%%
%%  An UIT Edition example
%%
%%  Example 01-02-1 on page 10.
%%
%%  Copyright (C) 2012 Vo\ss
%%
%%  It may be distributed and/or modified under the conditions
%%  of the LaTeX Project Public License, either version 1.3
%%  of this license or (at your option) any later version.
%%
%%  See http://www.latex-project.org/lppl.txt for details.
%%

% Show page(s) 1,2

%% ====
\PassOptionsToClass{}{beamer}
\documentclass{exabeamer}
\usepackage[utf8]{inputenc}

%\StartShownPreambleCommands
\documentclass{beamer}
%\StopShownPreambleCommands

\begin{document}
\begin{frame}{Negative example}
We assume that the \textbf{theory} of \textbf{irrational numbers} is known.
\begin{enumerate}
\item The \textbf{interval} $\langle a,b\rangle$ contains all \textbf{numbers} $x$ that satisfy
  the condition $a\le x \le b$.
\item A \textbf{sequence of numbers} or \textbf{sequence} is created by replacing each
      member of the infinite \textbf{sequence of numbers} $1,2,3,\ldots$ by some rational or
      irrational number, i.e.\ each $n$ by a number $x_n$.
\item $\lim x_n=g$ means that almost all members of the sequence are within each
  \textbf{neighbourhood} of $g$.
\item  \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2,
x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
\end{enumerate}
\end{frame}
\begin{frame}{Positive example}
We assume that the \emph{theory} of \emph{irrational numbers} is know.
\begin{enumerate}
\item The \emph{interval} $\langle a,b\rangle$ contains all \emph{numbers} $x$ that satisfy
  the condition $a\le x \le b$.
\item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each
      member of the infinite \emph{sequence of numbers} $1,2,3,\ldots$ by some rational or
      irrational number, i.e.\ each $n$ by a number $x_n$.
\item $\lim x_n=g$ means that almost all members of the sequence are within each
  \emph{neighbourhood} of $g$.
\item  \emph{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
if and only if \emph{each} sub-sequence $x^\prime_1,x^\prime_2,
x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
\end{enumerate}
\end{frame}
\end{document}