% Introductory sample article: intrart.tex
% Typeset with LaTeX format

\documentclass{article}
\usepackage{amsmath,amssymb}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}

\begin{document}
\title{A construction of complete-simple\\
      distributive lattices}
\author{George~A. Menuhin\thanks{Research supported
  by the NSF under grant number~23466.}\\
  Computer Science Department\\
  Winnebago, Minnesota 23714\\
  [email protected]}
\date{March 15, 1995}
\maketitle

\begin{abstract}
  In this note we prove that there exist \emph{complete-simple
  distributive lattices}, that is, complete distributive
  lattices in which there are only two complete congruences.
\end{abstract}

\section{Introduction} \label{S:intro}
In this note we prove the following result:

\begin{theorem}
  There exists an infinite complete distributive lattice $K$
  with only the two trivial complete congruence relations.
\end{theorem}

\section{The $\Pi^{*}$ construction} \label{S:P*}
The following construction is crucial in our proof of our Theorem:

\begin{definition} \label{D:P*}
  Let $D_{i}$, $i \in I$, be complete distributive
  lattices satisfying condition~\textup{(J)}.  Their
  $\Pi^{*}$ product is defined as follows:
  \[
     \Pi^{*} ( D_{i} \mid i \in I ) =
      \Pi ( D_{i}^{-} \mid i \in I ) + 1;
  \]
  that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
  $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
\end{definition}

\begin{notation}
  If $i \in I$ and $d \in D_{i}^{-}$, then
  \[
     \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
      \dots \rangle
  \]
  is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
  $i$th component is $d$ and all the other components
  are $0$.
\end{notation}

See also Ernest~T. Moynahan~\cite{eM57a}.

Next we verify the following result:

\begin{theorem} \label{T:P*}
   Let $D_{i}$, $i \in I$, be complete distributive
  lattices satisfying condition~\textup{(J)}.  Let $\Theta$
  be a complete congruence relation on
  $\Pi^{*} ( D_{i} \mid i \in I )$.
  If there exist $i \in I$ and $d \in D_{i}$ with
  $d < 1_{i}$ such that for all $d \leq c < 1_{i}$,
  \begin{equation} \label{E:cong1}
     \langle \dots, 0, \dots,\overset{i}{d},
     \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
     \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
  \end{equation}
  then $\Theta = \iota$.
\end{theorem}

\emph{Proof.} Since
\begin{equation} \label{E:cong2}
  \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
   \dots \rangle \equiv \langle \dots, 0, \dots,
   \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows
from condition~(C) that
\begin{align} \label{E:cong}
  & \langle \dots, \overset{i}{d}, \dots, 0,
   \dots \rangle \equiv\\
  &\qquad \qquad \quad \bigvee ( \langle \dots, 0, \dots,
   \overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
   \equiv 1 \pmod{\Theta}. \notag
\end{align}

Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle$, we obtain

\begin{align} \label{E:comp}
  0 = & \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
   \rangle \wedge \langle \dots, 0, \dots, \overset{j}{a},
   \dots, 0, \dots \rangle \equiv\\
   &\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
   \rangle \pmod{\Theta}, \notag
\end{align}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\[
  0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
   \dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.

\begin{thebibliography}{9}
  \bibitem{sF90}
     Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis,
     University of Winnebago, Winnebago, MN, December 1990.
  \bibitem{gM68}
     George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand,
     Princeton-Toronto-London-Mel\-bourne, 1968.
  \bibitem{eM57}
     Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone}, Acta Math.
     Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
  \bibitem{eM57a}
     Ernest~T. Moynahan, \emph{Ideals and congruence relations in
     lattices.~II}, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
     (1957), 417--434.
\end{thebibliography}

\end{document}