\documentclass{sample}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{chains}
\usepackage{verbatim}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{10pt}%
\usepackage[europeanresistors,americaninductors]{circuitikz}
\usetikzlibrary{chains}


\begin{document}
Figure 9.3:

% Generalized diagram of different components inside an AC drive
% with voltage intermediate circuit
% Author: Erno Pentzin (2013)

\begin{comment}
:Title: AC drive components
:Tags: Electrical engineering;Chains;circuitikz
:Author: Erno Pentzin
:Slug: ac-drive-components

Generalized diagram of different components inside an AC drive
with voltage intermediate circuit
\end{comment}
\renewcommand*{\familydefault}{\sfdefault}

\begin{tikzpicture}[
       start chain=going right,
       box/.style={
               on chain,join,draw,
               minimum height=3cm,
               text centered,
               minimum width=2cm,
       },
       every join/.style={ultra thick},
       node distance=5mm
]

\node [on chain] {AC in}; % Chain starts here

\node [box,xshift=5mm,label=above:Rectifier] (rec) {
       \begin{circuitikz}
               \draw (0,0) to[Do] (0,2);
       \end{circuitikz}
};

\node [on chain,join,draw,
       text width=1cm,
       minimum width=4cm,
       minimum height=1.6cm,
       label=above:Intermediate circuit,
] (ic) {
       \begin{circuitikz}[american voltages]
               \draw (0,0) to[pC,v>=$ $] (0,2);
       \end{circuitikz}
};

\node [box,label=above:Inverter] (inv) {
       \begin{circuitikz}
               \draw (0,0) node[nigbt] {};
       \end{circuitikz}
};

\node [on chain,join,xshift=5mm]{AC out};
% Chain ends here

% CU box
\node [
       rectangle,draw,
       below=5mm of ic,
       minimum width=10cm,
       minimum height=1cm,
] (cu) {\textbf{Control unit}};

% PU box
\node [
       rectangle,draw,
       above=2mm of cu,
       minimum width=10cm,
       minimum height=4cm,
       label=\textbf{Power unit},
] (pu) {};

% Connections between CU and PU
\draw[<->] (rec.south) -- ++(0,-5mm);
\draw[<->] (cu.north) to (ic.south);
\draw[<->] (inv.south) -- ++(0,-5mm);

\end{tikzpicture}

Figure 9.4:

% Author: Daniel Steger
% Source: Mosaic from Pompeji
% Casa degli Armorini Dorati, Living room, mosaic

\begin{comment}
:Title: Mosaic from Pompeii

A decorative element from a mosaic in the living room of Casa degli Armorini Dorati, Pompeii. The example shows the power of PGF's mathematical engine.
\end{comment}

\begin{tikzpicture}[cap=round]
% Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{bordercolor}{black}

%Configuration: change this to define number of intersections:
% 5 degree mean 360/10 = 36 elements
\def\alpha{5} % degree
\def\layer{5}

\begin{scope}[scale=5]
% Radius R = 1

% The figure is constructed by intersecting circles Cx of radius R.
%  M_Cx lies on the circle C with a radius \alpha degree from the outer circle R
%  and a distance defined by \alpha degree.

% It is sufficent to calculate one special M_C, which is intersecting the x-axis
% at distance R from (0,0).
\pgfmathsetmacro\sinTriDiff{sin(60-\alpha)}
\pgfmathsetmacro\cosTriDiff{1-cos(60-\alpha)}
% The distance from the (0,0).
\pgfmathsetmacro\radiusC{sqrt(\cosTriDiff*\cosTriDiff + \sinTriDiff*\sinTriDiff)}
% Angle of M_C (from x-axis)
\pgfmathsetmacro\startAng{\alpha + atan(\sinTriDiff/\cosTriDiff)}

% The segment layer are \alpha degree apart
\pgfmathsetmacro\al{\alpha*\layer}

% For each segment create the intersection parts of the circles by using arcs
\foreach \x in {0,\alpha,...,\al}
{
 % Calculate the polar coordiantes of M_Cx. We take the M_C from above
 % and  can calculate all other M_Cx by adding \alpha
 \pgfmathsetmacro\ang{\x + \startAng}
 % From ths we get the (x,y) coordinates
 \pgfmathsetmacro\xRs{\radiusC*cos(\ang)}
 \pgfmathsetmacro\yRs{\radiusC*sin(\ang)}

 % Now we intersect each new M_C with the x-axis:
 % We can find the radius of concentric inner circles
 \pgfmathsetmacro\radiusLayer{\xRs + sqrt( 1 - \yRs*\yRs )}

 % To calculate angles for the arcs later, this angle is needed
 \pgfmathsetmacro\angRs{acos(\yRs)}

% We need to have the angle from the previous loop as well
 \pgfmathsetmacro\angRss{acos(\radiusC*sin(\ang-\alpha))}


 % Add some fading by \ang
 \colorlet{anglecolor}{black!\ang!green}

 % The loop needs to run a whole.
 % We don't want to cope with angles > 360 degree, adapt the limits.
 \pgfmathsetmacro\step{2*\alpha - 180}
 \pgfmathsetmacro\stop{180-2*\alpha}
 \foreach \y in {-180, \step ,..., \stop}
 {
   \pgfmathsetmacro\deltaAng{\y-\x}
   % This are the arcs which are definied by the intersection of 3 circles
   \filldraw[color=anglecolor,draw=bordercolor]
       (\y-\x:\radiusLayer)
               arc (-90+\angRs+\deltaAng : \alpha-90+\angRss+\deltaAng :1)
               arc (\alpha+90-\angRss+\deltaAng : 2*\alpha+90-\angRs+\deltaAng :1)
               arc (\deltaAng+2*\alpha : \deltaAng : \radiusLayer);
 }


 % helper circles  & lines
 %\draw[color=gray] (\xRs,\yRs) circle (1);
 %\draw[color=gray] (\xRs,-\yRs) circle (1);
 %\draw[color=blue] (0,0) circle (\radiusLayer);
 %\draw[color=blue, very thick] (0,0) -- (0:1);
 %\draw[color=blue, very thick] (0,0) -- (\ang:\radiusC) -- (\xRs,0);
 %\draw[color=blue, very thick] (\xRs,\yRs) -- (0:\radiusLayer);
 %\filldraw[color=blue!20, very thick] (\xRs,\yRs) --
 % (\xRs,\yRs-0.3) arc (-90:-90+\angRs:0.2) -- cycle;

}
% Additional inner decoration element
\pgfmathsetmacro\xRs{\radiusC*cos(\al+\startAng)}
\pgfmathsetmacro\yRs{\radiusC*sin(\al+\startAng)}
\pgfmathsetmacro\radiusLayer{\xRs + sqrt( 1 - \yRs*\yRs )}
\draw[line width=2, color=bordercolor] (0,0) circle (.8*\radiusLayer);
\pgfmathsetmacro\radiusSmall{.7*\radiusLayer}
% There are six elements to create. Avoid angles >360 degree.
\foreach \x in {-60,0,...,240}
{
   \fill[color=anglecolor] (\x:\radiusSmall) arc (-180+\x+60: -180+\x: \radiusSmall)
                            arc (0+\x: -60+\x: \radiusSmall)
                            arc (120+\x: 60+\x: \radiusSmall);
}
% The outer decoration
\foreach \x in {0, 4, ..., 360}
{
 \fill[color=anglecolor] (\x:1) -- (\x+3:1.05) -- (\x+5:1.05) -- (\x+2:1) -- cycle;
 \fill[color=anglecolor] (\x+5:1.05) -- (\x+7:1.05) -- (\x+4:1.1) -- (\x+2:1.1) -- cycle;
}
\draw[line width=1, color=bordercolor] (0,0) circle (1);
\draw[line width=1, color=bordercolor] (0,0) circle (1.1);
\end{scope}

\end{tikzpicture}
\end{document}