% Introductory sample article: intrart.tex
% Typeset with LaTeX format

\documentclass{article}
\usepackage{latexsym}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}

\begin{document}
\title{A construction of complete-simple\\
      distributive lattices}
\author{George~A. Menuhin\thanks{Research supported
  by the NSF under grant number~23466.}\\
  Computer Science Department\\
  Winnebago, Minnesota 23714\\
  [email protected]}
\date{March 15, 1999}
\maketitle

\begin{abstract}
  In this note, we prove that there exist \emph{complete-simple
  distributive lattices,} that is, complete distributive
  lattices in which there are only two complete congruences.
\end{abstract}

\section{Introduction}\label{S:intro}
In this note, we prove the following result:

\begin{theorem}
  There exists an infinite complete distributive lattice $K$
  with only the two trivial complete congruence relations.
\end{theorem}

\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial in the proof of our Theorem:

\begin{definition}\label{D:P*}
  Let $D_{i}$, for $i \in I$, be complete distributive
  lattices satisfying condition~\textup{(J)}.  Their
  $\Pi^{*}$ product is defined as follows:
  \[
     \Pi^{*} ( D_{i} \mid i \in I ) =
      \Pi ( D_{i}^{-} \mid i \in I ) + 1;
  \]
  that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
  $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
\end{definition}

\begin{notation}
  If $i \in I$ and $d \in D_{i}^{-}$, then
  \[
     \langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle
  \]
  is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
  $i$-th component is $d$ and all the other components
  are $0$.
\end{notation}

See also Ernest~T. Moynahan~\cite{eM57a}.

Next we verify the following result:

\begin{theorem}\label{T:P*}
   Let $D_{i}$, $i \in I$, be complete distributive
  lattices satisfying condition~\textup{(J)}.  Let $\Theta$
  be a complete congruence relation on
  $\Pi^{*} ( D_{i} \mid i \in I )$.
  If there exist $i \in I$ and $d \in D_{i}$ with
  $d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
  \begin{equation}\label{E:cong1}
     \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
     \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta},
  \end{equation}
  then $\Theta = \iota$.
\end{theorem}

\emph{Proof.} Since
\begin{equation}\label{E:cong2}
  \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
  \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows
from condition~(J) that
\begin{equation}\label{E:cong}
   \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
   \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle
   \mid d \leq c < 1 ) \pmod{\Theta}.
\end{equation}

Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence (\ref{E:cong2}) with
$\langle \ldots, a, \ldots, 0, \ldots \rangle$, we obtain that
\begin{equation}\label{E:comp}
  0 = \langle \ldots, a, \ldots, 0, \ldots \rangle \pmod{\Theta},
\end{equation}
Using the completeness of $\Theta$ and (\ref{E:comp}),
we get:
\[
  0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0, \ldots \rangle
  \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.

\begin{thebibliography}{9}
  \bibitem{sF90}
     Soo-Key Foo,
     \emph{Lattice Constructions,}
     Ph.D. thesis,
     University of Winnebago, Winnebago, MN, December, 1990.
  \bibitem{gM68}
     George~A. Menuhin,
     \emph{Universal Algebra,}
     D.~van Nostrand, Princeton-Toronto-London-Melbourne, 1968.
  \bibitem{eM57}
     Ernest~T. Moynahan,
     \emph{On a problem of M.H. Stone,}
     Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
  \bibitem{eM57a}
     Ernest~T. Moynahan,
     \emph{Ideals and congruence relations in lattices.~II,}
     Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
     (1957), 417--434.
\end{thebibliography}

\end{document}