%\iffalse
%<*copyright>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Acroflex.sty package,                                %%
%% Copyright (C) 2008 -- 2016  D. P. Story              %%
%%   [email protected]                                %%
%%                                                      %%
%% This program can redistributed and/or modified under %%
%% the terms of the LaTeX Project Public License        %%
%% Distributed from CTAN archives in directory          %%
%% macros/latex/base/lppl.txt; either version 1 of the  %%
%% License, or (at your option) any later version.      %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%</copyright>
%<package>\NeedsTeXFormat{LaTeX2e}[1997/12/01]
%<package>\ProvidesPackage{acroflex}
%<package> [2020/08/07 v1.7 AcroFLeX: AcroTeX and Adobe Flex (dps)]
%<*driver>
\documentclass{ltxdoc}
\usepackage[colorlinks,hyperindex]{hyperref}
\begin{document}
\def\AcroFLeX{AcroF\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}
 \GetFileInfo{acroflex.sty}
 \title{%
   \texorpdfstring
   {\AcroFLeX: Merging {Acro\negthinspace\TeX} and FLEX}
   {AcroFLeX: Merging AcroTeX and FLEX}}
 \author{D. P. Story\\
   Email: \texttt{[email protected]}}
 \date{processed \today}
 \maketitle
 \tableofcontents
 \let\Email\texttt
 \DocInput{acroflex.dtx}
 \PrintIndex
\end{document}
%</driver>
% \fi
% \MakeShortVerb{|}
% \StopEventually{}
%
% \DoNotIndex{\def,\edef,\gdef,\xdef,\global,\long,\let}
% \DoNotIndex{\expandafter,\string,\the,\ifx,\else,\fi}
% \DoNotIndex{\csname,\endcsname,\relax,\begingroup,\endgroup}
% \DoNotIndex{\DeclareTextCommand,\DeclareTextCompositeCommand}
% \DoNotIndex{\space,\@empty,\special}
%
%    \begin{macrocode}
%<*package>
%    \end{macrocode}
%
% \section{Introduction}
%
% \changes{v1.7}{2020/08/07}{Package author declares this package is obsolete as of December 2020,
% this is the month Adobe withdraws support for Flash Player (FLV,SWF, etc).}
%
% The word \textbf{\AcroFLeX} is meant to convey a merging of two computer technologies:
% \begin{itemize}
% \item \textbf{Acro}: connotes both \textbf{Adobe Acrobat} (\textbf{Adobe Reader})
%  and \textbf{{Acro\negthinspace\TeX}} (as in the
% \textbf{{Acro\negthinspace\TeX} eDucation Bundle} or, just \textbf{AeB}).
% \item \textbf{F\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}: connotes
%       \textbf{Adobe FLEX 3}. FLEX 3 is used to create SWF files to interact with the user.
%       In the case of graphing, plotting information is passed from Acrobat, via JavaScript,
%       to the Flash widget. ActionScript receives the data, plots the points, and
%       connects them with a smooth curve or a straight line segment.
% \end{itemize}
% Acrobat 9 Pro introduces the rich media annotation which plays FLV movies
% and SWF files natively. Acrobat also provides a scripting bridge
% between JavaScript for Acrobat, and ActionScript, the scripting
% language of Flash player. This bridge enables the PDF and the
% Flash widget, embedded in the rich media annotation, to communicate. The scripting bridge
% opens up wonderful opportunities for application to the education
% sector. The graphing of {\AcroFLeX} is one such application of the new
% PDF-Flash connection to education.
%
% \textbf{{\AcroFLeX}} uses the commercial product Adobe FLEX Builder~3 and
% FLEX~3 SDK to produce Flash widgets, and the AeB
% to create PDF documents with appropriate JavaScript to communicate
% with the Flash widget. FLEX Builder~3 is currently free for students
% and educators, the FLEX 3 SDK is free to all.
%
% This style file defines some basic controls for
% \textbf{{\AcroFLeX} Graphing} for controlling graphical SWF files
% for graphing.
%
% These commands are general {\LaTeX} commands, that require no special driver, so
% they can be used by, for example, pdftex; however, we use SWF files to produce
% the graphing screen with the built-in ActionScript to communicate with the PDF.
% For this, you will need Acrobat 9 Pro. In that case, you might as well use the
% Acrobat Distiller to produce your PDF, but it is not necessary.
%
% \medskip\noindent
% Let's begin with a declaration of the {\AcroFLeX} logo.
%    \begin{macrocode}
\RequirePackage{rmannot}[2016/02/01]
%    \end{macrocode}
%\changes{v1.6}{2015/10/13}{Save catcodes of subscript and superscript, both
% of these are used in ordinary characters in the file.}
% Change catcodes of subscript and superscript to other.
%    \begin{macrocode}
\edef\af@subscriptCat{\the\catcode`\_}
\edef\af@superscriptCat{\the\catcode`\^}
\def\af@restoreCats{%
   \catcode`\_=\af@subscriptCat
   \catcode`\^=\af@superscriptCat
}
\catcode`\_=12\relax \catcode`\^=12\relax
\def\AcroFLeX{%
   AcroF\kern-.1667em\lower.5ex\hbox{L}\kern-.3eme\kern-.125emX\@}
%    \end{macrocode}
%    \begin{macro}{\pathToAcroFlex}
% Set the path to {\AcroFLeX} widget, \texttt{AcroFlex.swf}, that actually does the
% graphing.
%    \begin{macrocode}
\newcommand{\pathToAcroFlex}[1]{\def\af@pathToAcroFlex{#1}%
   \ifx\af@pathToAcroFlex\@empty
   \PackageError{acroflex}{%
       You must specify a full path to AcroFlex.swf}{}\else
   \saveNamedPath{acroflexWidget}{\af@pathToAcroFlex/AcroFlex.swf}\fi
}
\def\af@pathToAcroFlex{}
\@onlypreamble{\pathToAcroFlex}
%    \end{macrocode}
%    \end{macro}
% \paragraph*{Define package options.}
%    \begin{macro}{lang}
% We offer up a single package option, \texttt{lang}. The only languages supported
% at this time are \texttt{english} and \texttt{german}. Additional languages may be supported in the
% future.
%    \begin{macrocode}
\define@choicekey*+{acroflex.sty}{lang}[\val\nr]{english,german}
{%
   \ifcase\nr\relax
       \def\af@lang@type{afcustom_us.def}
   \or
       \def\af@lang@type{afcustom_de.def}
   \else
       \def\af@lang@type{afcustom.def}
   \fi
}{\PackageWarning{acroflex}{Bad choice for lang, permissible values
are english and german. No lang key is equivalent to english. Try again}}
\def\af@lang@type{afcustom.def}
%    \end{macrocode}
%    \end{macro}
% \paragraph*{Process the options.}
% We process our meager number of options here.
%    \begin{macrocode}
\ProcessOptionsX
%    \end{macrocode}
% \paragraph*{Input Configuration File.} At this point, we input the configuration file. The
% major entry, and probably the only entry in this file is the \cs{pathToAcroFlex}. The file
% should contain a line of code like this one:
%\begin{verbatim}
%   \pathToAcroFlex{c:/acrotex/aebpro/acroflex/swf}
%\end{verbatim}
%    \begin{macrocode}
\InputIfFileExists{acroflex.cfg}{}{}
%    \end{macrocode}
%
% \section{Graphing a Single Function}
%
% This section describes the graphing screen and its controls.
%
% \subsection{Some Initial Parameters}
%
% Should you wish to use an {\AcroFLeX} graphic in your PDF, you will need to declare
% several parameters for each graphic: \cs{dimScreenGraph} and \cs{graphName},
% these are the rich media annotation dimensions, the rich media annot number of this annot
% on this page, and a unique name (unique to the document) for the graph.
%
% You also need to declare a default function, if different from the one set by this package,
% the default domain/range of $x$ and $y$ (the graph view window), and the default domain
% of parameter equations (this last is options if no parametric equations are to be used).
%
% \paragraph{Setting the Dimensions of the Annotation}
%
%    \begin{macro}{\dimScreenGraph}
% This is a convenience command for storing the dimensions of the Flash widget. It assumes
% you do not resize using \cs{resizebox} or \cs{scalebox}. The command defines two
% commands available to the document author, these are \cs{hScreenGraph} and
% \cs{vScreenGraph}, for the width and height respectively.
%    \begin{macrocode}
\newcommand{\dimScreenGraph}[2]{{%
   \setlength{\dimen@}{#1}\xdef\hScreenGraph{\the\dimen@}%
   \setlength{\dimen@}{#2}\xdef\vScreenGraph{\the\dimen@}%
}}
%    \end{macrocode}
%    \end{macro}
%
% \paragraph{Setting the Name of the Graph}
%
%    \begin{macro}{\graphName}
% Each graphing screen must have a unique (base)name, the name is specified
% using the command \cs{graphName}; for example \verb!\graphName{mygraph}!
% specifies the base name for the next graphing screen. This name is use
% in creating the control for the graphing screen (a Flash widget).
%
%    \begin{macrocode}
\newcommand{\graphName}[1]{\def\afgraphName{#1}}
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\defaultFunction}
% Declare the default function to appear in the \cs{fileInputField} on startup
% or on reset. The function takes two arguments, the first is a display version of
% the function, the second is a proper JavaScript form of the function. The default
% is \verb!\defaultFunction{x^2}!
%    \begin{macrocode}
\newcommand{\defaultFunction}[1]{\def\af@DefaultFunction{#1}}
\defaultFunction{x^2}
%    \end{macrocode}
%    \end{macro}
%
% \paragraph{Setting the View Screen Dimensions: Range/Domain}
%
%    \begin{macro}{\defaultDomRng}
%    \begin{macro}{\defaultDomP}
% Set the default domain and range of the default function. These values will appear
% on start-up, and when the graph is cleared.
%    \begin{macrocode}
\def\defaultDomRng#1#2#3#4{%
   \def\af@DefaultDomMin{#1}\def\af@DefaultDomMax{#2}%
   \def\af@DefaultRngMin{#3}\def\af@DefaultRngMax{#4}%
}
\def\defaultDomP#1#2{%
   \def\af@DefaultDomMint{#1}\def\af@DefaultDomMaxt{#2}%
}
%    \end{macrocode}
% We set the default domain and range to correspond with the
% default function.
%    \begin{macrocode}
\defaultDomRng{-2}{2}{0}{4}
\defaultDomP{0}{2*PI}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \subsection{The Graphing Screen and its Controls}
%
% Here, we describe the graphing screen and its controls. The graphing screens and
% its controls may be arranged on the page in any way the document author wishes.
%
% \subsubsection{The Graphing Screen}
%
% The graphing screen is the centerpiece of the {\AcroFLeX} graphing system.
%
%    \begin{macro}{\graphScreen}
%
% The \cs{graphScreen} command is just the \cs{rmAnnot} command with the
% fourth argument set to the \texttt{acroflexWidget}. The command takes
% three parameters, each just passed to \cs{rmAnnot}: The first is optional
% that sets the key-value pairs, an important one is \texttt{poster=afposter}
% to get the famous \AcroFLeX{} logo inserted as the opster; the second
% is the width; the third is the height. The widget resizes itself, so the choice
% of the dimensions is up to the document author.
%
% If \cs{dimSreenGraph} is used then you can simply use the dimensions declared there;
% for example,
%\begin{verbatim}
%   \dimScreenGraph{186bp}{186bp*3/4}
%   ...
%   \graphScreen[poster=aflogo]{\hScreenGraph}{\vScreenGraph}
%\end{verbatim}
% Note the use of calculated height, three-fourths of the width. \cs{graphScreen} can be,
% in turn, be resized using \cs{resizebox} or \cs{scalebox}.
%
%    \begin{macrocode}
\newcommand{\graphScreen}[3][]{\rmAnnot[#1,%
   name=afRM\afgraphName]{#2}{#3}{acroflexWidget}}%
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\iconFloatGraphScreen}
% Should you wish to create a graphing screen in a floating window, use the
% \cs{iconFloatGraphScreen}. It takes three arguments, the first one is optional
% and is passed to the first argument the underlying \cs{graphScreen}. A typical
% first argument is a poster key value: \texttt{poster=aflogo}. The second two are
% dimensions (width and height). We use \cs{resizebox} from the graphicx package.
% The \cs{resizebox} can take an exclamation point (!) as its arguments, in this
% case, the object will be resized to keep its aspect ratio. See the documentation
% of \cs{resizebox} for more details. Below is an example,
%\begin{verbatim}
%   \iconFloatGraphScreen[poster=aflogo]{40bp}{!}
%\end{verbatim}
% The rich media annotation has a transparent button on top of it. The poster of the annotation
% can be see through the button. Pressing on the button activates, or deactivates the annotation.
%
% The default is not to allow the user to close the window or go into full screen mode, however
% by executing\DescribeMacro{\allowFSFloatGS} \cs{allowFSFloatGS} before the
% \cs{iconFloatGraphScreen} command, we allow for full screen, while
% \DescribeMacro{\defaultFloatGS} \cs{defaultFloatGS} returns to the default state.
%    \begin{macrocode}
\newcommand{\allowFSFloatGS}{\def\af@passcontext{\@gobble}}
\newcommand{\defaultFloatGS}{\def\af@passcontext{passcontext}}
%    \end{macrocode}
% We set the default value, we do no allow full screen.
%    \begin{macrocode}
\defaultFloatGS
%    \end{macrocode}
% Now for the \cs{iconFloatGraphScreen} command
%    \begin{macrocode}
\newcommand{\iconFloatGraphScreen}[3][]{%
   \makebox[0pt][l]{%
   \resizebox{#2}{#3}{%
%    \end{macrocode}
% Here is the graphing screen
%    \begin{macrocode}
   \graphScreen[#1,windowed,\af@passcontext,deactivated=pageclose
       ]{\hScreenGraph}{\vScreenGraph}}}%
   \resizebox{#2}{#3}{%
%    \end{macrocode}
% And the button that overlays it
%    \begin{macrocode}
       \pushButton[\S{S}\H{N}\autoCenter{n}\W0\BG{}\BC{}
       \TU{\tt@iconFloatGraphScreen}\A{\JS{%
           var rm = this.getAnnotRichMedia(%
               this.pageNum, "afRM\afgraphName");\r
           rm.activated=!rm.activated;
       }}]{float\afgraphName Btn-\therm@Cnt}{\hScreenGraph}
           {\vScreenGraph}}%
}
\newcommand{\tticonFloatGraphScreen}[1]{%
   \def\tt@iconFloatGraphScreen{#1}}
\tticonFloatGraphScreen{Click to view graphing screen,
   click again to hide graphing screen.}
%    \end{macrocode}
%    \end{macro}
%
% \subsubsection{Various Controls}
%
% The graphing screen, obviously, graphs functions of the form $ y = f(x) $.  The user
% must have a way of entering the functional part, the $f(x)$. \cs{fileInputField}
% is used for this purpose. The \cs{graphBtn} is used to graph the function, while
% \cs{graphClrBtn} is used to clear the graph and deactivate the Flash widget.
%
% The domain of the variable $x$ is specified though the commands
% \cs{domMin} and \cs{domMax}; while the range of values on
% the $y$ axis is specified by \cs{rngMin} and \cs{rngMax}. The number of points
% that are plotted can be specified through \cs{numPoints}.
%
% \paragraph{The Input Function.}
%    \begin{macro}{\funcInputField}
% The parameters for all the above mentioned functions, with the exception of
% \cs{afDefaultFunction}, take three parameters generally described below:
%
% \begin{enumerate}
% \item[\texttt{[\#1]}:] optional arguments to modify appearance of the form field
% \item[\texttt{\#2}:] the width of the form field
% \item[\texttt{\#3}:]  the height of the form field
% \end{enumerate}
% The definitions below use two new keys, \cs{nuDV} and \cs{nuV}, to avoid the use
% of unicode when the unicode option of hyperref has been invoked. The initial and
% default values of the function input field may contain symbols like \texttt{\string^}
% that hyperref does not like and strips out. These two keys are also used in
% \cs{functionSelect} below, for the same reason.
%    \begin{macrocode}
\newcommand{\funcInputField}[3][]{\makebox[0pt][l]{%
   \textField[%
       \nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
       \F{\FHidden}\Ff{\FfReadOnly}
   ]{\afgraphName theHiddenFunction}{1bp}{1bp}}%
   \textField[%
       \BC{0 0 0}\nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
         \TU{\tt@funcInputField}#1\AA{\AAFormat{%
           \formatFunctionInput{"\afgraphName theHiddenFunction"}}
           \AAKeystroke{\keystrokeFunctionInput}
         }%
   ]{\afgraphName theFunction}{#2}{#3}%
}
\newcommand{\ttfuncInputField}[1]{%
   \def\tt@funcInputField{#1}}
\ttfuncInputField{Enter any of the following for expressions:\r
\space\space1. A function of x of the form f(x);\r
\space\space2. A polar function of t of the form f(t);\r
\space\space3. A set of parametric functions of t of the form f(t);g(t)
\r\space\space\space\space\space(separated by a semi-colon);\r
\space\space4. A list of points, (a1,b1);(a2,b2);...;(an,bn)\r
\space\space\space\space\space(separated by semi-colons).
}
%    \end{macrocode}
% I originally named the previous macro definition \cs{fileInputField}. My bad!
% In case there is someone out there that uses this package, I'll let
% \cs{fileInputField} to \cs{funcInputField}.
%    \begin{macrocode}
\let\fileInputField\funcInputField
%    \end{macrocode}
%    \end{macro}
%    \begin{macro}{\formatFunctionInput}
% \cs{formatFunctionInput} supplies format event for the
% \cs{funcInputField}. Then the user enters a new function, the JavaScript function
% \texttt{formatFunctionInput} executes \texttt{ParseInput} (from \textsf{exerquiz}), and places it
% in the hidden function field.
%    \begin{macrocode}
\def\formatFunctionInput#1{%
   try{ formatFunctionInput(#1) } catch(e){};
}
\def\keystrokeFunctionInput{%
   try{ keystrokeFunctionInput() } catch(e){};
}
%    \end{macrocode}
%    \end{macro}
% \paragraph{The Curve Select Combo Box.}
%    \begin{macro}{\functionSelect}
%    \begin{macro}{\initFuncSelect}
%    \begin{macro}{\savedelSelBtn}
% This is an optional combo box for selecting curves and points to graph.
% Note, this drop down list should not overlay the graphing widget, the widget
% is on top, and the list cannot be seen.
%    \begin{macrocode}
\newcommand{\afCurve}[1]{\def\afcurve{#1 }\def\afcurvei{#1}}
\afCurve{Curve}
\newcommand{\afPoint}[1]{\def\afpoint{#1 }\def\afploti{#1}}
\afPoint{Point}
\newcommand{\afUnused}[1]{\def\afunused{#1}}
\afUnused{--unused}
%    \end{macrocode}
% Any re-definitions should take place in the preamble only!
%    \begin{macrocode}
\@onlypreamble\afCurve
\@onlypreamble\afPoint
\@onlypreamble\afUnused
%    \end{macrocode}
% The listing of the drop-down menu. To begin with, there are eight
% menu items: four for curves, and four for plotted points.
%    \begin{macrocode}
\newcommand{\initFuncSelect}[1]{\def\af@initializeFuncSelect{#1}}
\initFuncSelect{%
   [(\af@DefaultFunction)(\afcurve1)]%
   [(<\afcurve2\afunused>)(\afcurve2)]%
   [(<\afcurve3\afunused>)(\afcurve3)]%
   [(<\afcurve4\afunused>)(\afcurve4)]%
   [(<\afpoint1\afunused>)(\afpoint1)]%
   [(<\afpoint2\afunused>)(\afpoint2)]%
   [(<\afpoint3\afunused>)(\afpoint3)]%
   [(<\afpoint4\afunused>)(\afpoint4)]}
%    \end{macrocode}
% The combo box that displays the above items. On selection,
% we populate the \texttt{theFunction} field.
%    \begin{macrocode}
\newcommand{\functionSelect}[3][]{%
   \comboBox[\TU{\tt@functionSelect}#1\Ff{\FfCommitOnSelChange}
   \nuDV{\af@DefaultFunction}\nuV{\af@DefaultFunction}
   \AA{\AAKeystroke{%
   if (!event.willCommit) {\r\t
       this.getField(
           "\afgraphName theFunction").value=event.changeEx;\r
   }}}]{\afgraphName ComboSelect}{#2}{#3}{\af@initializeFuncSelect}%
}
\newcommand{\ttfunctionSelect}[1]{%
   \def\tt@functionSelect{#1}}
\ttfunctionSelect{Enter a function on \afcurvei1--\afcurvei4, or
   a list of points on \afploti1--\afploti4.}
%    \end{macrocode}
% Saves the current function to the list, shift-click deletes
% the current list item, and returns it to its default.
%    \begin{macrocode}
\newcommand{\savedelSelBtn}[3][]{%
   \pushButton[\TU{\tt@savedelSelBtn}#1
       \A{\JS{saveDelSelAction("\afgraphName");
   }}]{\afgraphName savedelSelectBtn}{#2}{#3}%
}
\newcommand{\ttsavedelSelBtn}[1]{\def\tt@savedelSelBtn{#1}}
\ttsavedelSelBtn{Click to save current function to list, shift-click
   to delete the current function from list}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \end{macro}
% \paragraph{The Graphing Button.}
%    \begin{macro}{\graphBtn}
% Clicking on this button when the
% rich media annot is not activated will activate it. Clicking on
% this button when the rich media annot is activate will cause the
% function in the \cs{fileInputField} to be graphed.
%    \begin{macrocode}
\newcommand{\graphBtn}[3][]{%
   \pushButton
       [\BC{0 0 0}\CA{Graph It!}\TU{\tt@graphBtn}#1
       \A{\JS{graphBtnAction("\afgraphName",this.pageNum);
       }}]{\afgraphName graphIt}{#2}{#3}%
}
\newcommand{\ttgraphBtn}[1]{\def\tt@graphBtn{#1}}
\ttgraphBtn{Press to graph the function}
%    \end{macrocode}
%    \end{macro}
% \paragraph{The Clear Screen Button.}
%
%    \begin{macro}{\graphClrBtn}
%    \begin{macro}{\clearGraphJS}
% Click on this button and all fields
% associated with this graphing screen are reset. Shift click makes the
% AcroFlex widget deactivated.
%    \begin{macrocode}
\newcommand{\clearGraphJS}{%
   clearGraph("all","\afgraphName",this.pageNum);}
\newcommand{\graphClrBtn}[3][]{\pushButton[\BC{0 0 0}\CA{Clear}
   \A{\JS{\clearGraphJS}}\TU{\tt@graphClrBtn}#1
   ]{\afgraphName clearIt}{#2}{#3}%
}
\newcommand{\ttgraphClrBtn}[1]{\def\tt@graphClrBtn{#1}}
\ttgraphClrBtn{Click to clear graph, shift-click to deactivate the
   graphing screen}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \paragraph{The Domain the function is to be graphed over.}
%
%    \begin{macro}{\domMin}
%    \begin{macro}{\domMax}
% The lower endpoint of the interval over which the function is
% graphed.
%
%    \begin{macrocode}
\newcommand{\domMin}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultDomMin}\nuV{\af@DefaultDomMin}
       \F{\FHidden}\Ff{\FfReadOnly}
       ]{\afgraphName theHiddenDom.min}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultDomMin}
   \nuDV{\af@DefaultDomMin}\BC{0 0 0}\TU{\tt@domMin}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom.min"}}
       \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom.min"}}
   }]{\afgraphName theDom.min}{#2}{#3}%
}
\newcommand{\ttdomMin}[1]{\def\tt@domMin{#1}}
\ttdomMin{Enter the minimum value for the variable x}
%    \end{macrocode}
% The upper endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMax}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultDomMax}\nuV{\af@DefaultDomMax}
   \F{\FHidden}\Ff{\FfReadOnly}
   ]{\afgraphName theHiddenDom.max}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultDomMax}
   \nuDV{\af@DefaultDomMax}\BC{0 0 0}\TU{\tt@domMax}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom.max"}}
   \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom.max"}}
   }]{\afgraphName theDom.max}{#2}{#3}%
}
\newcommand{\ttdomMax}[1]{\def\tt@domMax{#1}}
\ttdomMax{Enter the maximum value for the variable x}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The interval on vertical axis what is to be displayed.}
%    \begin{macro}{\rngMin}
%    \begin{macro}{\rngMax}
% The lower endpoint of the interval on the $y$-axis that is displayed on the
% graphing screen.
%    \begin{macrocode}
\newcommand{\rngMin}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultRngMin}\nuV{\af@DefaultRngMin}
   \F{\FHidden}\Ff{\FfReadOnly}
   ]{\afgraphName theHiddenRng.min}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultRngMin}
   \nuDV{\af@DefaultRngMin}\BC{0 0 0}\TU{\tt@rngMin}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenRng.min"}}
    \AAFormat{\formatVarIntervals{"\afgraphName theHiddenRng.min"}}
   }]{\afgraphName theRng.min}{#2}{#3}%
}
\newcommand{\ttrngMin}[1]{\def\tt@rngMin{#1}}
\ttrngMin{Enter the minimum value for the variable y}
%    \end{macrocode}
% The upper endpoint of the interval on the $y$-axis that is displayed on the
% graphing screen.
%    \begin{macrocode}
\newcommand{\rngMax}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultRngMax}\nuV{\af@DefaultRngMax}
   \F{\FHidden}\Ff{\FfReadOnly}
   ]{\afgraphName theHiddenRng.max}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultRngMax}
   \nuDV{\af@DefaultRngMax}\BC{0 0 0}\TU{\tt@rngMax}#1\AA{%
  \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenRng.max"}}
    \AAFormat{\formatVarIntervals{"\afgraphName theHiddenRng.max"}}
   }]{\afgraphName theRng.max}{#2}{#3}%
}
\newcommand{\ttrngMax}[1]{\def\tt@rngMax{#1}}
\ttrngMax{Enter the maximum value for the variable y}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The Domain parametric equations is to be graphed over.}
%    \begin{macro}{\domMinP}
%    \begin{macro}{\domMaxP}
% The lower endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMinP}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultDomMint}\nuV{\af@DefaultDomMint}
       \F{\FHidden}\Ff{\FfReadOnly}
       ]{\afgraphName theHiddenDom_t.min}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultDomMint}
   \nuDV{\af@DefaultDomMint}\BC{0 0 0}\TU{\tt@domMinP}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom_t.min"}}
   \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom_t.min"}}
   }]{\afgraphName theDom_t.min}{#2}{#3}%
}
\newcommand{\ttdomMinP}[1]{\def\tt@domMinP{#1}}
\ttdomMinP{Enter the minimum value for the variable t}
%    \end{macrocode}
% The upper endpoint of the interval over which the function is graphed.
%    \begin{macrocode}
\newcommand{\domMaxP}[3][]{\makebox[0pt][l]{%
   \textField[\nuDV{\af@DefaultDomMaxt}\nuV{\af@DefaultDomMaxt}
   \F{\FHidden}\Ff{\FfReadOnly}
   ]{\afgraphName theHiddenDom_t.max}{1bp}{1bp}}%
   \textField[\textSize{0}\nuV{\af@DefaultDomMaxt}
   \nuDV{\af@DefaultDomMaxt}\BC{0 0 0}\TU{\tt@domMaxP}#1\AA{%
   \AAKeystroke{\keystrokeDomRng{"\afgraphName theHiddenDom_t.max"}}
   \AAFormat{\formatVarIntervals{"\afgraphName theHiddenDom_t.max"}}
   }]{\afgraphName theDom_t.max}{#2}{#3}%
}
\newcommand{\ttdomMaxP}[1]{\def\tt@domMaxP{#1}}
\ttdomMaxP{Enter the maximum value for the variable t}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \begin{macro}{\formatVarIntervals}
%    \begin{macro}{\keystrokeDomRng}
% These are format and keystroke functions that support the above
% domain and range commands.
%    \begin{macrocode}
\def\formatVarIntervals#1{%
   try{ formatVarIntervals(#1) } catch(e){};
}
\def\keystrokeDomRng#1{%
   if (event.willCommit) keystrokeDomRng(#1);
}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
% \paragraph{The Number of points to plot.}
%    \begin{macro}{\numPoints}
%    \begin{macro}{\defaultNumPoints}
% The number of points to use for plotting the specified function.
%    \begin{macrocode}
\newcommand{\defaultNumPoints}[1]{%
   \def\af@defaultNumPoints{#1}}
\defaultNumPoints{40}
\newcommand\numPoints[3][]{%
   \textField[\nuV{\af@defaultNumPoints}\nuDV{\af@defaultNumPoints}
   \Q1\BC{0 0 0}\TU{\tt@numPoints}#1\AA{%
   \AAKeystroke{if (event.willCommit) keystrokeNumPoints();}}
   ]{\afgraphName numNodes}{#2}{#3}%
}
\newcommand{\ttnumPoints}[1]{\def\tt@numPoints{#1}}
\ttnumPoints{Enter the number of points to plot}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%
% \paragraph{Shifting the Graph Screen.}
% In this section we provide basic control for shifting the graph screen up and down,
% and left and right. Two new text fields are designed to set the amount of vertical
% or horizontal shifting.
%
%    \begin{macro}{\amtShift}
% Use this text field to enter the amount of horizontal or vertical shift.
%
% We have the usual three parameters, optional argument to change the appearance,
% the width of the form field, the height of the form field.
%    \begin{macrocode}
\newcommand{\defaultShiftAmt}[1]{%
   \def\af@defaultShiftAmt{#1}}
\defaultShiftAmt{1}
\newcommand{\amtShift}[3][]{%
   \textField[\nuV{\af@defaultShiftAmt}\nuDV{\af@defaultShiftAmt}\Q1
   \BC{0 0 0}\TU{\tt@amtShift}#1\AA{\AAKeystroke{%
       if (event.willCommit) keystrokeAmtShift();
   }}]{\afgraphName amtshift}{#2}{#3}%
}
\newcommand{\ttamtShift}[1]{\def\tt@amtShift{#1}}
\ttamtShift{Enter the amount to shift, horizontally or vertically}
%    \end{macrocode}
%    \end{macro}
%
% For the controls for initiating the shifting action, we can use forms or links. We'll begin
% by using links.
%    \begin{macro}{\hShiftL}
%    \begin{macro}{\hShiftR}
%    \begin{macro}{\vShiftD}
%    \begin{macro}{\vShiftU}
% Basic link to initiate the actions of shifting the viewing screen horizontally or vertically
% an amount equal to the entries in \cs{amtShift}.
%    \begin{macrocode}
\newcommand{\hShiftL}[2][]{%
   \setLinkText[#1\A{\JS{%
       shiftHorVert ("\afgraphName",this.pageNum,"h","-");
   }}]{#2}%
}
\newcommand{\hShiftR}[2][]{%
   \setLinkText[#1\A{\JS{%
       shiftHorVert ("\afgraphName",this.pageNum,"h","+");
   }}]{#2}%
}
\newcommand{\vShiftD}[2][]{%
   \setLinkText[#1\A{\JS{%
       shiftHorVert ("\afgraphName",this.pageNum,"v","-");
   }}]{#2}%
}
\newcommand{\vShiftU}[2][]{%
   \setLinkText[#1\A{\JS{%
       shiftHorVert ("\afgraphName",this.pageNum,"v","+");
   }}]{#2}%
}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \end{macro}
%    \end{macro}
% \paragraph{The Zooming in and out.}
% Coming fresh off the success of the horizontal and vertical shifting commands, let's plough
% on to zooming in.
%    \begin{macro}{\zoomInOut}
% This push button control zooms out, with a click, or zoom in with a shift-click.
%    \begin{macrocode}
\newcommand{\zoomInOut}[3][]{%
   \pushButton[\BC{0 0 0}\CA{Zoom}\TU{\tt@zoomInOut}#1
   \A{\JS{%
       var shiftType = (event.shift) ? "+" : "-";\r
       zoomInOut ("\afgraphName",this.pageNum,shiftType);
   }}
   ]{\afgraphName zoominout}{#2}{#3}%
}
\newcommand{\ttzoomInOut}[1]{\def\tt@zoomInOut{#1}}
\ttzoomInOut{Click to zoom out, shift-click to zoom in}
%    \end{macrocode}
%    \end{macro}
%
% \subsection{Non-Interactive Graphing}
%
% Use the \cs{setLinkText} command to pass a function name, the number of points, and domain/range
% information to the graphing screen, without user input. This command is useful for tutorials
% that would like to create a graph for the student to inspect, or as part of a quiz.
%    \begin{macro}{\sgraphLink}
% The command \cs{sgraphLink} has four arguments, the first one is an optional argument
% to modify the appearance of the link; the second argument consist of key-value pairs that
% are options for the {\AcroFLeX} Graphing system; the third argument is the function of the
% semi-colon delimited list of points to be plotted; the fourth argument is the text to be used
% as the link.
%\begin{verbatim}
%   \sgraphLink[<appearance>]{<graph_key_vals>}{func|points}{<text>}
%\end{verbatim}
%\paragraph{Options for the Second Parameter.} We define and briefly discuss
% a series of keys for the second parameter.
%
%    \begin{macrocode}
%    \end{macrocode}
% \DescribeMacro{graph}
% Curves and points are graphed on chart series. This system uses \texttt{LinearSeries},
% \texttt{PlotSeries}, and \texttt{AreaSeries}. The {\AcroFLeX} graphing widget provides
% four series for each of these three. Values of \texttt{c1}, \texttt{c2}, \texttt{c3}, \texttt{c4} for this key graphs the data
% on a \texttt{LinearSeries}; values of \texttt{p1}, \texttt{p2}, \texttt{p3}, \texttt{p4} plot the data on a \texttt{PlotSeries};
% and values of \texttt{a1}, \texttt{a2}, \texttt{a3}, \texttt{a4} graphs the data on a \texttt{AreaSeries}.
%    \begin{macrocode}
\define@choicekey+{afsl}{graph}{c1,c2,c3,c4,p1,p2,p3,p4,%
   a1,a2,a3,a4}[c1]{\edef\afsl@graph{#1}}{\PackageWarning{acroflex}
   {Bad choice for the graph key, permissible values are
   c1, c2, c3,c4, p1, p2, p3, p4, a1, a2, a3, a4. Try again}}
%    \end{macrocode}
% \DescribeMacro{type}
% The type of curve this is, \texttt{cart} ($y=f(x)$), \texttt{para}
% ($x=f(t); y=g(t)$), or \texttt{polar} ($r = f(t)$). When defining a polar function
% using \cs{sgraphLink}, use \texttt{type=polar} to signal that the curve is a polar function.
% \changes{v1.6c}{2016/08/29}{Set defaults for type and connectwith}
%    \begin{macrocode}
\define@choicekey+{afsl}{type}{cart,para,polar}[cart]{%
   \edef\afsl@type{#1}}{\PackageWarning{acroflex}
   {Bad choice for the type key, permissible values are
   cart, para, and polar. Try again}}
\let\afsl@type\@empty
%    \end{macrocode}
% \DescribeMacro{connectwith}
% When the graph is either a \texttt{LinearSeries} or an
% \texttt{AreaSeries}, the points are connected. Use this key to
% specify how the points are to be connected. The default values
% for this key are as follows: for
% \texttt{graph=cart} it is \texttt{connectwith=curve}, and for
% \texttt{graph=para} it is \texttt{connectwith=segment}.
% Use this key to override these defaults. For parametric equations,
% \texttt{connectwith=curve} is not recommended, the results may not
% be good. Use of this key is recommended for \texttt{graph=cart}.
%    \begin{macrocode}
\define@choicekey+{afsl}{connectwith}{curve,segment}[curve]{%
   \edef\afsl@form{#1}}{\PackageWarning{acroflex}
   {Bad choice for the connectwith key, permissible values are
   curve and segment. Try again}}
\let\afsl@form\@empty
%    \end{macrocode}
% \DescribeMacro{noquotes}
% This key is a workaround for the case when the function or data is passed by
% JavaScript. Used when passing things that are already strings, such as \texttt{event.value}.
% An example of usage can be found in \texttt{afgraph.tex}.
%    \begin{macrocode}
\define@choicekey+{afsl}{noquotes}[\val\nr]{true,false}[true]{%
   \ifcase\nr\relax\def\af@quotes{}\or\def\af@quotes{"}\fi}
   {\PackageWarning{acroflex}
   {Bad choice for the noquotes key, permissible values are
   true and false. Try again}}
%    \end{macrocode}
% \DescribeMacro{points}
% Use this key to specify the number of points to generate from the function.
% The key is ignored if \texttt{PlotSeries} is used, and should not appear, or be set to zero.
%    \begin{macrocode}
\define@key{afsl}{points}[0]{\edef\afsl@nPoints{#1}}
%    \end{macrocode}
% \DescribeMacro{xInterval}
% An interval of numbers on the horizontal axis. This interval determines the
% domain over which the function of $x$ is to be graphed. The endpoints of this
% interval also determine the left and right boundaries of the viewing window.
%    \begin{macrocode}
\define@key{afsl}{xInterval}[]{\edef\afsl@xInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{xPlot}
% (10/11/09) Added the \texttt{xPlot} key. With the \texttt{xInterval} key, the interval over which to
% plot the curve is bound to the scaling on the x-axis.  It is now desired to plot
% a graph over a smaller interval than the one on the x-axis, and \texttt{xPlot} will be used for
% that purpose; thus one can say \verb!xInterval={[-2,2]},xPlot={[-1,0]}!. If \texttt{xPlot}
% is not specified, then $\texttt{xPlot}=\texttt{xInterval}$.
%    \begin{macrocode}
\define@key{afsl}{xPlot}[]{\edef\afsl@xPlot{#1}}
%    \end{macrocode}
% \DescribeMacro{yInterval}
% An interval of numbers on the vertical axis. The endpoints of this
% interval also determine the lower and upper boundaries of the viewing window.
%    \begin{macrocode}
\define@key{afsl}{yInterval}[]{\edef\afsl@yInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{tInterval}
% An interval of numbers on the parameter axis. This interval determines the
% domain over which a polar function and parametric equations are to be graphed.
% \texttt{xInterval} and \texttt{yInterval} determines the viewing window.
%    \begin{macrocode}
\define@key{afsl}{tInterval}[]{\edef\afsl@tInterval{#1}}
%    \end{macrocode}
% \DescribeMacro{populate}
% A Boolean value, which if \texttt{true}, signals \texttt{Graph\_xy()} or
% \texttt{Graph\_xyt()} to populate the interactive field controls. When
% no controls are provided for the graphing screen, populate should have a
% value of \texttt{false}.
%    \begin{macrocode}
\define@choicekey+{afsl}{populate}{true,false}[true]{%
   \edef\afsl@populate{#1}}{\PackageWarning{acroflex}
   {Bad choice for the populate key, permissible values are
   true and false. Try again}}
%    \end{macrocode}
% \DescribeMacro{wait}
% When using \cs{defineGraphJS} to create an action with multiple graph events,
% use \texttt{wait=true}. This setting gives the {\AcroFLeX} graphing widget to
% receive one set of plotting data before trying to digest another.
%    \begin{macrocode}
\define@choicekey+{afsl}{wait}{true,false}[true]{%
   \edef\afsl@wait{#1}}{\PackageWarning{acroflex}
   {Bad choice for the wait key, permissible values are
   true and false. Try again}}
%    \end{macrocode}
% \paragraph*{Set the defaults for all the keys.}
% All changes are local to each link, so we set global defaults whose values
% are not changed by the changes as a result of the passing key-value pairs
% through \cs{sgraphLink}.
%    \begin{macrocode}
\setkeys{afsl}{graph,points,xInterval,xPlot,yInterval,tInterval,%
   populate=false,type,connectwith,noquotes=false,wait=false}
%    \end{macrocode}
%    \begin{macro}{\sgraphLink}
% We finally come to the \cs{sgraphLink}.
%    \begin{macrocode}
\newcommand{\sgraphLink}[4][]{{%
   \defineGraphJS{#2}{#3}{\af@sglnkAction}%
   \setLinkText[#1\A{\JS{\af@sglnkAction}}]{#4}%
}}
%    \end{macrocode}
%    \end{macro}
%    \end{macro}
%    \begin{macro}{\defineGraphJS}
% The \cs{defineGraphJS} is the JS used to call the \texttt{Graph\_xy()} or \texttt{Graph\_xyt()}
% JavaScript function defined in this package. It uses the same key-value pairs as the second
% argument of \cs{sgraphLink}. The command can be used to construct links that graph several
% curves (or plots) with a link or form action. It can be integrated into the exerquiz quizzing system,
% using the new key \cs{AddAAKeystroke} of \cs{RespBoxMath}. The use of this key and this command is illustrated
% in the \texttt{acroflex.tex} demo file.
%\par\medskip\noindent
% The \texttt* optional first parameter signals to use \cs{edef} in the subsequent command
% \cs{af@defineGraphJS}.
%    \begin{macrocode}
\newcommand{\defineGraphJS}{\@ifstar{\let\AF@exDEF\edef\af@defineGraphJS}
   {\let\AF@exDEF\xdef\af@defineGraphJS}}
%    \end{macrocode}
% We continue \cs{defineGraphJS}: The first parameter are key-values of the
% \texttt{afsl} family; the second parameter is the function; the third is the
% name to assign the command being defined.
% modify the appearance of the link; the second parameter
%    \begin{macrocode}
\newcommand{\af@defineGraphJS}[3]{{\makeJSspecials
   \edef\af@tmp@exp{\noexpand\setkeys{afsl}{#1}}\af@tmp@exp
   \ifx\afsl@xPlot\@empty\let\afsl@xPlot\afsl@xInterval\fi
   \AF@exDEF#3{Graph_xytJS (\af@quotes#2\af@quotes,"\afsl@xInterval",%
   "\afsl@yInterval","\afsl@xPlot","\afsl@tInterval","\afsl@graph",%
   \afsl@populate,\afsl@wait,"\afsl@type","\afsl@form","\afgraphName",%
   \afsl@nPoints)}%
}}
%    \end{macrocode}
%    \end{macro}
%
% \section{Document JS in Support of \texorpdfstring{\protect\AcroFLeX}{AcroFleX}}
%
% Below are some text macros used in creating error messages. They may be redefined
% into better English, or another language. Use the definition file \texttt{afcustom.def}
% to make these re-definitions.
%    \begin{macrocode}
\defineJSStr{\af@badNumberMsg}{%
   The value input does not appear to be a number, please enter a
   number, or an expression that evaluates to a number.}
\defineJSStr{\af@negNumberMsg}{%
   The number of points is a positive integer, changing to a
   positive integer.}
\defineJSStr{\af@zeroNumberMsg}{%
   The number of points is a positive integer, changing to the
   default value of \af@defaultNumPoints.}
\defineJSStr{\af@negShiftMsg}{%
   The amount of shift is a positive number, changing to a positive
   number.}
\defineJSStr{\af@zeroShiftMsg}{%
   The amount of shift is a positive number, changing to the
   default value of 1.}
\defineJSStr{\af@saveDelSelAlerti}{%
   There is nothing in the function input text field.}
\defineJSStr{\af@saveDelSelAlertii}{%
   You have not defined any points to plot}
\defineJSStr{\af@graphBtnAlerti}{Undefined graph types}
%    \end{macrocode}
%    \begin{macrocode}
\begin{insDLJS*}[acroflexLoaded]{afgrfJS}
\begin{newsegment}{AF: AcroFLeX Graphing Bundle}
/*
       Document Level JavaScript
       AcroFLeX Graphing Bundle
       D. P. Story copyright 2008-\the\year
*/
var acroflexLoaded = true;
var _mathVars="xt";
var aGraphData = new Array();
var ck4PtsRe = /\(.+,.+\)/;
var badNumberMsg=\af@badNumberMsg;
var negNumberMsg=\af@negNumberMsg;
var zeroNumberMsg=\af@zeroNumberMsg;
var negShiftMsg=\af@negShiftMsg;
var zeroShiftMsg=\af@zeroShiftMsg;
var saveDelSelAlerti=\af@saveDelSelAlerti;
var saveDelSelAlertii=\af@saveDelSelAlertii;
var graphBtnAlerti=\af@graphBtnAlerti;
var scratchCounter=0;
var aTimeOutArray = new Array();
var afSuffixes = new Array("ComboSelect","theFunction",
   "amtShift","theDom","theRng", "theDom_t",
   "Rng_t","numNodes");
\end{newsegment}
\begin{newsegment}{AF: Graphing Functions}
%    \end{macrocode}
% \DescribeMacro{Graph\_xy} Graphs a function of a single variable in the rectangular
% coordinate system.
%
% The \texttt{Graph\_xy} function takes four or more arguments. In interactive
% mode, it takes four.
%\begin{enumerate}
%   \item \texttt{graph\_props}: (Needs Revision) This is a signal for the type of graphing requested.
%       \texttt{c1,...,c4} for continuous plotting; and \texttt{p1,...,p4} for discrete
%       plotting. There are four of these types.
%   \item \texttt{baseName}: The base name of the graphing environment. This is used to
%       build the field names for the controls, if any, on the page.
%   \item \texttt{pNum}: The page number of the target rich media annot. This together
%       with \texttt{baseName} is enough information to get the AnnotRichMedia object using
%       the \texttt{Doc.AnnotRichMedia} method.
%\end{enumerate}
% When in interactive mode, we get the function to be graphed, the domain of $x$
% the range of $y$, and the number of points to plot from form fields.
% \begin{itemize}
%   \item The function is input by the  user into the field \texttt{baseName+"theFunction"},
%         but we get the JS version from \texttt{baseName+"theHiddenFunction"}.
%         When the user enters a function, it is parsed, and changed into a proper JS
%         expression: \verb!2x^2sin(x)! becomes \verb!2*Math.pow(x,2)*Math.sin(x)!.
%
%   \item The domain and range values are input by the user through the fields, having field names of
%         \texttt{baseName+"theDom.min"}, \texttt{baseName+"theDom.max"}, \texttt{baseName+"theRng.min"},
%         and \texttt{baseName+"theRng.max"}, but we retrieve the values from hidden fields.
%         See \texttt{getDomRng} below for the listing of the hidden fields.
%         When the user enters domain/range info, this info is parsed and made into
%         property JS expressions. In this way, the user can enter symbolics like \texttt{PI}
%         or \texttt{sin(PI/3)}, or do arithmetic, like \texttt{2 + 1/3}.
%
%   \item The number of points to plot is obtained from \texttt{baseName+"numNodes"},
%         no preprocessing is used.
%
% \end{itemize}
%
% \noindent When the number of arguments is greater than four, we are in non-interactive
% mode. The 5th argument is the JS function to graph; the 6th is the number of
% points to plot; the 7th is an object containing the domain
%
% \paragraph{Notes on the Modes.} There are three modes of operation: interactive, populate,
% and silent.
%\begin{itemize}
% \item \textbf{Interactive:} This occurs when the user enters a
% function through the UI. In this case the number of arguments
% passed to \texttt{Graph\_xy} (or \texttt{Graph\_xyt}) is only four.
% The number of \texttt{arguments} is determined by the arguments
% object, and the switch \texttt{afInteractive} is set to
% \texttt{true}. For this mode
%
% The following controls are \emph{required}: \cs{fileInputField},
% \cs{graphBtn}, \cs{domMin}, \cs{domMax}, \cs{rngMin}, \cs{rngMax},
% and \cs{numPoints}. If parametric or polar graphs are to be used,
% then \cs{domMinP} and \cs{domMaxP} are also required. The other
% controls are \emph{optional}, \cs{graphClrBtn} (recommended),
% \cs{amtShift} (and \cs{hShiftL},
% \cs{hShiftR},\cs{vShiftD},\cs{vShiftU}) and \cs{zoomInOut}.
%
% \item \textbf{Populate:} This mode occurs when the graphing parameters
% are passed to \texttt{Graph\_xy} (or \texttt{Graph\_xyt}) by \cs{sgraphLink}
% (or some other command). All the essential information is passed as arguments,
% so the number of arguments is greater than four. The command initiating the
% graphing should set the \texttt{graph\_props.populate} to \texttt{true}. In this
% case the graphing data populate the required fields and the graph will be drawn.
% It is the document author's responsibility to only use populate on graphing screens
% that have all the required control fields. \texttt{Graph\_xy} (and \texttt{Graph\_xyt})
% checks the value of the \texttt{graph\_props.populate} property, and sets the switch
% \texttt{populate} to \texttt{true}.
%
% Populate behave exactly like interactive, but the graphing data is passed to it in pre-packaged
% for my the document author; the user, however, can manipulate the curve once it appears.
%
% The required controls are the same as the interactive mode.
%
% \item \textbf{Silent:} This is a non-interactive mode, there must be no controls other than
% \cs{graphClrBtn}.  Basically, the author prepares some pre-packaged graphs to be displayed
% to the user, without interaction. These may go along with a tutorial discussion symmetry,
% periodicity, tangent lines, etc.
%
%\end{itemize}
%    \begin{macrocode}
function Graph_xy(graph_props, baseName, pNum)
{
   _mathVars="x";
   var afInteractive = (arguments.length <= 3);
   if (afInteractive) {
       var f = this.getField(baseName+"theHiddenFunction").value;
%    \end{macrocode}
% If the file input field does not contain a Cartestian point $(a,b)$,
% but it does contain a semi-colon, we figure what is entered is a
% set of parametric equations.
%    \begin{macrocode}
       if ( !ck4PtsRe.test(f) && (f.indexOf(";")!=-1) ) {
           var dt = this.getField(baseName+"theDom_t.min");
           if ( dt == null ) {
               syntaxError(); return;
           }
           Graph_xyt(graph_props, baseName, pNum);
           return;
       }
       f = this.getField(baseName+"theHiddenFunction").value;
   }
   createGraphData(baseName);
   var which_graph=graph_props.graph;
   var populate = false;
   graph_props.type="cart";
   var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
   if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
   var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
   var connectPoints=false;
   var plotPoints=false;
   var wait = false;
   switch(aWhichGraph[1]) {
       case "p":
           var which_series="p"+aWhichGraph[2];
           plotPoints=true;
           break;
       case "a":
           var which_series="a"+aWhichGraph[2];
           break;
       default:
           var which_series="c"+aWhichGraph[2];
   }
   graph_props.graph=which_series;
%    \end{macrocode}
% Get domain and range of x and y, respectively
% obtain in math environment so we can evaluate
% any symbolic constants, such as \texttt{Math.PI}
%    \begin{macrocode}
   if (afInteractive) var oDR = getDomRng (baseName);
   else {
       wait=graph_props.wait;
       populate = graph_props.populate;
       var oDR = arguments[5];
       if (populate) populateDomRng(baseName,oDR);
       for ( var o in oDR ) oDR[o] = EvalParse(oDR[o]);
   }
   aGraphData[baseName].aDomRngs = oDR;
%    \end{macrocode}
% calculate width of intervals. If the user has passed a subinterval to us, then
% \texttt{oDR.x\_min} would be defined, and we use it to compute the range.
%    \begin{macrocode}
   var rng_x = (typeof oDR.x_u=="undefined") ?
       (oDR.x_max - oDR.x_min) : (oDR.x_u - oDR.x_l);
   /* Get the function and calculated the plotted points */
   if (afInteractive) {
       var n = Number(this.getField(baseName+"numNodes").value);
       if ( isNaN(n) || n <=0 ) n = \af@defaultNumPoints;
   } else {
       var f = ParseInput(arguments[2+1]);
       var n = Number(arguments[2+2]);
       if (populate) {
           this.getField(baseName+"theFunction").value=arguments[2+1];
           this.getField(baseName+"numNodes").value=n;
       }
       if (isGraph) {
%    \end{macrocode}
% Is there a function there? We use n to determine
% that, if $n > 0$ we assume a function; otherwise, we
% assume plotted points to be connected.
%    \begin{macrocode}
           connectPoints = ( n <= 0 );
           if ( connectPoints ) plotPoints = true;
       // passing points to be plotted, not connected
       } else plotPoints = true;
   }
%    \end{macrocode}
% Before we calculate the points, let's record what we are graphing.
%    \begin{macrocode}
   if (afInteractive || populate)
       updateGraphData(graph_props,baseName,f);
%    \end{macrocode}
% Now we begin calculating the points to plot.
%    \begin{macrocode}
   var plot_x, plot_y;
   var x = (typeof oDR.x_u=="undefined") ? oDR.x_min : oDR.x_l;
   var h = rng_x / n;
   var thismax = (typeof oDR.x_u=="undefined") ? oDR.x_max : oDR.x_u;
%    \end{macrocode}
% The plotted data will be accumulated as XML
%    \begin{macrocode}
   var cPlotData=<points></points>;
%    \end{macrocode}
% We strip out anything of the form \texttt{"y = "}, \texttt{"x = "} or \texttt{"r = "},
% allowing the user to enter the expressions in equational form \verb!"y = x^2"!, for example.
%    \begin{macrocode}
   var aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(f);
   if ( aSearchResults != null) {
       if ( aSearchResults[2] != "y" && aSearchResults[2] != "r" ) {
           syntaxError(); return;
       }
   }
%    \end{macrocode}
% This allows functions of the form $y=f(x)$, $r=f(x)$, $y=f(t)$, $r=f(t)$.
%    \begin{macrocode}
   f = f.replace(/(([a-zA-Z])\s*=\s*)/g,"");
%    \end{macrocode}
%    \begin{macrocode}
   if ( isGraph && !plotPoints ) {
       for (var i=0; i<=n; i++)
       {
%    \end{macrocode}
% We evaluate the function, and try to detect any errors. If an exception is thrown,
% we display an \textsf{exerquiz} \texttt{syntaxError()} message. If the result is not
% a number, we skip over it.
%    \begin{macrocode}
           try { with(Math) {_y = eval(f);} }
           catch(e) {
%    \end{macrocode}
% We have thrown an exception, so either this is bad code, or the user wants us
% to plot this as a polar function. We'll try, but if we're wrong, we'll throw an
% exception in \texttt{Graph\_xyt()}.
%    \begin{macrocode}
               var paraEqs = "("+f+")*Math.cos(t);("+f+")*Math.sin(t)";
               graph_props.type="polar";
               this.getField(baseName
                   +"theHiddenFunction").value=paraEqs;
               Graph_xyt(graph_props, baseName, pNum);
               return;
           }
           // If not a number then skip over.
           if (isFinite(_y))
           {
               plot_x = util.printf("\%.10f", x);
               plot_y = util.printf("\%.10f", _y);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
               cPlotData.points[cPlotData..point.length()]=
               <point><x>{plot_x}</x><y>{plot_y}</y></point>
           }
           x += h;
       }
   } else { // prepare to data for plotting
%    \end{macrocode}
% At this point the variable f should be a string of
% points to plot.\\
% \hspace*{30pt}\texttt{f = "(0,1);(2,2);(4,2);...;(5,3)"}.\\
% It's not clear whether the abcissas need to be sorted in
% increasing order, or whether FLEX is smart enough to do
% that. We'll assume the latter case.
%    \begin{macrocode}
       var afBegin = (f.indexOf("\(")+1);
       var afEnd = f.lastIndexOf("\)");
       cPlotData=f.substring(afBegin,afEnd);
       var re = /\)\s*;\s*\(/;
       aPlotData= cPlotData.split(re);
       var cPlotData=<points></points>;
       with (Math) {
           for ( var i=0; i<aPlotData.length; i++) {
               var cTmp = "["+aPlotData[i]+"]";
               var aTmp = eval(cTmp);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
               cPlotData.points[cPlotData..point.length()]=
               <point><x>{aTmp[0]}</x><y>{aTmp[1]}</y></point>
           }
       }
   }
   cPlotData=cPlotData.toXMLString();
   var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
   if ( annot )
   {
       if (!annot.activated || wait ) {
           annot.activated=true;
           afWait4Activation(
               graph_props,baseName,pNum,oDR,cPlotData,50);
       }
       else
           annot.callAS("getPlotData", graph_props, oDR, cPlotData);
   }
}
%    \end{macrocode}
% \DescribeMacro{Graph\_xyt} This function graphs a set of parametric equations in the
% rectangular coordinate system.  The function pair is delimited by a semi-colon, early
% in the code we get the function and test whether the function has a semi-colon in its
% definition, so not, we send assume it is a function of a single variable, and send it
% off to \texttt{Graph\_xy}.
%
% For silent mode, the parameters are the same, except that there are two extra arguments,
% the endpoints of the parameter, $t$. The last argument is a Boolean, the author wants the
% graphing data to populate the corresponding fields so user can manipulate.
%    \begin{macrocode}
function Graph_xyt(graph_props, baseName, pNum)
{
   _mathVars="t";
   var which_graph=graph_props.graph;
   var populate = false;
   var afInteractive = (arguments.length <= 3);
   if (afInteractive) {
       var f = this.getField(baseName+"theHiddenFunction").value;
       if ( ck4PtsRe.test(f) || (f.indexOf(";")==-1) ) {
           Graph_xy(graph_props, baseName, pNum);
           return;
       }
       f = this.getField(baseName+"theHiddenFunction").value;
   }
   createGraphData(baseName);
   if ( graph_props.type!="polar") graph_props.type="para";
   var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
   if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
   var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
   var connectPoints=false;
   var plotPoints=false;
   var wait=false;
   switch(aWhichGraph[1]) {
       case "p":
           var which_series="p"+aWhichGraph[2];
           plotPoints=true;
           break;
       case "a":
           var which_series="a"+aWhichGraph[2];
           break;
       default:
           var which_series="c"+aWhichGraph[2];
   }
   graph_props.graph=which_series;
%    \end{macrocode}
% Get domain and range of x and y, respectively
% obtain in math environment so we can evaluate
% any symbolic constants, such as \texttt{Math.PI}
%    \begin{macrocode}
   if (afInteractive) {
       var oDR = getDomRng (baseName);
       var oDp = getParaDom (baseName);
   }
   else {
       wait=graph_props.wait;
       populate = graph_props.populate;
       var oDR = arguments[5];
       if (populate) populateDomRng(baseName,oDR);
       for ( var o in oDR ) oDR[o] = EvalParse(oDR[o]);
       var oDp = arguments[6];
       if (populate) populateParaDom(baseName,oDp);
       for ( var o in oDp ) oDp[o] = EvalParse(oDp[o]);
   }
   aGraphData[baseName].aDomRngs = oDR;
   aGraphData[baseName].aDom_P = oDp;
%    \end{macrocode}
% calculate width of intervals
%    \begin{macrocode}
   var rng_t = oDp.t_max - oDp.t_min;
   /* Get the function and calculated the plotted points */
   if (afInteractive) {
       var n = Number(this.getField(baseName+"numNodes").value);
       if ( isNaN(n) || n <=0 ) n = \af@defaultNumPoints;
   } else {
%    \end{macrocode}
% If this is polar, then we need to check if it has been parsed yet.
%    \begin{macrocode}
       var f = arguments[2+1];
       if ( graph_props.type=="polar") {
            if(f.indexOf(";")==-1) {
               f = "("+f+")*cos(t);("+f+")*sin(t)";
               f = ParseInput(f);
            }
       } else
           f = ParseInput(f);
       var n = Number(arguments[2+2]);
       if (populate) {
           this.getField(baseName+"theHiddenFunction").value=f;
           this.getField(baseName+"theFunction").value=arguments[2+1];
           this.getField(baseName+"numNodes").value=n;
       }
       if (isGraph) {
%    \end{macrocode}
% Is there a function there? We use n to determine
% that, if $n > 0$ we assume a function; otherwise, we
% assume plotted points to be connected.
%    \begin{macrocode}
           connectPoints = ( n <= 0 );
           if ( connectPoints ) plotPoints = true;
       // passing points to be plotted, not connected
       } else plotPoints = true;
   }
%    \end{macrocode}
% Before we calculate the points, let's record what we are graphing.
%    \begin{macrocode}
   if (afInteractive || populate)
       updateGraphData(graph_props,baseName,f);
%    \end{macrocode}
% We strip out anything of the form \texttt{"y = "}, \texttt{"x = "} or \texttt{"r = "},
% allowing the user to enter the expressions in equational form \texttt{"r = 1+sin(t)"},
% or \texttt{x=sin(t); y = cos(t)}, for example.
%    \begin{macrocode}
   var aFunction = f.split(";");
   var x_function = aFunction[0];
   var y_function = aFunction[1];
   var aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(x_function);
   if ( aSearchResults != null && aSearchResults[2] != "x") {
           syntaxError(); return;
   }
   x_function = x_function.replace(/(([a-zA-Z])\s*=\s*)/g,"");
   aSearchResults=/(([a-zA-Z])\s*=\s*)/.exec(y_function);
   if ( aSearchResults != null && aSearchResults[2] != "y") {
           syntaxError(); return;
   }
   y_function = y_function.replace(/(([a-zA-Z])\s*=\s*)/,"");
   var plot_x, plot_y;
   var t = oDp.t_min;
   var h = rng_t / n;
   var thismax = oDp.t_max;
%    \end{macrocode}
% The plotted data will be accumulated as XML
%    \begin{macrocode}
   var cPlotData=<points></points>;
%    \end{macrocode}
%    \begin{macrocode}
   if ( isGraph && !plotPoints ) {
       for (var i=0; i<=n; i++)
       {
%    \end{macrocode}
% We evaluate the function, and try to detect any errors. If an exception is thrown,
% we display an \textsf{exerquiz} \texttt{syntaxError()} message. If the result is not
% a number, we skip over it.
%    \begin{macrocode}
           try {
               with(Math) {
                   _x = eval(x_function);
                   _y = eval(y_function);
              }
           } catch(e) { syntaxError(); return;}
           // If not a number then skip over.
           if (isFinite(_x)&&isFinite(_y))
           {
               plot_x = util.printf("\%.10f", _x);
               plot_y = util.printf("\%.10f", _y);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
               cPlotData.points[cPlotData..point.length()]=
               <point><x>{plot_x}</x><y>{plot_y}</y></point>
           }
           t += h;
       }
   } else { // prepare to data for plotting
%    \end{macrocode}
% At this point the variable f should be a string of
% points to plot.\\
% \hspace*{30pt}\texttt{f = "(0,1);(2,2);(4,2);...;(5,3)"}.\\
% It's not clear whether the abcissas need to be sorted in
% increasing order, or whether FLEX is smart enough to do
% that. We'll assume the latter case.
%    \begin{macrocode}
       var afBegin = (f.indexOf("\(")+1);
       var afEnd = f.lastIndexOf("\)");
       cPlotData=f.substring(afBegin,afEnd);
       var re = /\)\s*;\s*\(/;
       aPlotData= cPlotData.split(re);
       var cPlotData=<points></points>;
       with (Math) {
           for ( var i=0; i<aPlotData.length; i++) {
               var cTmp = "["+aPlotData[i]+"]";
               var aTmp = eval(cTmp);
%    \end{macrocode}
% We add the latest data point to the end of the XMList
%    \begin{macrocode}
               cPlotData.points[cPlotData..point.length()]=
               <point><x>{aTmp[0]}</x><y>{aTmp[1]}</y></point>
           }
       }
   }
   cPlotData=cPlotData.toXMLString();
   var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
   if ( annot )
   {
       if (!annot.activated || wait ) {
           annot.activated=true;
           afWait4Activation(
               graph_props,baseName,pNum,oDR,cPlotData,50);
       }
       else
           annot.callAS("getPlotData", graph_props, oDR, cPlotData);
   }
}
function createGraphData(baseName)
{
   if( aGraphData[baseName] == undefined ) {
       aGraphData[baseName] = new Object();
       aGraphData[baseName].aDomRngs=new Object();
       aGraphData[baseName].aDom_P=new Object();
       aGraphData[baseName].current = new Array();
   }
}
%    \end{macrocode}
% This function is called by the \texttt{Graph\_xy} or \texttt{Graph\_xyt}
% and updates the graphing data we are trying to track.
%
% Properties of the object
% \verb!aGraphData[baseName].current[which_graph]! object are
% \texttt{hiddenFN} (a string of the hidden JS version of the
% function), \texttt{appearFN} (a string of the function the user
% sees), and \texttt{graph\_props} (the graph properties passed from
% \texttt{Graph\_xy} or \texttt{Graph\_xyt}.
%    \begin{macrocode}
function updateGraphData(graph_props,baseName,f)
{
   var which_graph=graph_props.graph;
   if (aGraphData[baseName].current[which_graph] == undefined)
       aGraphData[baseName].current[which_graph]=new Object();
   aGraphData[baseName].current[which_graph].appearFN
       =this.getField(baseName+"theFunction").value;
   aGraphData[baseName].current[which_graph].hiddenFN=f;
   aGraphData[baseName].current[which_graph].graph_props=graph_props;
}
\end{newsegment}
%    \end{macrocode}
% When there are more than three arguments, we are in non-interactive mode.
% The 4th-7th arguments are the domain and range that the graph should be
% set to on reset.
%
% In the flash widget, we call the function \texttt{clearPlotData}, the parameters
% of which are
%\begin{verbatim}
%    clearPlotData(graph_props:Object, oDR:Object)
%\end{verbatim}
%    \begin{macrocode}
\begin{newsegment}{AF: Supporting Form Fields}
function clearGraph(graph_opts,baseName, pNum)
{
   which_graph=graph_opts.graph;
   var aWhichGraph=/(c|p|a)(\d)/.exec(which_graph);
   if ( aWhichGraph==null ) aWhichGraph=["","c","1"];
   var isGraph = (aWhichGraph[1]=="c" || aWhichGraph[1]=="a");
   switch(aWhichGraph[1]) {
       case "p":
           var which_series="p"+aWhichGraph[2];
           break;
       case "a":
           var which_series="a"+aWhichGraph[2];
           break;
       default:
           var which_series="c"+aWhichGraph[2];
   }
   ProcessIt = false;
   afResetForms = new Array ();
   for (var i=0; i<afSuffixes.length; i++)
       afResetForms.push(baseName+afSuffixes[i]);
   this.resetForm(afResetForms);
   ProcessIt = true;
%    \end{macrocode}
% Now reset the array of graphs plotted.
%    \begin{macrocode}
   if ( aGraphData[baseName] == undefined ) return;
   try { aGraphData[baseName].current = new Array(); } catch(e) {}
   var oDR = getDomRng (baseName);
   var annot = this.getAnnotRichMedia(pNum,"afRM"+baseName);
   if ( annot )
   {
       annot.callAS("clearPlotData", {graph:"all"}, oDR);
   }
   if (event.shift) annot.activated=false;
}
function stripBrackets(aStr) {
   var afBegin = (aStr.indexOf("[")+1);
   var afEnd = aStr.lastIndexOf("]");
   aStr= aStr.substring(afBegin,afEnd);
   return aStr;
}
function EvalParse(str) {
   return eval(ParseInput(String(str)));
}
function getDomRng (baseName)
{
   var x_min, x_max, y_min, y_max;
   if ( baseName == null )
       return { x_min: \af@DefaultDomMin, y_min: \af@DefaultRngMin,
       x_max: \af@DefaultDomMax, y_max: \af@DefaultRngMax };
   var f = this.getField(baseName+"theHiddenDom.min");
   if ( f == null ) {
       f = aGraphData[baseName].aDomRngs;
       if ( f == null )
           aGraphData[baseName].aDomRngs = {
                 x_min: \af@DefaultDomMin, y_min: \af@DefaultRngMin,
                 x_max: \af@DefaultDomMax, y_max: \af@DefaultRngMax };
   } else {
       x_min=eval(this.getField(baseName+"theHiddenDom.min").value);
       x_max=eval(this.getField(baseName+"theHiddenDom.max").value);
       y_min=eval(this.getField(baseName+"theHiddenRng.min").value);
       y_max=eval(this.getField(baseName+"theHiddenRng.max").value);
       aGraphData[baseName].aDomRngs={
           x_min: x_min, y_min: y_min,
           x_max: x_max,y_max: y_max };
   }
   return aGraphData[baseName].aDomRngs;
}
function populateDomRng(baseName,oDR)
{
   try{this.getField(baseName+"theDom.min").value=oDR.x_min}catch(e){};
   try{this.getField(baseName+"theDom.max").value=oDR.x_max}catch(e){};
   try{this.getField(baseName+"theRng.min").value=oDR.y_min}catch(e){};
   try{this.getField(baseName+"theRng.max").value=oDR.y_max}catch(e){};
}
function getParaDom (baseName)
{
   var t_min, t_max;
   if ( baseName == null )
       return { t_min: \af@DefaultDomMint, t_max: \af@DefaultDomMaxt };
   var f = this.getField(baseName+"theHiddenDom_t.min");
   if ( f == null ) {
       f = aGraphData[baseName].aDom_P;
       if ( f == null )
           aGraphData[baseName].aDom_P = {
               t_min: \af@DefaultDomMint,
               t_max: \af@DefaultDomMaxt };
   } else {
       t_min=eval(this.getField(baseName+"theHiddenDom_t.min").value);
       t_max=eval(this.getField(baseName+"theHiddenDom_t.max").value);
       aGraphData[baseName].aDom_P={ t_min: t_min, t_max: t_max };
   }
   return aGraphData[baseName].aDom_P;
}
function populateParaDom(baseName,oDp)
{
   try{this.getField(baseName+"theDom_t.min").value=oDp.t_min}
       catch(e){};
   try{this.getField(baseName+"theDom_t.max").value=oDp.t_max}
       catch(e){};
}
function afWait4Activation (graph_props, baseName, pNum,%
oDR, cPlotData, delay) {
   var annotName = "afRM"+baseName;
   scratchCounter += 1;
   aTimeOutArray[scratchCounter] = app.setTimeOut(%
'this.getAnnotRichMedia('+pNum+',"'
   +annotName+'").callAS("getPlotData",'
   + 'aTimeOutArray['+scratchCounter+'].graph_props,'
   + 'aTimeOutArray['+scratchCounter+'].oDR,'
   + 'aTimeOutArray['+scratchCounter+'].cPlotData)',50);
   aTimeOutArray[scratchCounter].graph_props=graph_props;
   aTimeOutArray[scratchCounter].oDR=oDR;
   aTimeOutArray[scratchCounter].cPlotData=cPlotData;
}
function shiftHorVert (baseName,pNum,horVert,posNeg) {
   var amtShift=baseName+"amtshift";
   if ( horVert=="h" ) {
       var LEP = baseName+"theDom.min";
       var UEP= baseName+"theDom.max";
   } else {
       var amtShift=baseName+"amtshift";
       var LEP = baseName+"theRng.min";
       var UEP= baseName+"theRng.max";
   }
   var amtSft=this.getField(amtShift).value
   amtSft=EvalParse(amtSft);
   var gf_l=this.getField(LEP);
   var gfv_l=Number(EvalParse(gf_l.value));
   gf_l.value = (posNeg=="+") ?
       (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
   gf_u=this.getField(UEP);
   gfv_u=Number(EvalParse(gf_u.value));
   gf_u.value = (posNeg=="+") ?
       (gfv_u+(Math.abs(amtSft))) : (gfv_u-(Math.abs(amtSft)));
   var g = aGraphData[baseName].aDomRngs;
   var oPts = this.getField(baseName+"numNodes");
   var nPts = ( oPts == null ) ? \af@defaultNumPoints : oPts.value;
   if ( horVert=="h" ) {
       g.x_min=gf_l.value;g.x_max=gf_u.value;
   } else {
       g.y_min=gf_l.value;g.y_max=gf_u.value;
   }
   var p = aGraphData[baseName].aDom_P;
   for ( var o in aGraphData[baseName].current )
   {
       var gd = aGraphData[baseName].current[o];
       gd.graph_props.populate=true;
       if ( gd.graph_props.type=="cart" ) {
           Graph_xy(gd.graph_props,baseName,pNum,
           gd.appearFN,nPts,g);
       } else { // gd.graph_props.type=="para"
           Graph_xyt(gd.graph_props,baseName,pNum,
           gd.appearFN,nPts,g,p);
       }
   }
}
function zoomInOut (baseName,pNum,posNeg) {
   var amtShift=baseName+"amtshift";
   var g = aGraphData[baseName].aDomRngs;
   var oPts = this.getField(baseName+"numNodes");
   var nPts = ( oPts == null ) ? \af@defaultNumPoints : oPts.value;
// Begin horizontal calculations
   var LEP = baseName+"theDom.min";
   var UEP= baseName+"theDom.max";
   var amtSft=this.getField(amtShift).value
   amtSft=EvalParse(amtSft);
   var gf_l=this.getField(LEP);
   var gfv_l=Number(EvalParse(gf_l.value));
   gf_l.value = (posNeg=="+") ?
       (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
   gf_u=this.getField(UEP);
   gfv_u=Number(EvalParse(gf_u.value));
   gf_u.value = (posNeg=="+") ?
       (gfv_u-(Math.abs(amtSft))) : (gfv_u+(Math.abs(amtSft)));
%    \end{macrocode}
% Update the \texttt{aGraphData[baseName].aDomRngs} object for horizontal parameters
%    \begin{macrocode}
   g.x_min=gf_l.value;
   g.x_max=gf_u.value;
// Begin vertical calculations
   var LEP = baseName+"theRng.min";
   var UEP= baseName+"theRng.max";
   var gf_l=this.getField(LEP);
   var gfv_l=Number(EvalParse(gf_l.value));
   gf_l.value = (posNeg=="+") ?
       (gfv_l+(Math.abs(amtSft))) : (gfv_l-(Math.abs(amtSft)));
   gf_u=this.getField(UEP);
   gfv_u=Number(EvalParse(gf_u.value));
   gf_u.value = (posNeg=="+") ?
       (gfv_u-(Math.abs(amtSft))) : (gfv_u+(Math.abs(amtSft)));
%    \end{macrocode}
% Update the \texttt{aGraphData[baseName].aDomRngs} object for vertical parameters
%    \begin{macrocode}
   g.y_min=gf_l.value;
   g.y_max=gf_u.value;
   var p = aGraphData[baseName].aDom_P;
   for ( var o in aGraphData[baseName].current )
   {
       var gd = aGraphData[baseName].current[o];
       if ( gd.graph_props.type=="cart" ) {
           Graph_xy(gd.graph_props,baseName,pNum,
           gd.appearFN,nPts,g);
       } else { // gd.graph_props.type=="para"
           Graph_xyt(gd.graph_props,baseName,pNum,
           gd.appearFN,nPts,g,p);
       }
   }
}
function saveDelSelAction (baseName)
{
   var f = this.getField(baseName+"theFunction");
   var s = this.getField(baseName+"ComboSelect");
   if ( f != null && s != null ) {
       var nIndx = s.currentValueIndices;
       var cExportV=s.getItemAt(s.currentValueIndices,true);
       var cAppearV=s.getItemAt(s.currentValueIndices,false);
       if (event.shift) {
           s.deleteItemAt(s.currentValueIndices);
           s.insertItemAt(cAppearV,("<"+cAppearV+"\afunused>"),nIndx);
           s.currentValueIndices=nIndx;
           f.value="<"+cAppearV+"\afunused>";
       } else {
           var newFunc = f.value;
           var newFunc_tmp = newFunc.replace(/\s/g,"");
           if ( newFunc_tmp == "" ) {
               app.alert({cTitle:"AcroFLeX Graphing",
                   cMsg:saveDelSelAlerti});
           } else { // something there, let's test it
               if(/\afploti/.test(cAppearV) ) {
                   if (ck4PtsRe.test(newFunc)) {
                   // A set of points to plot
                       s.deleteItemAt(s.currentValueIndices);
                       s.insertItemAt(cAppearV,newFunc,nIndx);
                       s.currentValueIndices=nIndx;
                   } else {/* does not appear to be a point */
                       app.alert({cTitle:"AcroFLeX Graphing",
                           cMsg:saveDelSelAlertii});
                   }
               } else {/* not plot, must be curve*/
                   s.deleteItemAt(s.currentValueIndices);
                   s.insertItemAt(cAppearV,newFunc,nIndx);
                   s.currentValueIndices=nIndx;
               }
           }
       }
   }
}
function graphBtnAction (baseName,pNum)
{
   var s = this.getField(baseName+"ComboSelect");
   var d;
   var d, plot_curve="c1";
   if ( s != null ) {
       var nIndx = s.currentValueIndices;
       var cAppearV=s.getItemAt(s.currentValueIndices,false);
       if ( ( d = /\afploti\s+(\d)/.exec(cAppearV) ) != null ) {
           plot_curve="p"+d[1];
       } else {
           if ( ( d = /\afcurvei\s+(\d)/.exec(cAppearV) ) != null ) {
               plot_curve="c"+d[1];
           } else {
               app.alert({cTitle:"AcroFLeX Graphing",
                   cMsg:graphBtnAlerti});
           }
       }
   }
   Graph_xy({graph:plot_curve},baseName,pNum);
}
function afsplitInterval(cInterval)
{
   var aDomTmp=stripBrackets(cInterval);
   aDomTmp=aDomTmp.split(",");
   return { LEP: aDomTmp[0], UEP: aDomTmp[1] };
}
\end{newsegment}
\begin{newsegment}{AF: Keystroke/Formatting Functions}
function keystrokeDomRng (fname)
{
   if (event.willCommit) {
       var retn = ParseInput(event.value);
       if ( !retn ) event.rc = false;
       else {
           try { eval ( retn ) }
           catch(e) {
               app.alert({cTitle:"AcroFLeX Graphing",
                   cMsg:badNumberMsg});
               event.rc=false;
           };
       }
   }
}
function formatFileInput (fname)
{
   this.getField(fname).value = ParseInput(event.value);
}
function formatVarIntervals (fname)
{
   var val = Number(EvalParse(event.value));
   this.getField(fname).value = val;
}
function formatFunctionInput (fname)
{
   var val = ParseInput(event.value);
   this.getField(fname).value = val;
}
function keystrokeFunctionInput ()
{
   if (event.willCommit) {
       var str = event.value.replace(/\s/g,"");
       if ( str == "" ) {
           app.alert({cTitle:"AcroFleX Graphing",
           cMsg:saveDelSelAlerti});
           event.rc = false;
       }
   }
}
function keystrokeNumPoints ()
{
   try{
       var val = Number(EvalParse(event.value));
   } catch(e) {
       app.alert({cTitle:"AcroFLeX Graphing",
           cMsg:badNumberMsg});
        event.rc=false;
        return;
   }
   if ( val < 0 ) {
       app.alert({cTitle:"AcroFLeX Graphing",
           cMsg:negNumberMsg});
   } else {
       if ( val == 0 ) {
           app.alert({cTitle:"AcroFLeX Graphing",
               cMsg:zeroNumberMsg});
           val = \af@defaultNumPoints;
       }
   }
   event.value = Math.ceil(Math.abs(val));
}
function keystrokeAmtShift()
{
   try{
       var val = Number(EvalParse(event.value));
   } catch(e) {
       app.alert({cTitle:"AcroFLeX Graphing",
           cMsg:badNumberMsg});
        event.rc=false;
        return;
   }
   if ( val < 0 ) {
       app.alert({cTitle:"AcroFLeX Graphing",
           cMsg:negShiftMsg});
   } else {
       if ( val == 0 ) {
           app.alert({cTitle:"AcroFLeX Graphing",
               cMsg:zeroShiftMsg});
           val = 1;
       }
   }
   event.value = Math.abs(val);
}
\end{newsegment}
\begin{newsegment}{AF: Support for Custom Graphing Problems}
%    \end{macrocode}
% A general purpose function for graphing that takes into consideration all the
% parameters. This is used by the \cs{sgraphLink} and for any JS code that uses
% custom methods. The command \cs{defineGraphJS} is used to set up the parameters
% for this function..
%    \begin{macrocode}
function Graph_xytJS (func,xI,yI,xP,tI,graph,populate,wait,%
type,form,gName,nPts) {
   var oDom = afsplitInterval(xI);
   var oRng = afsplitInterval(yI);
   var oPlotD = afsplitInterval(xP);
   var oP=new Object(), oD=new Object(), oDt=new Object();
   oP.graph=graph;
   oP.populate=populate;
   oP.wait=wait;
   if (type!="") oP.type=type;
   if (form!="") oP.form=form;
   oD={x_min:oDom.LEP,x_max:oDom.UEP,y_min:oRng.LEP,y_max:oRng.UEP,x_l:oPlotD.LEP,x_u:oPlotD.UEP};
   if ( tI=="") {
       Graph_xy(oP,gName,this.pageNum,func,nPts,oD);
   } else {
       var oDom_t = afsplitInterval(tI);
       oDt={t_min:oDom_t.LEP,t_max:oDom_t.UEP};
       Graph_xyt(oP,gName,this.pageNum,func,nPts,oD,oDt);
   }
}
\end{newsegment}
\end{insDLJS*}
%    \end{macrocode}
% Lastly, we define a \texttt{willClose} code and an \texttt{execJS}
% code. The first comes in on the ``developer's hook'' so the user
% can still use the \texttt{willClose} environment without disturbing
% this code. When the document starts to close, we deactivate all
% rich media annotations, to prevent exceptions from being thrown.
%    \begin{macrocode}
\begin{defineJS}{\af@WillClose}
for (var n=0; n<this.numPages; n++) {
   var rm = this.getAnnotsRichMedia(n);
   if ( rm != undefined) {
       for (var i=0; i<rm.length; i++ ) rm[i].activated=false;
   }
}
\end{defineJS}
%    \end{macrocode}
% We save any other developer \texttt{willClose} code, and define ours, after
% replacing any older developer \texttt{willClose} code.
%    \begin{macrocode}
\let\af@save@developer@will@Close\developer@will@Close
\def\developer@will@Close{%
   \af@save@developer@will@Close
   \af@WillClose
}
%    \end{macrocode}
% We reset only the form fields in the document created by \textsf{acroflex} and use
% a format script. What this does is to make Acrobat execute the format code
% of any text field (or combo box). The formatting code I've placed causes
% the default functions and values such as \verb!x^2! to be parse, and place
% in the hidden field. This code is used only once when the document is
% first opened by Acrobat then thrown away. The document author needs to
% save the document after opening.
%    \begin{macrocode}
\begin{execJS}{afreset}
% try {this.resetForm()} catch(e){};
var aResetFields=new Array();
var fname;
var re=/theFunction|theDom|theRng/;
for (var i=0; i< this.numFields; i++) {
   fname = this.getNthFieldName(i);
   if ( re.test(fname) ) aResetFields.push(fname);
}
if (aResetFields.length !=0)
   try {this.resetForm(aResetFields)} catch(e){};
\end{execJS}
%    \end{macrocode}
% We input a customization file for the document author to enter language localizations
% for the tooltip, for example. This file can be placed in the folder of the source file
% of elsewhere on the {\LaTeX} search path.
%    \begin{macrocode}
\InputIfFileExists{\af@lang@type}{}{%
   \PackageWarning{acroflex}{Could not find the language file
   \af@lang@type,\MessageBreak please place this file on the latex
   search path.}
}
%    \end{macrocode}
%\changes{v1.6}{2015/10/13}{Restore catcodes of subscript and superscript}
% Restore catcodes of subscript and superscript to other.
%    \begin{macrocode}
\af@restoreCats
%</package>
%    \end{macrocode}
% \section{History}
% This initial roll-out of {\AcroFLeX} occurred on 07/06/08 with version v0.4e.
% Changes since then are listed below.
%\begin{itemize}
%   \item (2008/09/26 v0.5b) System freezes when the \cs{domMinP} and \cs{domMaxP} macros are not present, and the
%   user enters a function of $t$.  Put in some tests to prevent this from happening.
%   \item (2008/09/23 v0.5a) Fixed a problem that JS goes into an infinite loop when a non-functional
%   expression is in the function input field.
%   \item (2008/07/26 v0.5) Worked on compatibility issues with the \texttt{unicode} option of \textsf{hyperref}.
%   Defined two commands \cs{eq@nuDV} and \cs{eq@nuV} (in \textsf{eforms}) which prevents hyperref from converting the text to
%   octal notation. These are used in the fields that take functions as their initial values, now \verb!x^2!
%   does not raise a problem with hyperref even when in unicode mode. Also, made some changes to eforms.dtx
%   concerning \cs{r} and \cs{t}. When in unicode mode, these two have to be redefined to \cs{textCR} and
%   \cs{textHT}, respectively.
%   \item (2008/07/24 v0.4g) Fixed a problem with entering points through the user interface. Now fixed.
%   \item (2008/07/18 v0.4f) Identified a problem with parametric equations (interactive mode),
%   when one of the expressions involves a power. The system went into an infinite loop, jumping
%   between \texttt{Graph\_xy} and \texttt{Graph\_xyt}. Changed the early test to \texttt{theFunction}
%   rather than \texttt{theHiddenFunction}.
%   \item[] Added the new series \texttt{a1}, \texttt{a2}, \texttt{a3}, and \texttt{a4} as values of the graph key of \cs{sgraphLink}. These are similar to the c counterparts, but
%   shade in the graph between the x-axis and the graph.  For parametric equations, the results seem
%   good, but could be unpredictable.
%\end{itemize}
%  \Finale
\endinput