%This command provide the text about number theory in the first column
%of the page 5
%
%The command has one parameter:
%    1) The width of the text
\newcommand\TFiveNumberTheory[1]{%
  \parbox[t]{#1}{%
     \TFiveColOneFontSize
     %Space around math environments
     \DisplaySpace{\TFiveDisplaySpace}{\TFiveDisplayShortSpace}
     %The column is too narrow, ragged rigth is
     %nicer
     \raggedright

     \TFiveTitle{The Chinese remainder theorem:}
     There exists a number $C$ such that:
     \[
     \begin{array}{l%
                   @{\hspace{.1em}}c@{\hspace{.2em}}%
                   l%
                   c%
                   l}
           C & \equiv& r_{1} & \bmod   & m_{1}  \\
             &       &       & \vdots  & \\
           C & \equiv& r_{n} & \bmod   & m_{n} \\
     \end{array}
     \]
     if $m_{i}$ and $m_{j}$ are relatively prime for $i\neq j$.

      \TFiveTitle{Euler's function:}
      $\phi(x)$ is the number of positive integers less than $x$ relatively prime to $x$.

      If $\prod_{i=1}^n p^{e_i}_i$ is the prime factorization of $x$ then
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
         \Fm{\phi(x) = \prod_{i=1}^n p^{e_i - 1}_i (p_i - 1)}
      \end{DisplayFormulae}

      \TFiveTitle{Euler's theorem:}
      If $a$ and $b$ are relatively prime then
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
         \Fm{1 \equiv a^{\phi(b)} \bmod b}
      \end{DisplayFormulae}

      \TFiveTitle{Fermat's theorem:}
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
         \Fm{1 \equiv a^{p-1} \bmod p}
      \end{DisplayFormulae}

      \TFiveTitle{The Euclidean algorithm:}
      if $a > b$ are integers then
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
         \Fm{gcd(a, b) = \gcd(a \bmod b, b)}
      \end{DisplayFormulae}

      \AdjustSpace{1.5ex plus .5ex minus 1ex}
      If $\prod_{i=1}^n p^{e_i}_i$ is the prime factorization of $x$ then
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
         \Fm{S(x) = \sum_{d\vert x} d = \prod_{i=1}^n \frac{p^{e_i+1}_i - 1}{p_i - 1}}
      \end{DisplayFormulae}

      \TFiveTitle{Perfect Numbers:}
       $x$ is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.

      \TFiveTitle{Wilson's theorem:}
      $n$ is a prime iff $(n-1)! \equiv -1 \bmod n$.

      \TFiveTitle{M\"obius inversion:}
          \mbox{$\mu(i) = \left\{\begin{array}{@{\hspace{.2em plus .05em minus .05em}}l%
                                               @{\hspace{.3em plus .05em minus .05em}}l}
                                 1    & \text{if }i = 1 \\
                                 0    & \text{if $i$ is not square-free} \\
                                 (-1)^r &\text{if $i$ is the product of} \\
                                        &\text{$ir$ distinct primes.} \\
                              \end{array}\right.$}

       If $G(a) = \sum_{d \vert a} F(d)$
       then $F(a) = \sum_{d \vert a} \mu(d) G\Big(\frac{a}{d}\Big)$

     \TFiveTitle{Prime numbers:}
      \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber}
          %Equation 1
          \def\FirstPart{p_n =}
          \FmPartA{\FirstPart \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}+}
          \FmPartB{\FirstPart}{O\left(\frac{n}{\ln n}\right)}
          %Equation 2
          \def\FirstPart{\pi(n) =}
          \FmPartA{\FirstPart\frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2! n}{(\ln n)^3}+}
          \FmPartB{\FirstPart}{O\left(\frac{n}{(\ln n)^4}\right)}
      \end{DisplayFormulae}
  }
}