%This command provides the text of the last column (Probability)
%on page 3
%
%The macro has one parameter:
%         1) The width of the text
%
\newcommand\TThreeProb[1]{%
   \parbox[t]{#1}{%
     \DisplaySpace{\TThreeDisplaySpace}{\TThreeDisplayShortSpace}


     %Formula 9
     \TThreeTitle{Normal (Gaussian) distribution:}
     \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
         \Fm{p(x) = \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^2/2\sigma^2}},
         \Fm{\E[X] = \mu}
     \end{DisplayFormulae}

     %Formula 10
      \TThreeTitle{Continuous distributions:}%
            If $\Pr[a<X<b] = \int_{a}^b p(x)\dx$,
            then $p$ is the probability density function of $X$.

            If $\Pr[X<a] = P(a)$,
            then $P$ is the distribution function of $X$.

            If $P$ and $p$ both exist then
            $P(a) =  \int_{-\infty}^a p(x)\dx$.

     %Formula 11
      \TThreeTitle{Expectation:}
        If $X$ is discrete
        $\E[g(X)] = \sum_x g(x) \Pr[X=x]$.

      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber}
        \unskip
        If $X$ continuous then
        \def\FirstPart{\E[g(X)]\mbox{}}
        \FmPartA{\FirstPart = \int_{-\infty}^{\infty} g(x) p(x)\dx}
        \FmPartB{\FirstPart}{= \int_{-\infty}^{\infty} g(x) \, d P(x)}.
      \end{DisplayFormulae}

     %Formula 12
      \TThreeTitle{Variance, standard deviation:}
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
         \Fm{\Var[X] = \E[X^2] - \E[X]^2},
         \Fm{\sigma = \sqrt{\Var[X]}}
      \end{DisplayFormulae}

     %Formula 13
      \TThreeTitle{For events $A$ and $B$:}%
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
          \Fm{\Pr[A \Or B] = \Pr[A] + \Pr[B]  - \Pr[A \And B]}
          \FmPartA{\MathRemark[\relax]{\text{iff $A$ and $B$ are independent:}}}
          %Small initial space to show that the remark is only for
          %this equation
          \FmPartB{xxxx}{\Pr[A \And B] =\Pr[A] \cdot \Pr[B]}
          \Fm{\Pr[A \vert B] = \frac{\Pr[A \And B]}{\Pr[B]}}
      \end{DisplayFormulae}%

     %Formula 14
     \TThreeTitle{For random variables $X$ and $Y$:}%
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
          \FmPartA{\MathRemark[\relax]{\text{if $X$ and $Y$ are independent:}}}
          %Small initial space to show that the remark is only for
          %this equation
          \FmPartB{xxxx}{\E[X \cdot Y] = \E[X] \cdot \E[Y]}
          \Fm{\E[X + Y] = \E[X] + \E[Y]}
          \Fm{\E[c X] = c \E[X]}
      \end{DisplayFormulae}

     %Formula 15
      \TThreeTitle{Bayes' theorem:}%
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
          \Fm{\Pr[A_i\vert B] =
                       \frac{\Pr[B\vert A_i] \Pr[A_i]}{\sum_{j=1}^n \Pr[A_j] \Pr[B\vert A_j]}}
      \end{DisplayFormulae}

     %Formula 16
      \TThreeTitle{Inclusion-exclusion:}
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
           \raggedright
           \def\FirstPart{\Pr\Big[\bigvee^n_{i=1} X_i \Big] = \mbox{}}
           \FmPartA{\FirstPart \sum^n_{i=1} \Pr[X_i] +}
           \FmPartB{\FirstPart}{\sum_{k=2}^n (-1)^{k+1} \sum_{\smash{i_i<\cdots <i_k}}
                       \Pr\Big[\bigwedge^k_{j=1} X_{i_j}\Big]}
      \end{DisplayFormulae}

     %Formula 17
     \TThreeTitle{Moment inequalities:}
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
          \Fm{\Pr\big[\vert X\vert \geq \lambda \E[X]\big] \leq \frac{1}{\lambda}},
          \Fm{\Pr\Big[\big\vert X - \E[X]\big\vert \geq \lambda \cdot \sigma \Big]
              \leq \frac{1}{\lambda^2}}
      \end{DisplayFormulae}

     %Formula 18
      \TThreeTitle{Geometric distribution:}%
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber}
            \Fm{\Pr[X = k] = pq^{k-1}\MathRemark{q = 1-p}},
            \Fm{\E[X] = \sum^\infty_{k=1} kpq^{k-1} = \frac{1}{p}}
      \end{DisplayFormulae}

     \AdjustSpace{2ex plus 1ex minus .5ex}
     \noindent
     The ``coupon collector'':
     We are given a random coupon each day,
     and there are $n$ different types of coupons.
     The distribution of coupons is uniform.

     The expected number of days to pass before we to collect all $n$ types is
     $n=H_n$.
  }%
}