% Introductory sample article with index entries: intrarti.tex

\documentclass{amsart}
\usepackage{amssymb,latexsym}
\usepackage{graphicx}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}

\makeindex

\begin{document}
\title{A construction of complete-simple\\
      distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
        University of Winnebago\\
        Winnebago, MN 53714}
\date{March 15, 2006}

\begin{abstract}
  In this note, we prove that there exist
  \emph{complete-simple distributive lattices,}
  that is, complete distributive lattices
 with only two complete congruences.
\end{abstract}

\maketitle

\section{Introduction}\label{S:intro}
In this note we prove the following result:

\begin{theorem}\index{Main Theorem}
There exists an infinite complete distributive
lattice~$K$ with only the two trivial complete
congruence relations.
\end{theorem}

\section{The $\Pi^{*}$ construction}\label{S:P*}
\index{pistar@$\Pi^{*}$ construction}%
\index{Main Theorem!exposition|(}%
The following construction is crucial in the proof
of our Theorem (see Figure~\ref{Fi:products}):

\begin{definition}\label{D:P*}
Let $D_{i}$, for $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.  Their
$\Pi^{*}$ product is defined as follows:
\[
  \Pi^{*} ( D_{i} \mid i \in I ) =
  \Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new
unit element.
\end{definition}

\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
 \langle \dots, 0, \dots, d, \dots, 0, \dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$-th component is $d$ and all the other components
are $0$.
\end{notation}

See also Ernest~T.
\index{Moynahan, Ernest~T.}%
Moynahan~\cite{eM57a}.

Next we verify the following result:
\index{lattice|textbf}%
\index{lattice!distributive}%
\index{lattice!distributive!complete}%
\begin{theorem}\label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
  \langle \dots, d, \dots, 0, \dots \rangle \equiv
  \langle \dots, c, \dots, 0, \dots \rangle
  \pod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}

\begin{figure}[hbt]
\centering\includegraphics{products}
\caption{}\label{Fi:products}
\end{figure}

\begin{proof}
Since
\begin{equation}\label{E:cong2}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\langle \dots, c, \dots, 0, \dots \rangle
\pod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation,
it follows from condition~(J) that
\begin{equation}\label{E:cong}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\bigvee ( \langle \dots, c, \dots, 0, \dots \rangle
\mid d \leq c < 1 ) \pod{\Theta}.
\end{equation}

Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2}
with $\langle \dots, a, \dots, 0, \dots \rangle$,
we obtain that
\begin{equation}\label{E:comp}
  0 = \langle \dots, a, \dots, 0, \dots \rangle
    \pod{\Theta},
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\[
  0 \equiv \bigvee ( \langle \dots, a, \dots, 0,
    \dots \rangle \mid a \in D_{j}^{-} ) = 1
    \pod{\Theta},
\]
hence $\Theta = \iota$.
\index{Main Theorem!exposition|)}
\end{proof}

\begin{thebibliography}{9}
  \bibitem{sF90}\index{Foo, Soo-Key}%
     Soo-Key Foo,
     \emph{Lattice Constructions},
     Ph.D. thesis,
     University of Winnebago, Winnebago, MN, December, 1990.

  \bibitem{gM68}\index{Menuhin, George~A.}%
     George~A. Menuhin,
     \emph{Universal Algebra}.
     D.~Van Nostrand, Princeton, 1968.

  \bibitem{eM57}\index{Moynahan, Ernest~T.}%
     Ernest~T. Moynahan,
     \emph{On a problem of M. Stone},
     Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.

  \bibitem{eM57a}\index{Moynahan, Ernest~T.}%
     Ernest~T. Moynahan,
     \emph{Ideals and congruence relations in lattices.} II,
     Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
     (1957), 417--434.
\end{thebibliography}

\printindex
\end{document}