%%
%%  An UIT Edition example
%%
%%  Example 04-01-3 on page 70.
%%
%%  Copyright (C) 2012 Vo\ss
%%
%%  It may be distributed and/or modified under the conditions
%%  of the LaTeX Project Public License, either version 1.3
%%  of this license or (at your option) any later version.
%%
%%  See http://www.latex-project.org/lppl.txt for details.
%%

% Show page(s) 1,2,3

%% ====
\PassOptionsToClass{}{beamer}
\documentclass{exabeamer}
% graphic converted to gray in book
\usepackage[utf8]{inputenc}

%\StartShownPreambleCommands
\useinnertheme{circles}
\useinnertheme{inmargin}
%\StopShownPreambleCommands

\begin{document}
\title{Introduction to Analytic Geometry}
\author{Gerhard Kowalewski}
\date{1910}
\frame{\maketitle}
\section{Research and studies}
\begin{frame}{The integral and its geometric applications.}
We assume that the theory of irrational numbers is known.

\begin{enumerate}[<+->]
\item The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$
   that satisfy the condition $a\le x\le b$.
\item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each
   member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or
   irrational number, i.e.\ each $n$ by a number $x_n$.
\item $\lim x_n=g$ means that almost all members of the sequence are within each
   neighbourhood of $g$.
\item \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
   if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2,
   x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
\end{enumerate}
\end{frame}
\end{document}