% Sample file: sampart.tex
% The sample article for the amsart document class
\documentclass{amsart}
\usepackage{amssymb,latexsym}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem*{main}{Main~Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem*{notation}{Notation}
\numberwithin{equation}{section}
\begin{document}
\title[Complete-simple distributive lattices]
{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\email{
[email protected]}
\urladdr{
http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{Research supported by the NSF under grant number
23466.}
\keywords{Complete lattice, distributive lattice,
complete congruence, congruence lattice}
\subjclass[2000]{Primary: 06B10; Secondary: 06D05}
\date{March 15, 2006}
\begin{abstract}
In this note we prove that there exist \emph{complete-simple distributive
lattices,} that is, complete distributive lattices in which there are
only two complete congruences.
\end{abstract}
\maketitle
\section{Introduction}\label{S:intro}
In this note we prove the following result:
\begin{main}
There exists an infinite complete distributive lattice~$K$ with only
the two trivial complete congruence relations.
\end{main}
\section{The $D^{\langle 2 \rangle}$ construction}\label{S:Ds}
For the basic notation in lattice theory and universal algebra, see Ferenc~R.
Richardson~\cite{fR82} and George~A. Menuhin~\cite{gM68}. We start with some
definitions:
\begin{definition}\label{D:prime}
Let $V$ be a complete lattice, and let $\mathfrak{p} = [u, v]$ be
an interval of $V$. Then $\mathfrak{p}$ is called
\emph{complete-prime} if the following three conditions are satisfied:
\begin{enumerate}
\item $u$ is meet-irreducible but $u$ is \emph{not}
completely meet-irreducible;\label{m-i}
\item $v$ is join-irreducible but $v$ is \emph{not}
completely join-irreducible;\label{j-i}
\item $[u, v]$ is a complete-simple lattice.\label{c-s}
\end{enumerate}
\end{definition}
Now we prove the following result:
\begin{lemma}\label{L:ds}
Let $D$ be a complete distributive lattice satisfying
conditions \eqref{m-i} and~\eqref{j-i}. Then
$D^{\langle 2 \rangle}$ is a sublattice of $D^{2}$;
hence $D^{\langle 2 \rangle}$ is a lattice, and
$D^{\langle 2 \rangle}$ is a complete distributive
lattice satisfying conditions \eqref{m-i} and~\eqref{j-i}.
\end{lemma}
\begin{proof}
By conditions~\eqref{m-i} and \eqref{j-i},
$D^{\langle 2 \rangle}$ is a sublattice
of $D^{2}$. Hence, $D^{\langle 2 \rangle}$ is a lattice.
Since $D^{\langle 2 \rangle}$ is a sublattice of a distributive
lattice, $D^{\langle 2 \rangle}$ is a distributive lattice. Using
the characterization of standard ideals in Ernest~T. Moynahan~\cite{eM57},
$D^{\langle 2 \rangle}$ has a zero and a unit element,
namely, $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$.
To show that $D^{\langle 2 \rangle}$ is complete, let
$\varnothing \ne A \subseteq D^{\langle 2 \rangle}$, and let
$a = \bigvee A$ in $D^{2}$. If
$a \in D^{\langle 2 \rangle}$, then
$a = \bigvee A$ in $D^{\langle 2 \rangle}$; otherwise, $a$
is of the form $\langle b, 1 \rangle$ for some
$b \in D$ with $b < 1$. Now $\bigvee A = \langle 1, 1\rangle$
in $D^{2}$ and the dual argument shows that $\bigwedge A$ also
exists in $D^{2}$. Hence $D$ is complete. Conditions \eqref{m-i}
and~\eqref{j-i} are obvious for $D^{\langle 2 \rangle}$.
\end{proof}
\begin{corollary}\label{C:prime}
If $D$ is complete-prime, then so is $D^{\langle 2 \rangle}$.
\end{corollary}
The motivation for the following result comes from Soo-Key Foo~\cite{sF90}.
\begin{lemma}\label{L:ccr}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ such that
\begin{equation}\label{E:rigid}
\langle 1, d \rangle \equiv \langle 1, 1 \rangle \pmod{\Theta},
\end{equation}
for some $d \in D$ with $d < 1$. Then $\Theta = \iota$.
\end{lemma}
\begin{proof}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ satisfying \eqref{E:rigid}. Then $\Theta =
\iota$.
\end{proof}
\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial to our proof of the Main Theorem:
\begin{definition}\label{D:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Their $\Pi^{*}$ product is defined
as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid
i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$-th
component is $d$ and all the other components are $0$.
\end{notation}
See also Ernest~T. Moynahan \cite{eM57a}. Next we verify:
\begin{theorem}\label{T:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Let $\Theta$ be a complete
congruence
relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist
$i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that for
all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
\langle \dots, 0, \dots,\overset{i}{d},
\dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
\begin{proof}
Since
\begin{equation}\label{E:cong2}
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows from
condition~\eqref{c-s} that
\begin{equation}\label{E:cong}
\begin{split}
&\langle \dots, \overset{i}{d}, \dots, 0,
\dots \rangle\\
&\equiv \bigvee ( \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
\equiv 1 \pmod{\Theta}.
\end{split}
\end{equation}
Let $j \in I$ for $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle$,
we obtain
\begin{equation}\label{E:comp}
\begin{split}
0 &= \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
\rangle \wedge \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle\\
&\equiv \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
\rangle \pmod{\Theta}.
\end{split}
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp}, we get:
\[
0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\end{proof}
\begin{theorem}\label{T:P*a}
Let $D_{i}$ for $i \in I$ be complete distributive lattices
satisfying conditions \eqref{j-i} and~\eqref{c-s}. Then
$\Pi^{*} ( D_{i} \mid i \in I )$ also satisfies
conditions~\eqref{j-i} and \eqref{c-s}.
\end{theorem}
\begin{proof}
Let $\Theta$ be a complete congruence on
$\Pi^{*} ( D_{i} \mid i \in I )$. Let $i \in I$. Define
\[
\widehat{D}_{i} = \{ \langle \dots, 0, \dots, \overset{i}{d},
\dots, 0, \dots \rangle \mid d \in D_{i}^{-} \} \cup \{ 1 \}.
\]
Then $\widehat{D}_{i}$ is a complete sublattice of
$\Pi^{*} ( D_{i} \mid i \in I )$, and $\widehat{D}_{i}$ is
isomorphic to $D_{i}$. Let $\Theta_{i}$ be the restriction of
$\Theta$ to $\widehat{D}_{i}$.
Since $D_{i}\) is complete-simple, so is $\widehat{D}_{i}$, and
hence $\Theta_{i}$ is $\omega$ or $\iota$. If
$\Theta_{i} = \rho$ for all $i \in I$, then
$\Theta = \omega$. If there is an $i \in I$, such that
$\Theta_{i} = \iota$, then $0 \equiv 1 \pmod{\Theta}$, hence
$\Theta = \iota$.
\end{proof}
The Main Theorem follows easily from Theorems \ref{T:P*} and~\ref{T:P*a}.
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis, University
of Winnebago, Winnebago, MN, December, 1990.
\bibitem{gM68}
George~A. Menuhin, \emph{Universal algebra}. D.~Van Nostrand,
Princeton, 1968.
\bibitem{eM57}
Ernest~T. Moynahan, \emph{On a problem of M. Stone}, Acta Math.
Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
\bibitem{eM57a}
\bysame, \emph{Ideals and congruence relations in lattices}. II,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} (1957),
417--434 (Hungarian).
\bibitem{fR82}
Ferenc~R. Richardson, \emph{General lattice theory}. Mir, Moscow,
expanded and revised ed., 1982 (Russian).
\end{thebibliography}
\end{document}