% Sample file: multline.tpl
% multiline math formula template file
% Section 5.2 Gathering formulas
\begin{gather}
x_{1} x_{2} + x_{1}^{2} x_{2}^{2} + x_{3}, \label{E:mm1.1}\\
x_{1} x_{3} + x_{1}^{2} x_{3}^{2} + x_{2}, \label{E:mm1.2}\\
x_{1} x_{2} x_{3}. \label{E:mm1.3}
\end{gather}
% 5.3 Splitting a long formula
\begin{multline}\label{E:mm2}
(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
+ (y_{1} y_{2} y_{3} y_{4} y_{5} +y_{1} y_{3} y_{4} y_{5} y_{6}
+ y_{1} y_{2} y_{4} y_{5} y_{6}
+ y_{1} y_{2} y_{3} y_{5} y_{6})^{2}\\
+ (z_{1} z_{2} z_{3} z_{4} z_{5} +z_{1} z_{3} z_{4} z_{5} z_{6}
+ z_{1} z_{2} z_{4} z_{5} z_{6}
+ z_{1} z_{2} z_{3} z_{5} z_{6})^{2}\\
+ (u_{1} u_{2} u_{3} u_{4} + u_{1} u_{2} u_{3} u_{5} +
u_{1} u_{2} u_{4} u_{5} + u_{1} u_{3} u_{4} u_{5})^{2}
\end{multline}
\begin{multline*}
(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
+ (x_{1} x_{2} x_{3} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{3} x_{5} x_{6})^{2}\\
+ (x_{1} x_{2} x_{3} x_{4} + x_{1} x_{2} x_{3} x_{5}
+ x_{1} x_{2} x_{4} x_{5} + x_{1} x_{3} x_{4} x_{5})^{2}
\end{multline*}
\begin{setlength}{\multlinegap}{0pt}
\begin{multline*}
(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
+ (x_{1} x_{2} x_{3} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{3} x_{5} x_{6})^{2}\\
+ (x_{1} x_{2} x_{3} x_{4} + x_{1} x_{2} x_{3} x_{5}
+ x_{1} x_{2} x_{4} x_{5} + x_{1} x_{3} x_{4} x_{5})^{2}
\end{multline*}
\end{setlength}
\begin{multline*}
(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
\shoveleft{+ (x_{1} x_{2} x_{3} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{3} x_{5} x_{6})^{2}}\\
+ (x_{1} x_{2} x_{3} x_{4} + x_{1} x_{2} x_{3} x_{5}
+ x_{1} x_{2} x_{4} x_{5} + x_{1} x_{3} x_{4} x_{5})^{2}
\end{multline*}
% 5.4.3 Group numbering
\begin{gather}
x_{1} x_{2} + x_{1}^{2} x_{2}^{2} + x_{3},\label{E:mm1} \\
x_{1} x_{3} + x_{1}^{2} x_{3}^{2} + x_{2},\tag{\ref{E:mm1}a}\\
x_{1} x_{2} x_{3};\tag{\ref{E:mm1}b}
\end{gather}
\begin{subequations}\label{E:gp}
\begin{gather}
x_{1} x_{2} + x_{1}^{2} x_{2}^{2} + x_{3},\label{E:gp1}\\
x_{1} x_{3} + x_{1}^{2} x_{3}^{2} + x_{2},\label{E:gp2}\\
x_{1} x_{2} x_{3},\label{E:gp3}
\end{gather}
\end{subequations}
% 5.5 Aligned columns
\begin{align}\label{E:mm3}
f(x) &= x + yz & g(x) &= x + y + z\\
h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
\notag
\end{align}
% 5.5.1 An align variant
\begin{flalign}\label{E:mm3fl}
f(x) &= x + yz & g(x) &= x + y + z\\
h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
\notag
\end{flalign}
% 5.5.2 eqnarray, the ancestor of align
\begin{eqnarray}
x & = & 17y \\
y & > & a + b + c
\end{eqnarray}
\begin{align}
x & = 17y \\
y & > a + b + c
\end{align}
% 5.5.3 The subformula rule revisited
\begin{align}
x_{1} + y_{1} + \left( \sum_{i < 5} \binom{5}{i}
&+ a^{2} \right)^{2}\\
\left( \sum_{i < 5} \binom{5}{i} + \alpha^{2} \right)^{2}
\end{align}
\begin{align*}
&x_{1} + y_{1} + \left( \sum_{i < 5} \binom{5}{i}
+ a^{2} \right)^{2}\\
&\phantom{x_{1} + y_{1} + {}}
\left( \sum_{i < 5} \binom{5}{i} + \alpha^{2} \right)^{2}
\end{align*}
% 5.5.4 The alignat environment
\begin{alignat}{2}\label{E:mm3A}
f(x) &= x + yz & g(x) &= x + y + z\\
h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
\notag
\end{alignat}
\begin{alignat}{2}\label{E:mm3B}
f(x) &= x + yz & g(x) &= x + y + z\\
h(x) &= xy + xz + yz \qquad & k(x) &= (x + y)(x + z)(y + z)
\notag
\begin{alignat}{2}\label{E:mm4}
x &= x \wedge (y \vee z) & &\quad\text{(by distributivity)}\\
&= (x \wedge y) \vee (x \wedge z) & &
\quad\text{(by condition (M))}\notag\\
&= y \vee z \notag
\end{alignat}
\begin{alignat}{2}
(A + B C)x &+{} &C &y = 0,\\
Ex &+{} &(F + G)&y = 23.
\end{alignat}
\begin{alignat}{4}
a_{11}x_1 &+ a_{12}x_2 &&+ a_{13}x_3 && &&= y_1,\\
a_{21}x_1 &+ a_{22}x_2 && &&+ a_{24}x_4 &&= y_2,\\
a_{31}x_1 & &&+ a_{33}x_3 &&+ a_{34}x_4 &&= y_3.
\end{alignat}
% 5.5.5 Intertext
\begin{align}\label{E:mm5}
h(x) &= \int \left(
\frac{ f(x) + g(x) }
{1 + f^{2}(x)} +
\frac{1 + f(x)g(x)}
{ \sqrt{1 - \sin x} }
\right) \, dx\\
\intertext{The reader may find the following form easier to
read:}
&= \int \frac{1 + f(x)}
{1 + g(x)}
\, dx - 2 \arctan(x - 2) \notag
\end{align}
\begin{align*}
f(x) &= x + yz & \qquad g(x) &= x + y + z \\
\intertext{The reader also may find the following
polynomials useful:}
h(x) &= xy + xz + yz
& \qquad k(x) &= (x + y)(x + z)(y + z)
\end{align*}
% 5.6 Aligned subsidiary math environments
% 5.6.1 Subsidiary variants of aligned math environments
\[
\begin{aligned}
x &= 3 + \mathbf{p} + \alpha \\
y &= 4 + \mathbf{q}\\
z &= 5 + \mathbf{r} \\
u &=6 + \mathbf{s}
\end{aligned}
\text{\qquad using\qquad}
\begin{gathered}
\mathbf{p} = 5 + a + \alpha \\
\mathbf{q} = 12 \\
\mathbf{r} = 13 \\
\mathbf{s} = 11 + d
\end{gathered}
\]
\begin{align}\label{E:mm5}
h(x) &= \int \left(
\frac{ f(x) + g(x) }
{1 + f^{2}(x)} +
\frac{1 + f(x)g(x)}
{ \sqrt{1 - \sin x} }
\right) \, dx\\
\intertext{The reader may find the following form easier to
read:}
&= \int \frac{1 + f(x)}
{1 + g(x)}
\, dx - 2 \arctan(x - 2) \notag
\end{align}
\begin{equation}\label{E:mm6}
\begin{aligned}
h(x) &= \int \left(
\frac{ f(x) + g(x) }
{ 1 + f^{2}(x) } +
\frac{ 1 + f(x)g(x) }
{ \sqrt{1 - \sin x} }
\right) \, dx\\
&= \int \frac{ 1 + f(x) }
{ 1 + g(x) } \, dx - 2 \arctan (x - 2)
\end{aligned}
\end{equation}
\[
\begin{aligned}[b]
x &= 3 + \mathbf{p} + \alpha \\
y &= 4 + \mathbf{q}\\
z &= 5 + \mathbf{r} \\
u &=6 + \mathbf{s}
\end{aligned}
\text{\qquad using\qquad}
\begin{gathered}[b]
\mathbf{p} = 5 + a + \alpha \\
\mathbf{q} = 12 \\
\mathbf{r} = 13 \\
\mathbf{s} = 11 + d
\end{gathered}
\]
% 5.6.2 Split
\begin{equation}\label{E:mm7}
\begin{split}
(x_{1}x_{2}&x_{3}x_{4}x_{5}x_{6})^{2}\\
&+ (x_{1}x_{2}x_{3}x_{4}x_{5}
+ x_{1}x_{3}x_{4}x_{5}x_{6}
+ x_{1}x_{2}x_{4}x_{5}x_{6}
+ x_{1}x_{2}x_{3}x_{5}x_{6})^{2}
\end{split}
\end{equation}
\begin{align}\label{E:mm8}
\begin{split}
f &= (x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
&= (x_{1} x_{2} x_{3} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{3} x_{5} x_{6})^{2},
\end{split}\\
g &= y_{1} y_{2} y_{3}.\label{E:mm9}
\end{align}
\begin{gather}\label{E:mm10}
\begin{split}
f &= (x_{1} x_{2} x_{3} x_{4} x_{5} x_{6})^{2}\\
&= (x_{1} x_{2} x_{3} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{4} x_{5} x_{6}
+ x_{1} x_{2} x_{3} x_{5} x_{6})^{2}\\
&= (x_{1} x_{2} x_{3} x_{4}
+ x_{1} x_{2} x_{3} x_{5}
+ x_{1} x_{2} x_{4} x_{5}
+ x_{1} x_{3} x_{4} x_{5})^{2}
\end{split}\\
\begin{align*}
g &= y_{1} y_{2} y_{3}\\
h &= z_{1}^{2} z_{2}^{2} z_{3}^{2} z_{4}^{2}
\end{align*}
\end{gather}
% 5.7 Adjusted columns
\begin{equation*}
\left(
\begin{matrix}
a + b + c & uv & x - y & 27\\
a + b & u + v & z & 1340
\end{matrix}
\right) =
\left(
\begin{matrix}
1 & 100 & 115 & 27\\
201 & 0 & 1 & 1340
\end{matrix}
\right)
\end{equation*}
\begin{equation*}
\left(
\begin{array}{cccr}
a + b + c & uv & x - y & 27\\
a + b & u + v & z & 1340
\end{array}
\right) =
\left(
\begin{array}{rrrr}
1 & 100 & 115 & 27\\
201 & 0 & 1 & 1340
\end{array}
\right)
\end{equation*}
\begin{equation}\label{E:mm11}
f(x) =
\begin{cases}
-x^{2}, &\text{\CMR if $x < 0$;} \\
\alpha + x, &\text{\CMR if $ 0 \leq x \leq 1$;}\\
x^{2}, &\text{\CMR otherwise.}
\end{cases}
\end{equation}
% 5.7.1 Matrices
\begin{equation*}
\left(
\begin{matrix}
a + b + c & uv & x - y & 27 \\
a + b & u + v & z & 1340
\end{matrix}
\right) =
\left(
\begin{matrix}
1 & 100 & 115 & 27 \\
201 & 0 & 1 & 1340
\end{matrix}
\right)
\end{equation*}
\begin{matrix}
a + b + c & uv & x - y & 27 \\
a + b & u + v & z & 134
\end{matrix}
\begin{equation}\label{E:mm12}
\setcounter{MaxMatrixCols}{12}
\begin{matrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
1 & 2 & 3 & \hdotsfor{7} & 11 & 12
\end{matrix}
\end{equation}
\begin{equation}\label{E:mm12dupl}
\setcounter{MaxMatrixCols}{12}
\begin{matrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
1 & 2 & 3 & \hdotsfor[3]{7} & 11 & 12
\end{matrix}
\end{equation}
% Matrix variants
\begin{alignat*}{3}
&\
\begin{matrix}
a + b + c & uv\\
a + b & c + d
\end{matrix}
\qquad
& &
\begin{pmatrix}
a + b + c & uv\\
a + b & c + d
\end{pmatrix}
\qquad
& &
\begin{bmatrix}
a + b + c & uv\\
a + b & c + d
\end{bmatrix}
\\
&
\begin{vmatrix}
a + b + c & uv\\
a + b & c + d
\end{vmatrix}
\qquad
& &
\begin{Vmatrix}
a + b + c & uv\\
a + b & c + d
\end{Vmatrix}
\qquad
& &
\begin{Bmatrix}
a + b + c & uv\\
a + b & c + d
\end{Bmatrix}
\end{alignat*}
\begin{equation*}
\left(
\begin{matrix}
1 & 0 & \dots & 0 \\
0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \dots & 1
\end{matrix}
\right]
\end{equation*}
\end{verbatim}
which produces
\begin{equation*}
\left(
\begin{matrix}
1 & 0 & \dots & 0 \\
0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \dots & 1
\end{matrix}
\right]
\end{equation*}
% Small matrix
$\begin{pmatrix}
a + b + c & uv\\
a + b & c + d
\end{pmatrix}$
$\left(
\begin{smallmatrix}
a + b + c & uv \\
a + b & c + d
\end{smallmatrix}
\right)$
% 5.7.2 Arrays
\begin{equation*}
\left(
\begin{array}{cccc}
a + b + c & uv & x - y & 27 \\
a + b & u + v & z & 134
\end{array}
\right)
\end{equation*}
% 5.7.3 Cases
\begin{equation}
f(x)=
\begin{cases}
-x^{2}, &\text{if $x < 0$;}\\
\alpha + x, &\text{if $0 \leq x \leq 1$;}\\
x^{2}, &\text{otherwise.}
\end{cases}
\end{equation}
% 5.8 Commutative diagrams
\[
\begin{CD}
A @>>> B \\
@VVV @VVV\\
C @= D
\end{CD}
\]
\[
\begin{CD}
\mathbb{C} @>H_{1}>> \mathbb{C} @>H_{2}>> \mathbb{C} \\
@VP_{c,3}VV @VP_{\bar{c},3}VV @VVP_{-c,3}V \\
\mathbb{C} @>H_{1}>> \mathbb{C} @>H_{2}>> \mathbb{C}
\end{CD}
\]
\[
\begin{CD}
A @>\log>> B @>>\text{bottom}> C
@= D @<<< E
@<<< F\\
@V\text{one-one}VV @. @AA\text{onto}A @|\\
X @= Y @>>> Z
@>>> U\\
@A\beta AA @AA\gamma A @VVV @VVV\\
D @>\alpha>> E @>>> H
@. I\\
\end{CD}
\]
% 5.9 Pagebreak
{\allowdisplaybreaks
\begin{align}\label{E:mm13}
a &= b + c,\\
d &= e + f,\\
x &= y + z,\\
u &= v + w.
\end{align}
}% end of \allowdisplaybreaks