Generalized diagram of different components inside an AC drive
with voltage intermediate circuit
\end{comment}
\renewcommand*{\familydefault}{\sfdefault}
\begin{tikzpicture}[
start chain=going right,
box/.style={
on chain,join,draw,
minimum height=3cm,
text centered,
minimum width=2cm,
},
every join/.style={ultra thick},
node distance=5mm
]
\node [on chain,join,xshift=5mm]{AC out};
% Chain ends here
% CU box
\node [
rectangle,draw,
below=5mm of ic,
minimum width=10cm,
minimum height=1cm,
] (cu) {\textbf{Control unit}};
% PU box
\node [
rectangle,draw,
above=2mm of cu,
minimum width=10cm,
minimum height=4cm,
label=\textbf{Power unit},
] (pu) {};
% Connections between CU and PU
\draw[<->] (rec.south) -- ++(0,-5mm);
\draw[<->] (cu.north) to (ic.south);
\draw[<->] (inv.south) -- ++(0,-5mm);
\end{tikzpicture}
Figure 9.4:
% Author: Daniel Steger
% Source: Mosaic from Pompeji
% Casa degli Armorini Dorati, Living room, mosaic
\begin{comment}
:Title: Mosaic from Pompeii
A decorative element from a mosaic in the living room of Casa degli Armorini Dorati, Pompeii. The example shows the power of PGF's mathematical engine.
\end{comment}
%Configuration: change this to define number of intersections:
% 5 degree mean 360/10 = 36 elements
\def\alpha{5} % degree
\def\layer{5}
\begin{scope}[scale=5]
% Radius R = 1
% The figure is constructed by intersecting circles Cx of radius R.
% M_Cx lies on the circle C with a radius \alpha degree from the outer circle R
% and a distance defined by \alpha degree.
% It is sufficent to calculate one special M_C, which is intersecting the x-axis
% at distance R from (0,0).
\pgfmathsetmacro\sinTriDiff{sin(60-\alpha)}
\pgfmathsetmacro\cosTriDiff{1-cos(60-\alpha)}
% The distance from the (0,0).
\pgfmathsetmacro\radiusC{sqrt(\cosTriDiff*\cosTriDiff + \sinTriDiff*\sinTriDiff)}
% Angle of M_C (from x-axis)
\pgfmathsetmacro\startAng{\alpha + atan(\sinTriDiff/\cosTriDiff)}
% The segment layer are \alpha degree apart
\pgfmathsetmacro\al{\alpha*\layer}
% For each segment create the intersection parts of the circles by using arcs
\foreach \x in {0,\alpha,...,\al}
{
% Calculate the polar coordiantes of M_Cx. We take the M_C from above
% and can calculate all other M_Cx by adding \alpha
\pgfmathsetmacro\ang{\x + \startAng}
% From ths we get the (x,y) coordinates
\pgfmathsetmacro\xRs{\radiusC*cos(\ang)}
\pgfmathsetmacro\yRs{\radiusC*sin(\ang)}
% Now we intersect each new M_C with the x-axis:
% We can find the radius of concentric inner circles
\pgfmathsetmacro\radiusLayer{\xRs + sqrt( 1 - \yRs*\yRs )}
% To calculate angles for the arcs later, this angle is needed
\pgfmathsetmacro\angRs{acos(\yRs)}
% We need to have the angle from the previous loop as well
\pgfmathsetmacro\angRss{acos(\radiusC*sin(\ang-\alpha))}
% Add some fading by \ang
\colorlet{anglecolor}{black!\ang!green}
% The loop needs to run a whole.
% We don't want to cope with angles > 360 degree, adapt the limits.
\pgfmathsetmacro\step{2*\alpha - 180}
\pgfmathsetmacro\stop{180-2*\alpha}
\foreach \y in {-180, \step ,..., \stop}
{
\pgfmathsetmacro\deltaAng{\y-\x}
% This are the arcs which are definied by the intersection of 3 circles
\filldraw[color=anglecolor,draw=bordercolor]
(\y-\x:\radiusLayer)
arc (-90+\angRs+\deltaAng : \alpha-90+\angRss+\deltaAng :1)
arc (\alpha+90-\angRss+\deltaAng : 2*\alpha+90-\angRs+\deltaAng :1)
arc (\deltaAng+2*\alpha : \deltaAng : \radiusLayer);
}
% helper circles & lines
%\draw[color=gray] (\xRs,\yRs) circle (1);
%\draw[color=gray] (\xRs,-\yRs) circle (1);
%\draw[color=blue] (0,0) circle (\radiusLayer);
%\draw[color=blue, very thick] (0,0) -- (0:1);
%\draw[color=blue, very thick] (0,0) -- (\ang:\radiusC) -- (\xRs,0);
%\draw[color=blue, very thick] (\xRs,\yRs) -- (0:\radiusLayer);
%\filldraw[color=blue!20, very thick] (\xRs,\yRs) --
% (\xRs,\yRs-0.3) arc (-90:-90+\angRs:0.2) -- cycle;
}
% Additional inner decoration element
\pgfmathsetmacro\xRs{\radiusC*cos(\al+\startAng)}
\pgfmathsetmacro\yRs{\radiusC*sin(\al+\startAng)}
\pgfmathsetmacro\radiusLayer{\xRs + sqrt( 1 - \yRs*\yRs )}
\draw[line width=2, color=bordercolor] (0,0) circle (.8*\radiusLayer);
\pgfmathsetmacro\radiusSmall{.7*\radiusLayer}
% There are six elements to create. Avoid angles >360 degree.
\foreach \x in {-60,0,...,240}
{
\fill[color=anglecolor] (\x:\radiusSmall) arc (-180+\x+60: -180+\x: \radiusSmall)
arc (0+\x: -60+\x: \radiusSmall)
arc (120+\x: 60+\x: \radiusSmall);
}
% The outer decoration
\foreach \x in {0, 4, ..., 360}
{
\fill[color=anglecolor] (\x:1) -- (\x+3:1.05) -- (\x+5:1.05) -- (\x+2:1) -- cycle;
\fill[color=anglecolor] (\x+5:1.05) -- (\x+7:1.05) -- (\x+4:1.1) -- (\x+2:1.1) -- cycle;
}
\draw[line width=1, color=bordercolor] (0,0) circle (1);
\draw[line width=1, color=bordercolor] (0,0) circle (1.1);
\end{scope}