only when the previous match ends. So it
*      is preferable to spend more time in matches to allow very fast string
*      insertions and avoid deletions. The matching algorithm for small
*      strings is inspired from that of Rabin & Karp. A brute force approach
*      is used to find longer strings when a small match has been found.
*      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
*      (by Leonid Broukhis).
*         A previous version of this file used a more sophisticated algorithm
*      (by Fiala and Greene) which is guaranteed to run in linear amortized
*      time, but has a larger average cost, uses more memory and is patented.
*      However the F&G algorithm may be faster for some highly redundant
*      files if the parameter max_chain_length (described below) is too large.
*
*  ACKNOWLEDGEMENTS
*
*      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
*      I found it in 'freeze' written by Leonid Broukhis.
*      Thanks to many people for bug reports and testing.
*
*  REFERENCES
*
*      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
*      Available in http://www.ietf.org/rfc/rfc1951.txt
*
*      A description of the Rabin and Karp algorithm is given in the book
*         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
*
*      Fiala,E.R., and Greene,D.H.
*         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
*
*/

/* @(#) $Id$ */

#include "deflate.h"

const char deflate_copyright[] =
  " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
/*
 If you use the zlib library in a product, an acknowledgment is welcome
 in the documentation of your product. If for some reason you cannot
 include such an acknowledgment, I would appreciate that you keep this
 copyright string in the executable of your product.
*/

/* ===========================================================================
*  Function prototypes.
*/
typedef enum {
   need_more,      /* block not completed, need more input or more output */
   block_done,     /* block flush performed */
   finish_started, /* finish started, need only more output at next deflate */
   finish_done     /* finish done, accept no more input or output */
} block_state;

typedef block_state (*compress_func) OF((deflate_state *s, int flush));
/* Compression function. Returns the block state after the call. */

local void fill_window    OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast   OF((deflate_state *s, int flush));
#ifndef FASTEST
local block_state deflate_slow   OF((deflate_state *s, int flush));
#endif
local block_state deflate_rle    OF((deflate_state *s, int flush));
local block_state deflate_huff   OF((deflate_state *s, int flush));
local void lm_init        OF((deflate_state *s));
local void putShortMSB    OF((deflate_state *s, uInt b));
local void flush_pending  OF((z_streamp strm));
local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
#ifdef ASMV
     void match_init OF((void)); /* asm code initialization */
     uInt longest_match  OF((deflate_state *s, IPos cur_match));
#else
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
#endif

#ifdef DEBUG
local  void check_match OF((deflate_state *s, IPos start, IPos match,
                           int length));
#endif

/* ===========================================================================
* Local data
*/

#define NIL 0
/* Tail of hash chains */

#ifndef TOO_FAR
#  define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */

/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
typedef struct config_s {
  ush good_length; /* reduce lazy search above this match length */
  ush max_lazy;    /* do not perform lazy search above this match length */
  ush nice_length; /* quit search above this match length */
  ush max_chain;
  compress_func func;
} config;

#ifdef FASTEST
local const config configuration_table[2] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
#else
local const config configuration_table[10] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
/* 2 */ {4,    5, 16,    8, deflate_fast},
/* 3 */ {4,    6, 32,   32, deflate_fast},

/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
/* 5 */ {8,   16, 32,   32, deflate_slow},
/* 6 */ {8,   16, 128, 128, deflate_slow},
/* 7 */ {8,   32, 128, 256, deflate_slow},
/* 8 */ {32, 128, 258, 1024, deflate_slow},
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
#endif

/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
* meaning.
*/

#define EQUAL 0
/* result of memcmp for equal strings */

#ifndef NO_DUMMY_DECL
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
#endif

/* ===========================================================================
* Update a hash value with the given input byte
* IN  assertion: all calls to to UPDATE_HASH are made with consecutive
*    input characters, so that a running hash key can be computed from the
*    previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)


/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* If this file is compiled with -DFASTEST, the compression level is forced
* to 1, and no hash chains are maintained.
* IN  assertion: all calls to to INSERT_STRING are made with consecutive
*    input characters and the first MIN_MATCH bytes of str are valid
*    (except for the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
  (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
   match_head = s->head[s->ins_h], \
   s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
  (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
   match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
   s->head[s->ins_h] = (Pos)(str))
#endif

/* ===========================================================================
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
#define CLEAR_HASH(s) \
   s->head[s->hash_size-1] = NIL; \
   zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));

/* ========================================================================= */
int ZEXPORT deflateInit_(strm, level, version, stream_size)
   z_streamp strm;
   int level;
   const char *version;
   int stream_size;
{
   return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
                        Z_DEFAULT_STRATEGY, version, stream_size);
   /* To do: ignore strm->next_in if we use it as window */
}

/* ========================================================================= */
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
                 version, stream_size)
   z_streamp strm;
   int  level;
   int  method;
   int  windowBits;
   int  memLevel;
   int  strategy;
   const char *version;
   int stream_size;
{
   deflate_state *s;
   int wrap = 1;
   static const char my_version[] = ZLIB_VERSION;

   ushf *overlay;
   /* We overlay pending_buf and d_buf+l_buf. This works since the average
    * output size for (length,distance) codes is <= 24 bits.
    */

   if (version == Z_NULL || version[0] != my_version[0] ||
       stream_size != sizeof(z_stream)) {
       return Z_VERSION_ERROR;
   }
   if (strm == Z_NULL) return Z_STREAM_ERROR;

   strm->msg = Z_NULL;
   if (strm->zalloc == (alloc_func)0) {
       strm->zalloc = zcalloc;
       strm->opaque = (voidpf)0;
   }
   if (strm->zfree == (free_func)0) strm->zfree = zcfree;

#ifdef FASTEST
   if (level != 0) level = 1;
#else
   if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif

   if (windowBits < 0) { /* suppress zlib wrapper */
       wrap = 0;
       windowBits = -windowBits;
   }
#ifdef GZIP
   else if (windowBits > 15) {
       wrap = 2;       /* write gzip wrapper instead */
       windowBits -= 16;
   }
#endif
   if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
       windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
       strategy < 0 || strategy > Z_FIXED) {
       return Z_STREAM_ERROR;
   }
   if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
   s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
   if (s == Z_NULL) return Z_MEM_ERROR;
   strm->state = (struct internal_state FAR *)s;
   s->strm = strm;

   s->wrap = wrap;
   s->gzhead = Z_NULL;
   s->w_bits = windowBits;
   s->w_size = 1 << s->w_bits;
   s->w_mask = s->w_size - 1;

   s->hash_bits = memLevel + 7;
   s->hash_size = 1 << s->hash_bits;
   s->hash_mask = s->hash_size - 1;
   s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);

   s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
   s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
   s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));

   s->high_water = 0;      /* nothing written to s->window yet */

   s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

   overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
   s->pending_buf = (uchf *) overlay;
   s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);

   if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
       s->pending_buf == Z_NULL) {
       s->status = FINISH_STATE;
       strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
       deflateEnd (strm);
       return Z_MEM_ERROR;
   }
   s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
   s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;

   s->level = level;
   s->strategy = strategy;
   s->method = (Byte)method;

   return deflateReset(strm);
}

/* ========================================================================= */
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
   z_streamp strm;
   const Bytef *dictionary;
   uInt  dictLength;
{
   deflate_state *s;
   uInt length = dictLength;
   uInt n;
   IPos hash_head = 0;

   if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
       strm->state->wrap == 2 ||
       (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
       return Z_STREAM_ERROR;

   s = strm->state;
   if (s->wrap)
       strm->adler = adler32(strm->adler, dictionary, dictLength);

   if (length < MIN_MATCH) return Z_OK;
   if (length > s->w_size) {
       length = s->w_size;
       dictionary += dictLength - length; /* use the tail of the dictionary */
   }
   zmemcpy(s->window, dictionary, length);
   s->strstart = length;
   s->block_start = (long)length;

   /* Insert all strings in the hash table (except for the last two bytes).
    * s->lookahead stays null, so s->ins_h will be recomputed at the next
    * call of fill_window.
    */
   s->ins_h = s->window[0];
   UPDATE_HASH(s, s->ins_h, s->window[1]);
   for (n = 0; n <= length - MIN_MATCH; n++) {
       INSERT_STRING(s, n, hash_head);
   }
   if (hash_head) hash_head = 0;  /* to make compiler happy */
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateReset (strm)
   z_streamp strm;
{
   deflate_state *s;

   if (strm == Z_NULL || strm->state == Z_NULL ||
       strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
       return Z_STREAM_ERROR;
   }

   strm->total_in = strm->total_out = 0;
   strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
   strm->data_type = Z_UNKNOWN;

   s = (deflate_state *)strm->state;
   s->pending = 0;
   s->pending_out = s->pending_buf;

   if (s->wrap < 0) {
       s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
   }
   s->status = s->wrap ? INIT_STATE : BUSY_STATE;
   strm->adler =
#ifdef GZIP
       s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
#endif
       adler32(0L, Z_NULL, 0);
   s->last_flush = Z_NO_FLUSH;

   _tr_init(s);
   lm_init(s);

   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateSetHeader (strm, head)
   z_streamp strm;
   gz_headerp head;
{
   if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   if (strm->state->wrap != 2) return Z_STREAM_ERROR;
   strm->state->gzhead = head;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePrime (strm, bits, value)
   z_streamp strm;
   int bits;
   int value;
{
   if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   strm->state->bi_valid = bits;
   strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateParams(strm, level, strategy)
   z_streamp strm;
   int level;
   int strategy;
{
   deflate_state *s;
   compress_func func;
   int err = Z_OK;

   if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   s = strm->state;

#ifdef FASTEST
   if (level != 0) level = 1;
#else
   if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif
   if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
       return Z_STREAM_ERROR;
   }
   func = configuration_table[s->level].func;

   if ((strategy != s->strategy || func != configuration_table[level].func) &&
       strm->total_in != 0) {
       /* Flush the last buffer: */
       err = deflate(strm, Z_BLOCK);
   }
   if (s->level != level) {
       s->level = level;
       s->max_lazy_match   = configuration_table[level].max_lazy;
       s->good_match       = configuration_table[level].good_length;
       s->nice_match       = configuration_table[level].nice_length;
       s->max_chain_length = configuration_table[level].max_chain;
   }
   s->strategy = strategy;
   return err;
}

/* ========================================================================= */
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
   z_streamp strm;
   int good_length;
   int max_lazy;
   int nice_length;
   int max_chain;
{
   deflate_state *s;

   if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   s = strm->state;
   s->good_match = good_length;
   s->max_lazy_match = max_lazy;
   s->nice_match = nice_length;
   s->max_chain_length = max_chain;
   return Z_OK;
}

/* =========================================================================
* For the default windowBits of 15 and memLevel of 8, this function returns
* a close to exact, as well as small, upper bound on the compressed size.
* They are coded as constants here for a reason--if the #define's are
* changed, then this function needs to be changed as well.  The return
* value for 15 and 8 only works for those exact settings.
*
* For any setting other than those defaults for windowBits and memLevel,
* the value returned is a conservative worst case for the maximum expansion
* resulting from using fixed blocks instead of stored blocks, which deflate
* can emit on compressed data for some combinations of the parameters.
*
* This function could be more sophisticated to provide closer upper bounds for
* every combination of windowBits and memLevel.  But even the conservative
* upper bound of about 14% expansion does not seem onerous for output buffer
* allocation.
*/
uLong ZEXPORT deflateBound(strm, sourceLen)
   z_streamp strm;
   uLong sourceLen;
{
   deflate_state *s;
   uLong complen, wraplen;
   Bytef *str;

   /* conservative upper bound for compressed data */
   complen = sourceLen +
             ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;

   /* if can't get parameters, return conservative bound plus zlib wrapper */
   if (strm == Z_NULL || strm->state == Z_NULL)
       return complen + 6;

   /* compute wrapper length */
   s = strm->state;
   switch (s->wrap) {
   case 0:                                 /* raw deflate */
       wraplen = 0;
       break;
   case 1:                                 /* zlib wrapper */
       wraplen = 6 + (s->strstart ? 4 : 0);
       break;
   case 2:                                 /* gzip wrapper */
       wraplen = 18;
       if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
           if (s->gzhead->extra != Z_NULL)
               wraplen += 2 + s->gzhead->extra_len;
           str = s->gzhead->name;
           if (str != Z_NULL)
               do {
                   wraplen++;
               } while (*str++);
           str = s->gzhead->comment;
           if (str != Z_NULL)
               do {
                   wraplen++;
               } while (*str++);
           if (s->gzhead->hcrc)
               wraplen += 2;
       }
       break;
   default:                                /* for compiler happiness */
       wraplen = 6;
   }

   /* if not default parameters, return conservative bound */
   if (s->w_bits != 15 || s->hash_bits != 8 + 7)
       return complen + wraplen;

   /* default settings: return tight bound for that case */
   return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
          (sourceLen >> 25) + 13 - 6 + wraplen;
}

/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
local void putShortMSB (s, b)
   deflate_state *s;
   uInt b;
{
   put_byte(s, (Byte)(b >> 8));
   put_byte(s, (Byte)(b & 0xff));
}

/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->next_out buffer and copying into it.
* (See also read_buf()).
*/
local void flush_pending(strm)
   z_streamp strm;
{
   unsigned len = strm->state->pending;

   if (len > strm->avail_out) len = strm->avail_out;
   if (len == 0) return;

   zmemcpy(strm->next_out, strm->state->pending_out, len);
   strm->next_out  += len;
   strm->state->pending_out  += len;
   strm->total_out += len;
   strm->avail_out  -= len;
   strm->state->pending -= len;
   if (strm->state->pending == 0) {
       strm->state->pending_out = strm->state->pending_buf;
   }
}

/* ========================================================================= */
int ZEXPORT deflate (strm, flush)
   z_streamp strm;
   int flush;
{
   int old_flush; /* value of flush param for previous deflate call */
   deflate_state *s;

   if (strm == Z_NULL || strm->state == Z_NULL ||
       flush > Z_BLOCK || flush < 0) {
       return Z_STREAM_ERROR;
   }
   s = strm->state;

   if (strm->next_out == Z_NULL ||
       (strm->next_in == Z_NULL && strm->avail_in != 0) ||
       (s->status == FINISH_STATE && flush != Z_FINISH)) {
       ERR_RETURN(strm, Z_STREAM_ERROR);
   }
   if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);

   s->strm = strm; /* just in case */
   old_flush = s->last_flush;
   s->last_flush = flush;

   /* Write the header */
   if (s->status == INIT_STATE) {
#ifdef GZIP
       if (s->wrap == 2) {
           strm->adler = crc32(0L, Z_NULL, 0);
           put_byte(s, 31);
           put_byte(s, 139);
           put_byte(s, 8);
           if (s->gzhead == Z_NULL) {
               put_byte(s, 0);
               put_byte(s, 0);
               put_byte(s, 0);
               put_byte(s, 0);
               put_byte(s, 0);
               put_byte(s, s->level == 9 ? 2 :
                           (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                            4 : 0));
               put_byte(s, OS_CODE);
               s->status = BUSY_STATE;
           }
           else {
               put_byte(s, (s->gzhead->text ? 1 : 0) +
                           (s->gzhead->hcrc ? 2 : 0) +
                           (s->gzhead->extra == Z_NULL ? 0 : 4) +
                           (s->gzhead->name == Z_NULL ? 0 : 8) +
                           (s->gzhead->comment == Z_NULL ? 0 : 16)
                       );
               put_byte(s, (Byte)(s->gzhead->time & 0xff));
               put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
               put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
               put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
               put_byte(s, s->level == 9 ? 2 :
                           (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                            4 : 0));
               put_byte(s, s->gzhead->os & 0xff);
               if (s->gzhead->extra != Z_NULL) {
                   put_byte(s, s->gzhead->extra_len & 0xff);
                   put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
               }
               if (s->gzhead->hcrc)
                   strm->adler = crc32(strm->adler, s->pending_buf,
                                       s->pending);
               s->gzindex = 0;
               s->status = EXTRA_STATE;
           }
       }
       else
#endif
       {
           uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
           uInt level_flags;

           if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
               level_flags = 0;
           else if (s->level < 6)
               level_flags = 1;
           else if (s->level == 6)
               level_flags = 2;
           else
               level_flags = 3;
           header |= (level_flags << 6);
           if (s->strstart != 0) header |= PRESET_DICT;
           header += 31 - (header % 31);

           s->status = BUSY_STATE;
           putShortMSB(s, header);

           /* Save the adler32 of the preset dictionary: */
           if (s->strstart != 0) {
               putShortMSB(s, (uInt)(strm->adler >> 16));
               putShortMSB(s, (uInt)(strm->adler & 0xffff));
           }
           strm->adler = adler32(0L, Z_NULL, 0);
       }
   }
#ifdef GZIP
   if (s->status == EXTRA_STATE) {
       if (s->gzhead->extra != Z_NULL) {
           uInt beg = s->pending;  /* start of bytes to update crc */

           while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
               if (s->pending == s->pending_buf_size) {
                   if (s->gzhead->hcrc && s->pending > beg)
                       strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                           s->pending - beg);
                   flush_pending(strm);
                   beg = s->pending;
                   if (s->pending == s->pending_buf_size)
                       break;
               }
               put_byte(s, s->gzhead->extra[s->gzindex]);
               s->gzindex++;
           }
           if (s->gzhead->hcrc && s->pending > beg)
               strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                   s->pending - beg);
           if (s->gzindex == s->gzhead->extra_len) {
               s->gzindex = 0;
               s->status = NAME_STATE;
           }
       }
       else
           s->status = NAME_STATE;
   }
   if (s->status == NAME_STATE) {
       if (s->gzhead->name != Z_NULL) {
           uInt beg = s->pending;  /* start of bytes to update crc */
           int val;

           do {
               if (s->pending == s->pending_buf_size) {
                   if (s->gzhead->hcrc && s->pending > beg)
                       strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                           s->pending - beg);
                   flush_pending(strm);
                   beg = s->pending;
                   if (s->pending == s->pending_buf_size) {
                       val = 1;
                       break;
                   }
               }
               val = s->gzhead->name[s->gzindex++];
               put_byte(s, val);
           } while (val != 0);
           if (s->gzhead->hcrc && s->pending > beg)
               strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                   s->pending - beg);
           if (val == 0) {
               s->gzindex = 0;
               s->status = COMMENT_STATE;
           }
       }
       else
           s->status = COMMENT_STATE;
   }
   if (s->status == COMMENT_STATE) {
       if (s->gzhead->comment != Z_NULL) {
           uInt beg = s->pending;  /* start of bytes to update crc */
           int val;

           do {
               if (s->pending == s->pending_buf_size) {
                   if (s->gzhead->hcrc && s->pending > beg)
                       strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                           s->pending - beg);
                   flush_pending(strm);
                   beg = s->pending;
                   if (s->pending == s->pending_buf_size) {
                       val = 1;
                       break;
                   }
               }
               val = s->gzhead->comment[s->gzindex++];
               put_byte(s, val);
           } while (val != 0);
           if (s->gzhead->hcrc && s->pending > beg)
               strm->adler = crc32(strm->adler, s->pending_buf + beg,
                                   s->pending - beg);
           if (val == 0)
               s->status = HCRC_STATE;
       }
       else
           s->status = HCRC_STATE;
   }
   if (s->status == HCRC_STATE) {
       if (s->gzhead->hcrc) {
           if (s->pending + 2 > s->pending_buf_size)
               flush_pending(strm);
           if (s->pending + 2 <= s->pending_buf_size) {
               put_byte(s, (Byte)(strm->adler & 0xff));
               put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
               strm->adler = crc32(0L, Z_NULL, 0);
               s->status = BUSY_STATE;
           }
       }
       else
           s->status = BUSY_STATE;
   }
#endif

   /* Flush as much pending output as possible */
   if (s->pending != 0) {
       flush_pending(strm);
       if (strm->avail_out == 0) {
           /* Since avail_out is 0, deflate will be called again with
            * more output space, but possibly with both pending and
            * avail_in equal to zero. There won't be anything to do,
            * but this is not an error situation so make sure we
            * return OK instead of BUF_ERROR at next call of deflate:
            */
           s->last_flush = -1;
           return Z_OK;
       }

   /* Make sure there is something to do and avoid duplicate consecutive
    * flushes. For repeated and useless calls with Z_FINISH, we keep
    * returning Z_STREAM_END instead of Z_BUF_ERROR.
    */
   } else if (strm->avail_in == 0 && flush <= old_flush &&
              flush != Z_FINISH) {
       ERR_RETURN(strm, Z_BUF_ERROR);
   }

   /* User must not provide more input after the first FINISH: */
   if (s->status == FINISH_STATE && strm->avail_in != 0) {
       ERR_RETURN(strm, Z_BUF_ERROR);
   }

   /* Start a new block or continue the current one.
    */
   if (strm->avail_in != 0 || s->lookahead != 0 ||
       (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
       block_state bstate;

       bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
                   (s->strategy == Z_RLE ? deflate_rle(s, flush) :
                       (*(configuration_table[s->level].func))(s, flush));

       if (bstate == finish_started || bstate == finish_done) {
           s->status = FINISH_STATE;
       }
       if (bstate == need_more || bstate == finish_started) {
           if (strm->avail_out == 0) {
               s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
           }
           return Z_OK;
           /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
            * of deflate should use the same flush parameter to make sure
            * that the flush is complete. So we don't have to output an
            * empty block here, this will be done at next call. This also
            * ensures that for a very small output buffer, we emit at most
            * one empty block.
            */
       }
       if (bstate == block_done) {
           if (flush == Z_PARTIAL_FLUSH) {
               _tr_align(s);
           } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
               _tr_stored_block(s, (char*)0, 0L, 0);
               /* For a full flush, this empty block will be recognized
                * as a special marker by inflate_sync().
                */
               if (flush == Z_FULL_FLUSH) {
                   CLEAR_HASH(s);             /* forget history */
                   if (s->lookahead == 0) {
                       s->strstart = 0;
                       s->block_start = 0L;
                   }
               }
           }
           flush_pending(strm);
           if (strm->avail_out == 0) {
             s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
             return Z_OK;
           }
       }
   }
   Assert(strm->avail_out > 0, "bug2");

   if (flush != Z_FINISH) return Z_OK;
   if (s->wrap <= 0) return Z_STREAM_END;

   /* Write the trailer */
#ifdef GZIP
   if (s->wrap == 2) {
       put_byte(s, (Byte)(strm->adler & 0xff));
       put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
       put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
       put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
       put_byte(s, (Byte)(strm->total_in & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
   }
   else
#endif
   {
       putShortMSB(s, (uInt)(strm->adler >> 16));
       putShortMSB(s, (uInt)(strm->adler & 0xffff));
   }
   flush_pending(strm);
   /* If avail_out is zero, the application will call deflate again
    * to flush the rest.
    */
   if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
   return s->pending != 0 ? Z_OK : Z_STREAM_END;
}

/* ========================================================================= */
int ZEXPORT deflateEnd (strm)
   z_streamp strm;
{
   int status;

   if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;

   status = strm->state->status;
   if (status != INIT_STATE &&
       status != EXTRA_STATE &&
       status != NAME_STATE &&
       status != COMMENT_STATE &&
       status != HCRC_STATE &&
       status != BUSY_STATE &&
       status != FINISH_STATE) {
     return Z_STREAM_ERROR;
   }

   /* Deallocate in reverse order of allocations: */
   TRY_FREE(strm, strm->state->pending_buf);
   TRY_FREE(strm, strm->state->head);
   TRY_FREE(strm, strm->state->prev);
   TRY_FREE(strm, strm->state->window);

   ZFREE(strm, strm->state);
   strm->state = Z_NULL;

   return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
}

/* =========================================================================
* Copy the source state to the destination state.
* To simplify the source, this is not supported for 16-bit MSDOS (which
* doesn't have enough memory anyway to duplicate compression states).
*/
int ZEXPORT deflateCopy (dest, source)
   z_streamp dest;
   z_streamp source;
{
#ifdef MAXSEG_64K
   return Z_STREAM_ERROR;
#else
   deflate_state *ds;
   deflate_state *ss;
   ushf *overlay;


   if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
       return Z_STREAM_ERROR;
   }

   ss = source->state;

   zmemcpy(dest, source, sizeof(z_stream));

   ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   if (ds == Z_NULL) return Z_MEM_ERROR;
   dest->state = (struct internal_state FAR *) ds;
   zmemcpy(ds, ss, sizeof(deflate_state));
   ds->strm = dest;

   ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
   ds->pending_buf = (uchf *) overlay;

   if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
       ds->pending_buf == Z_NULL) {
       deflateEnd (dest);
       return Z_MEM_ERROR;
   }
   /* following zmemcpy do not work for 16-bit MSDOS */
   zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
   zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
   zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);

   ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
   ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;

   ds->l_desc.dyn_tree = ds->dyn_ltree;
   ds->d_desc.dyn_tree = ds->dyn_dtree;
   ds->bl_desc.dyn_tree = ds->bl_tree;

   return Z_OK;
#endif /* MAXSEG_64K */
}

/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read.  All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local int read_buf(strm, buf, size)
   z_streamp strm;
   Bytef *buf;
   unsigned size;
{
   unsigned len = strm->avail_in;

   if (len > size) len = size;
   if (len == 0) return 0;

   strm->avail_in  -= len;

   if (strm->state->wrap == 1) {
       strm->adler = adler32(strm->adler, strm->next_in, len);
   }
#ifdef GZIP
   else if (strm->state->wrap == 2) {
       strm->adler = crc32(strm->adler, strm->next_in, len);
   }
#endif
   zmemcpy(buf, strm->next_in, len);
   strm->next_in  += len;
   strm->total_in += len;

   return (int)len;
}

/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local void lm_init (s)
   deflate_state *s;
{
   s->window_size = (ulg)2L*s->w_size;

   CLEAR_HASH(s);

   /* Set the default configuration parameters:
    */
   s->max_lazy_match   = configuration_table[s->level].max_lazy;
   s->good_match       = configuration_table[s->level].good_length;
   s->nice_match       = configuration_table[s->level].nice_length;
   s->max_chain_length = configuration_table[s->level].max_chain;

   s->strstart = 0;
   s->block_start = 0L;
   s->lookahead = 0;
   s->match_length = s->prev_length = MIN_MATCH-1;
   s->match_available = 0;
   s->ins_h = 0;
#ifndef FASTEST
#ifdef ASMV
   match_init(); /* initialize the asm code */
#endif
#endif
}

#ifndef FASTEST
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
*   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
* match.S. The code will be functionally equivalent.
*/
local uInt longest_match(s, cur_match)
   deflate_state *s;
   IPos cur_match;                             /* current match */
{
   unsigned chain_length = s->max_chain_length;/* max hash chain length */
   register Bytef *scan = s->window + s->strstart; /* current string */
   register Bytef *match;                       /* matched string */
   register int len;                           /* length of current match */
   int best_len = s->prev_length;              /* best match length so far */
   int nice_match = s->nice_match;             /* stop if match long enough */
   IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
       s->strstart - (IPos)MAX_DIST(s) : NIL;
   /* Stop when cur_match becomes <= limit. To simplify the code,
    * we prevent matches with the string of window index 0.
    */
   Posf *prev = s->prev;
   uInt wmask = s->w_mask;

#ifdef UNALIGNED_OK
   /* Compare two bytes at a time. Note: this is not always beneficial.
    * Try with and without -DUNALIGNED_OK to check.
    */
   register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   register ush scan_start = *(ushf*)scan;
   register ush scan_end   = *(ushf*)(scan+best_len-1);
#else
   register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   register Byte scan_end1  = scan[best_len-1];
   register Byte scan_end   = scan[best_len];
#endif

   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
    * It is easy to get rid of this optimization if necessary.
    */
   Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

   /* Do not waste too much time if we already have a good match: */
   if (s->prev_length >= s->good_match) {
       chain_length >>= 2;
   }
   /* Do not look for matches beyond the end of the input. This is necessary
    * to make deflate deterministic.
    */
   if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;

   Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

   do {
       Assert(cur_match < s->strstart, "no future");
       match = s->window + cur_match;

       /* Skip to next match if the match length cannot increase
        * or if the match length is less than 2.  Note that the checks below
        * for insufficient lookahead only occur occasionally for performance
        * reasons.  Therefore uninitialized memory will be accessed, and
        * conditional jumps will be made that depend on those values.
        * However the length of the match is limited to the lookahead, so
        * the output of deflate is not affected by the uninitialized values.
        */
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
       /* This code assumes sizeof(unsigned short) == 2. Do not use
        * UNALIGNED_OK if your compiler uses a different size.
        */
       if (*(ushf*)(match+best_len-1) != scan_end ||
           *(ushf*)match != scan_start) continue;

       /* It is not necessary to compare scan[2] and match[2] since they are
        * always equal when the other bytes match, given that the hash keys
        * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
        * strstart+3, +5, ... up to strstart+257. We check for insufficient
        * lookahead only every 4th comparison; the 128th check will be made
        * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
        * necessary to put more guard bytes at the end of the window, or
        * to check more often for insufficient lookahead.
        */
       Assert(scan[2] == match[2], "scan[2]?");
       scan++, match++;
       do {
       } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                scan < strend);
       /* The funny "do {}" generates better code on most compilers */

       /* Here, scan <= window+strstart+257 */
       Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
       if (*scan == *match) scan++;

       len = (MAX_MATCH - 1) - (int)(strend-scan);
       scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */

       if (match[best_len]   != scan_end  ||
           match[best_len-1] != scan_end1 ||
           *match            != *scan     ||
           *++match          != scan[1])      continue;

       /* The check at best_len-1 can be removed because it will be made
        * again later. (This heuristic is not always a win.)
        * It is not necessary to compare scan[2] and match[2] since they
        * are always equal when the other bytes match, given that
        * the hash keys are equal and that HASH_BITS >= 8.
        */
       scan += 2, match++;
       Assert(*scan == *match, "match[2]?");

       /* We check for insufficient lookahead only every 8th comparison;
        * the 256th check will be made at strstart+258.
        */
       do {
       } while (*++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                scan < strend);

       Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

       len = MAX_MATCH - (int)(strend - scan);
       scan = strend - MAX_MATCH;

#endif /* UNALIGNED_OK */

       if (len > best_len) {
           s->match_start = cur_match;
           best_len = len;
           if (len >= nice_match) break;
#ifdef UNALIGNED_OK
           scan_end = *(ushf*)(scan+best_len-1);
#else
           scan_end1  = scan[best_len-1];
           scan_end   = scan[best_len];
#endif
       }
   } while ((cur_match = prev[cur_match & wmask]) > limit
            && --chain_length != 0);

   if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   return s->lookahead;
}
#endif /* ASMV */

#else /* FASTEST */

/* ---------------------------------------------------------------------------
* Optimized version for FASTEST only
*/
local uInt longest_match(s, cur_match)
   deflate_state *s;
   IPos cur_match;                             /* current match */
{
   register Bytef *scan = s->window + s->strstart; /* current string */
   register Bytef *match;                       /* matched string */
   register int len;                           /* length of current match */
   register Bytef *strend = s->window + s->strstart + MAX_MATCH;

   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
    * It is easy to get rid of this optimization if necessary.
    */
   Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

   Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

   Assert(cur_match < s->strstart, "no future");

   match = s->window + cur_match;

   /* Return failure if the match length is less than 2:
    */
   if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;

   /* The check at best_len-1 can be removed because it will be made
    * again later. (This heuristic is not always a win.)
    * It is not necessary to compare scan[2] and match[2] since they
    * are always equal when the other bytes match, given that
    * the hash keys are equal and that HASH_BITS >= 8.
    */
   scan += 2, match += 2;
   Assert(*scan == *match, "match[2]?");

   /* We check for insufficient lookahead only every 8th comparison;
    * the 256th check will be made at strstart+258.
    */
   do {
   } while (*++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            scan < strend);

   Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

   len = MAX_MATCH - (int)(strend - scan);

   if (len < MIN_MATCH) return MIN_MATCH - 1;

   s->match_start = cur_match;
   return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
}

#endif /* FASTEST */

#ifdef DEBUG
/* ===========================================================================
* Check that the match at match_start is indeed a match.
*/
local void check_match(s, start, match, length)
   deflate_state *s;
   IPos start, match;
   int length;
{
   /* check that the match is indeed a match */
   if (zmemcmp(s->window + match,
               s->window + start, length) != EQUAL) {
       fprintf(stderr, " start %u, match %u, length %d\n",
               start, match, length);
       do {
           fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
       } while (--length != 0);
       z_error("invalid match");
   }
   if (z_verbose > 1) {
       fprintf(stderr,"\\[%d,%d]", start-match, length);
       do { putc(s->window[start++], stderr); } while (--length != 0);
   }
}
#else
#  define check_match(s, start, match, length)
#endif /* DEBUG */

/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
*    At least one byte has been read, or avail_in == 0; reads are
*    performed for at least two bytes (required for the zip translate_eol
*    option -- not supported here).
*/
local void fill_window(s)
   deflate_state *s;
{
   register unsigned n, m;
   register Posf *p;
   unsigned more;    /* Amount of free space at the end of the window. */
   uInt wsize = s->w_size;

   do {
       more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);

       /* Deal with !@#$% 64K limit: */
       if (sizeof(int) <= 2) {
           if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
               more = wsize;

           } else if (more == (unsigned)(-1)) {
               /* Very unlikely, but possible on 16 bit machine if
                * strstart == 0 && lookahead == 1 (input done a byte at time)
                */
               more--;
           }
       }

       /* If the window is almost full and there is insufficient lookahead,
        * move the upper half to the lower one to make room in the upper half.
        */
       if (s->strstart >= wsize+MAX_DIST(s)) {

           zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
           s->match_start -= wsize;
           s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
           s->block_start -= (long) wsize;

           /* Slide the hash table (could be avoided with 32 bit values
              at the expense of memory usage). We slide even when level == 0
              to keep the hash table consistent if we switch back to level > 0
              later. (Using level 0 permanently is not an optimal usage of
              zlib, so we don't care about this pathological case.)
            */
           n = s->hash_size;
           p = &s->head[n];
           do {
               m = *--p;
               *p = (Pos)(m >= wsize ? m-wsize : NIL);
           } while (--n);

           n = wsize;
#ifndef FASTEST
           p = &s->prev[n];
           do {
               m = *--p;
               *p = (Pos)(m >= wsize ? m-wsize : NIL);
               /* If n is not on any hash chain, prev[n] is garbage but
                * its value will never be used.
                */
           } while (--n);
#endif
           more += wsize;
       }
       if (s->strm->avail_in == 0) return;

       /* If there was no sliding:
        *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
        *    more == window_size - lookahead - strstart
        * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
        * => more >= window_size - 2*WSIZE + 2
        * In the BIG_MEM or MMAP case (not yet supported),
        *   window_size == input_size + MIN_LOOKAHEAD  &&
        *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
        * Otherwise, window_size == 2*WSIZE so more >= 2.
        * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
        */
       Assert(more >= 2, "more < 2");

       n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
       s->lookahead += n;

       /* Initialize the hash value now that we have some input: */
       if (s->lookahead >= MIN_MATCH) {
           s->ins_h = s->window[s->strstart];
           UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
           Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
       }
       /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
        * but this is not important since only literal bytes will be emitted.
        */

   } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);

   /* If the WIN_INIT bytes after the end of the current data have never been
    * written, then zero those bytes in order to avoid memory check reports of
    * the use of uninitialized (or uninitialised as Julian writes) bytes by
    * the longest match routines.  Update the high water mark for the next
    * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
    * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
    */
   if (s->high_water < s->window_size) {
       ulg curr = s->strstart + (ulg)(s->lookahead);
       ulg init;

       if (s->high_water < curr) {
           /* Previous high water mark below current data -- zero WIN_INIT
            * bytes or up to end of window, whichever is less.
            */
           init = s->window_size - curr;
           if (init > WIN_INIT)
               init = WIN_INIT;
           zmemzero(s->window + curr, (unsigned)init);
           s->high_water = curr + init;
       }
       else if (s->high_water < (ulg)curr + WIN_INIT) {
           /* High water mark at or above current data, but below current data
            * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
            * to end of window, whichever is less.
            */
           init = (ulg)curr + WIN_INIT - s->high_water;
           if (init > s->window_size - s->high_water)
               init = s->window_size - s->high_water;
           zmemzero(s->window + s->high_water, (unsigned)init);
           s->high_water += init;
       }
   }
}

/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK_ONLY(s, last) { \
  _tr_flush_block(s, (s->block_start >= 0L ? \
                  (charf *)&s->window[(unsigned)s->block_start] : \
                  (charf *)Z_NULL), \
               (ulg)((long)s->strstart - s->block_start), \
               (last)); \
  s->block_start = s->strstart; \
  flush_pending(s->strm); \
  Tracev((stderr,"[FLUSH]")); \
}

/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, last) { \
  FLUSH_BLOCK_ONLY(s, last); \
  if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
}

/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
local block_state deflate_stored(s, flush)
   deflate_state *s;
   int flush;
{
   /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
    * to pending_buf_size, and each stored block has a 5 byte header:
    */
   ulg max_block_size = 0xffff;
   ulg max_start;

   if (max_block_size > s->pending_buf_size - 5) {
       max_block_size = s->pending_buf_size - 5;
   }

   /* Copy as much as possible from input to output: */
   for (;;) {
       /* Fill the window as much as possible: */
       if (s->lookahead <= 1) {

           Assert(s->strstart < s->w_size+MAX_DIST(s) ||
                  s->block_start >= (long)s->w_size, "slide too late");

           fill_window(s);
           if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;

           if (s->lookahead == 0) break; /* flush the current block */
       }
       Assert(s->block_start >= 0L, "block gone");

       s->strstart += s->lookahead;
       s->lookahead = 0;

       /* Emit a stored block if pending_buf will be full: */
       max_start = s->block_start + max_block_size;
       if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
           /* strstart == 0 is possible when wraparound on 16-bit machine */
           s->lookahead = (uInt)(s->strstart - max_start);
           s->strstart = (uInt)max_start;
           FLUSH_BLOCK(s, 0);
       }
       /* Flush if we may have to slide, otherwise block_start may become
        * negative and the data will be gone:
        */
       if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
           FLUSH_BLOCK(s, 0);
       }
   }
   FLUSH_BLOCK(s, flush == Z_FINISH);
   return flush == Z_FINISH ? finish_done : block_done;
}

/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
local block_state deflate_fast(s, flush)
   deflate_state *s;
   int flush;
{
   IPos hash_head;       /* head of the hash chain */
   int bflush;           /* set if current block must be flushed */

   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the next match, plus MIN_MATCH bytes to insert the
        * string following the next match.
        */
       if (s->lookahead < MIN_LOOKAHEAD) {
           fill_window(s);
           if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* Insert the string window[strstart .. strstart+2] in the
        * dictionary, and set hash_head to the head of the hash chain:
        */
       hash_head = NIL;
       if (s->lookahead >= MIN_MATCH) {
           INSERT_STRING(s, s->strstart, hash_head);
       }

       /* Find the longest match, discarding those <= prev_length.
        * At this point we have always match_length < MIN_MATCH
        */
       if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
           /* To simplify the code, we prevent matches with the string
            * of window index 0 (in particular we have to avoid a match
            * of the string with itself at the start of the input file).
            */
           s->match_length = longest_match (s, hash_head);
           /* longest_match() sets match_start */
       }
       if (s->match_length >= MIN_MATCH) {
           check_match(s, s->strstart, s->match_start, s->match_length);

           _tr_tally_dist(s, s->strstart - s->match_start,
                          s->match_length - MIN_MATCH, bflush);

           s->lookahead -= s->match_length;

           /* Insert new strings in the hash table only if the match length
            * is not too large. This saves time but degrades compression.
            */
#ifndef FASTEST
           if (s->match_length <= s->max_insert_length &&
               s->lookahead >= MIN_MATCH) {
               s->match_length--; /* string at strstart already in table */
               do {
                   s->strstart++;
                   INSERT_STRING(s, s->strstart, hash_head);
                   /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                    * always MIN_MATCH bytes ahead.
                    */
               } while (--s->match_length != 0);
               s->strstart++;
           } else
#endif
           {
               s->strstart += s->match_length;
               s->match_length = 0;
               s->ins_h = s->window[s->strstart];
               UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
               Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
               /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                * matter since it will be recomputed at next deflate call.
                */
           }
       } else {
           /* No match, output a literal byte */
           Tracevv((stderr,"%c", s->window[s->strstart]));
           _tr_tally_lit (s, s->window[s->strstart], bflush);
           s->lookahead--;
           s->strstart++;
       }
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   FLUSH_BLOCK(s, flush == Z_FINISH);
   return flush == Z_FINISH ? finish_done : block_done;
}

#ifndef FASTEST
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
local block_state deflate_slow(s, flush)
   deflate_state *s;
   int flush;
{
   IPos hash_head;          /* head of hash chain */
   int bflush;              /* set if current block must be flushed */

   /* Process the input block. */
   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the next match, plus MIN_MATCH bytes to insert the
        * string following the next match.
        */
       if (s->lookahead < MIN_LOOKAHEAD) {
           fill_window(s);
           if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* Insert the string window[strstart .. strstart+2] in the
        * dictionary, and set hash_head to the head of the hash chain:
        */
       hash_head = NIL;
       if (s->lookahead >= MIN_MATCH) {
           INSERT_STRING(s, s->strstart, hash_head);
       }

       /* Find the longest match, discarding those <= prev_length.
        */
       s->prev_length = s->match_length, s->prev_match = s->match_start;
       s->match_length = MIN_MATCH-1;

       if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
           s->strstart - hash_head <= MAX_DIST(s)) {
           /* To simplify the code, we prevent matches with the string
            * of window index 0 (in particular we have to avoid a match
            * of the string with itself at the start of the input file).
            */
           s->match_length = longest_match (s, hash_head);
           /* longest_match() sets match_start */

           if (s->match_length <= 5 && (s->strategy == Z_FILTERED
#if TOO_FAR <= 32767
               || (s->match_length == MIN_MATCH &&
                   s->strstart - s->match_start > TOO_FAR)
#endif
               )) {

               /* If prev_match is also MIN_MATCH, match_start is garbage
                * but we will ignore the current match anyway.
                */
               s->match_length = MIN_MATCH-1;
           }
       }
       /* If there was a match at the previous step and the current
        * match is not better, output the previous match:
        */
       if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
           uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
           /* Do not insert strings in hash table beyond this. */

           check_match(s, s->strstart-1, s->prev_match, s->prev_length);

           _tr_tally_dist(s, s->strstart -1 - s->prev_match,
                          s->prev_length - MIN_MATCH, bflush);

           /* Insert in hash table all strings up to the end of the match.
            * strstart-1 and strstart are already inserted. If there is not
            * enough lookahead, the last two strings are not inserted in
            * the hash table.
            */
           s->lookahead -= s->prev_length-1;
           s->prev_length -= 2;
           do {
               if (++s->strstart <= max_insert) {
                   INSERT_STRING(s, s->strstart, hash_head);
               }
           } while (--s->prev_length != 0);
           s->match_available = 0;
           s->match_length = MIN_MATCH-1;
           s->strstart++;

           if (bflush) FLUSH_BLOCK(s, 0);

       } else if (s->match_available) {
           /* If there was no match at the previous position, output a
            * single literal. If there was a match but the current match
            * is longer, truncate the previous match to a single literal.
            */
           Tracevv((stderr,"%c", s->window[s->strstart-1]));
           _tr_tally_lit(s, s->window[s->strstart-1], bflush);
           if (bflush) {
               FLUSH_BLOCK_ONLY(s, 0);
           }
           s->strstart++;
           s->lookahead--;
           if (s->strm->avail_out == 0) return need_more;
       } else {
           /* There is no previous match to compare with, wait for
            * the next step to decide.
            */
           s->match_available = 1;
           s->strstart++;
           s->lookahead--;
       }
   }
   Assert (flush != Z_NO_FLUSH, "no flush?");
   if (s->match_available) {
       Tracevv((stderr,"%c", s->window[s->strstart-1]));
       _tr_tally_lit(s, s->window[s->strstart-1], bflush);
       s->match_available = 0;
   }
   FLUSH_BLOCK(s, flush == Z_FINISH);
   return flush == Z_FINISH ? finish_done : block_done;
}
#endif /* FASTEST */

/* ===========================================================================
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
* one.  Do not maintain a hash table.  (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
local block_state deflate_rle(s, flush)
   deflate_state *s;
   int flush;
{
   int bflush;             /* set if current block must be flushed */
   uInt prev;              /* byte at distance one to match */
   Bytef *scan, *strend;   /* scan goes up to strend for length of run */

   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the longest encodable run.
        */
       if (s->lookahead < MAX_MATCH) {
           fill_window(s);
           if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* See how many times the previous byte repeats */
       s->match_length = 0;
       if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
           scan = s->window + s->strstart - 1;
           prev = *scan;
           if (prev == *++scan && prev == *++scan && prev == *++scan) {
               strend = s->window + s->strstart + MAX_MATCH;
               do {
               } while (prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        scan < strend);
               s->match_length = MAX_MATCH - (int)(strend - scan);
               if (s->match_length > s->lookahead)
                   s->match_length = s->lookahead;
           }
       }

       /* Emit match if have run of MIN_MATCH or longer, else emit literal */
       if (s->match_length >= MIN_MATCH) {
           check_match(s, s->strstart, s->strstart - 1, s->match_length);

           _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);

           s->lookahead -= s->match_length;
           s->strstart += s->match_length;
           s->match_length = 0;
       } else {
           /* No match, output a literal byte */
           Tracevv((stderr,"%c", s->window[s->strstart]));
           _tr_tally_lit (s, s->window[s->strstart], bflush);
           s->lookahead--;
           s->strstart++;
       }
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   FLUSH_BLOCK(s, flush == Z_FINISH);
   return flush == Z_FINISH ? finish_done : block_done;
}

/* ===========================================================================
* For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
* (It will be regenerated if this run of deflate switches away from Huffman.)
*/
local block_state deflate_huff(s, flush)
   deflate_state *s;
   int flush;
{
   int bflush;             /* set if current block must be flushed */

   for (;;) {
       /* Make sure that we have a literal to write. */
       if (s->lookahead == 0) {
           fill_window(s);
           if (s->lookahead == 0) {
               if (flush == Z_NO_FLUSH)
                   return need_more;
               break;      /* flush the current block */
           }
       }

       /* Output a literal byte */
       s->match_length = 0;
       Tracevv((stderr,"%c", s->window[s->strstart]));
       _tr_tally_lit (s, s->window[s->strstart], bflush);
       s->lookahead--;
       s->strstart++;
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   FLUSH_BLOCK(s, flush == Z_FINISH);
   return flush == Z_FINISH ? finish_done : block_done;
}