/* geometry.c
Copyright (C) 2005,2006,2007 Eugene K. Ressler, Jr.
This file is part of Sketch, a small, simple system for making
3d drawings with LaTeX and the PSTricks or TikZ package.
Sketch is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Sketch is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Sketch; see the file COPYING.txt. If not, see
http://www.gnu.org/copyleft */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "geometry.h"
#include "error.h"
#include "memutil.h"
// global constants
POINT_2D origin_2d = { 0, 0 };
POINT_3D origin_3d = { 0, 0, 0 };
VECTOR_2D I_2d = { 1, 0 };
VECTOR_2D J_2d = { 0, 1 };
VECTOR_3D I_3d = { 1, 0, 0 };
VECTOR_3D J_3d = { 0, 1, 0 };
VECTOR_3D K_3d = { 0, 0, 1 };
TRANSFORM identity = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
// numerics
FLOAT
max_float (FLOAT x, FLOAT y)
{
return x > y ? x : y;
}
FLOAT
min_float (FLOAT x, FLOAT y)
{
return x < y ? x : y;
}
// points
void
copy_pt_2d (POINT_2D r, POINT_2D s)
{
r[X] = s[X];
r[Y] = s[Y];
}
void
copy_pt_3d (POINT_3D r, POINT_3D s)
{
r[X] = s[X];
r[Y] = s[Y];
r[Z] = s[Z];
}
void
find_pt_3d_from_2d (POINT_3D r, POINT_2D pt)
{
r[X] = pt[X];
r[Y] = pt[Y];
r[Z] = 0;
}
// polyline initialization and cleanup
#define SET_NEXT_NULL a->next = NULL;
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYLINE_2D, POINT_2D, FLOAT, polyline_2d,
v, n_vertices, SET_NEXT_NULL)
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYLINE_3D, POINT_3D, FLOAT, polyline_3d,
v, n_vertices, SET_NEXT_NULL)
// polygon initialization and cleanup
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYGON_2D, POINT_2D, FLOAT, polygon_2d, v,
n_sides, SET_NEXT_NULL)
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYGON_3D, POINT_3D, FLOAT, polygon_3d, v,
n_sides, SET_NEXT_NULL)
// rudimentary vectors of variable size
void init_vec (VECTOR * v)
{
*v = 0;
}
void
clear_vec (VECTOR * v)
{
safe_free (*v);
init_vec (v);
}
void
setup_vec (VECTOR * v, SIZE n)
{
clear_vec (v);
*v = safe_malloc (n * sizeof (FLOAT));
}
void
init_and_setup_vec (VECTOR * v, SIZE n)
{
*v = safe_malloc (n * sizeof (FLOAT));
}
void
zero_vec (VECTOR r, SIZE n)
{
INDEX i;
for (i = 0; i < n; i++)
r[i] = 0;
}
void
copy_vec (VECTOR r, VECTOR v, SIZE n)
{
INDEX i;
for (i = 0; i < n; i++)
r[i] = v[i];
}
FLOAT
length_vec_2d (VECTOR_2D v)
{
return sqrt (dot_2d (v, v));
}
FLOAT
length_vec_3d (VECTOR_3D v)
{
return sqrt (dot_3d (v, v));
}
FLOAT
dist_2d (POINT_2D p1, POINT_2D p2)
{
VECTOR_2D dif;
sub_pts_2d (dif, p1, p2);
return length_vec_2d (dif);
}
FLOAT
dist_3d (POINT_3D p1, POINT_3D p2)
{
VECTOR_3D dif;
sub_pts_3d (dif, p1, p2);
return length_vec_3d (dif);
}
FLOAT
length_vec_2d_sqr (VECTOR_2D v)
{
return dot_2d (v, v);
}
FLOAT
length_vec_3d_sqr (VECTOR_3D v)
{
return dot_3d (v, v);
}
FLOAT
dist_2d_sqr (POINT_2D p1, POINT_2D p2)
{
VECTOR_2D dif;
sub_pts_2d (dif, p1, p2);
return length_vec_2d_sqr (dif);
}
FLOAT
dist_3d_sqr (POINT_3D p1, POINT_3D p2)
{
VECTOR_3D dif;
sub_pts_3d (dif, p1, p2);
return length_vec_3d_sqr (dif);
}
void
zero_vec_2d (VECTOR_2D v)
{
v[X] = v[Y] = 0;
}
void
zero_vec_3d (VECTOR_3D v)
{
v[X] = v[Y] = v[Z] = 0;
}
void
negate_vec_2d (VECTOR_2D r, VECTOR_2D v)
{
r[X] = -v[X];
r[Y] = -v[Y];
}
void
negate_vec_3d (VECTOR_3D r, VECTOR_3D v)
{
r[X] = -v[X];
r[Y] = -v[Y];
r[Z] = -v[Z];
}
void
copy_vec_2d (VECTOR_2D r, VECTOR_2D s)
{
r[X] = s[X];
r[Y] = s[Y];
}
void
copy_vec_3d (VECTOR_3D r, VECTOR_3D s)
{
r[X] = s[X];
r[Y] = s[Y];
r[Z] = s[Z];
}
void
scale_vec_2d (VECTOR_2D r, VECTOR_2D v, FLOAT s)
{
r[X] = v[X] * s;
r[Y] = v[Y] * s;
}
void
scale_vec_3d (VECTOR_3D r, VECTOR_3D v, FLOAT s)
{
r[X] = v[X] * s;
r[Y] = v[Y] * s;
r[Z] = v[Z] * s;
}
int
find_unit_vec_2d (VECTOR_2D r, VECTOR_2D v)
{
FLOAT len = length_vec_2d (v);
if (len <= FLT_EPSILON)
{
r[X] = 1;
r[Y] = 0;
return 0;
}
else
{
scale_vec_2d (r, v, 1 / len);
return 1;
}
}
int
find_unit_vec_3d (VECTOR_3D r, VECTOR_3D v)
{
FLOAT len = length_vec_3d (v);
if (len == FLT_EPSILON)
{
r[X] = 1;
r[Y] = r[Z] = 0;
return 0;
}
else
{
scale_vec_3d (r, v, 1 / len);
return 1;
}
}
void
add_vecs_2d (VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
r[X] = a[X] + b[X];
r[Y] = a[Y] + b[Y];
}
void
add_vecs_3d (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[X] + b[X];
r[Y] = a[Y] + b[Y];
r[Z] = a[Z] + b[Z];
}
void
sub_vecs_2d (VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
}
void
sub_vecs_3d (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
r[Z] = a[Z] - b[Z];
}
void
add_vec_to_pt_2d (POINT_2D r, POINT_2D pt, VECTOR_2D v)
{
r[X] = pt[X] + v[X];
r[Y] = pt[Y] + v[Y];
}
void
add_vec_to_pt_3d (POINT_3D r, POINT_3D pt, VECTOR_3D v)
{
r[X] = pt[X] + v[X];
r[Y] = pt[Y] + v[Y];
r[Z] = pt[Z] + v[Z];
}
void
add_scaled_vec_to_pt_2d (POINT_2D r, POINT_2D pt, VECTOR_2D v, FLOAT s)
{
r[X] = pt[X] + v[X] * s;
r[Y] = pt[Y] + v[Y] * s;
}
void
add_scaled_vec_to_pt_3d (POINT_3D r, POINT_3D pt, VECTOR_3D v, FLOAT s)
{
r[X] = pt[X] + v[X] * s;
r[Y] = pt[Y] + v[Y] * s;
r[Z] = pt[Z] + v[Z] * s;
}
void
sub_pts_2d (VECTOR_2D r, POINT_2D a, POINT_2D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
}
void
sub_pts_3d (VECTOR_3D r, POINT_3D a, POINT_3D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
r[Z] = a[Z] - b[Z];
}
void
fold_min_pt_2d (POINT_2D min, POINT_2D new_pt)
{
int i;
for (i = 0; i < 2; i++)
if (new_pt[i] < min[i])
min[i] = new_pt[i];
}
void
fold_min_pt_3d (POINT_3D min, POINT_3D new_pt)
{
int i;
for (i = 0; i < 3; i++)
if (new_pt[i] < min[i])
min[i] = new_pt[i];
}
void
fold_max_pt_2d (POINT_2D max, POINT_3D new_pt)
{
int i;
for (i = 0; i < 2; i++)
if (new_pt[i] > max[i])
max[i] = new_pt[i];
}
void
fold_max_pt_3d (POINT_3D max, POINT_3D new_pt)
{
int i;
for (i = 0; i < 3; i++)
if (new_pt[i] > max[i])
max[i] = new_pt[i];
}
FLOAT
dot_2d (VECTOR_2D a, VECTOR_2D b)
{
return a[X] * b[X] + a[Y] * b[Y];
}
FLOAT
dot_3d (VECTOR_3D a, VECTOR_3D b)
{
return a[X] * b[X] + a[Y] * b[Y] + a[Z] * b[Z];
}
void
cross (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[Y] * b[Z] - a[Z] * b[Y];
r[Y] = a[Z] * b[X] - a[X] * b[Z];
r[Z] = a[X] * b[Y] - a[Y] * b[X];
}
void
lerp_2d (POINT_2D r, FLOAT t, POINT_2D p1, POINT_2D p2)
{
r[0] = p1[0] + t * (p2[0] - p1[0]);
r[1] = p1[1] + t * (p2[1] - p1[1]);
}
void
lerp_3d (POINT_3D r, FLOAT t, POINT_3D p1, POINT_3D p2)
{
r[0] = p1[0] + t * (p2[0] - p1[0]);
r[1] = p1[1] + t * (p2[1] - p1[1]);
r[2] = p1[2] + t * (p2[2] - p1[2]);
}
int
line_intersect_2d (POINT_2D a, POINT_2D b, POINT_2D c, POINT_2D d,
FLOAT eps, FLOAT * t_ab, FLOAT * t_cd)
{
FLOAT dx_ab, dy_ab, dx_dc, dy_dc, det, dx_ac, dy_ac;
dx_ab = b[X] - a[X];
dy_ab = b[Y] - a[Y];
dx_dc = c[X] - d[X];
dy_dc = c[Y] - d[Y];
det = dx_ab * dy_dc - dx_dc * dy_ab;
if (-eps < det && det < eps)
return 1;
dx_ac = c[X] - a[X];
dy_ac = c[Y] - a[Y];
*t_ab = (dx_ac * dy_dc - dx_dc * dy_ac) / det;
*t_cd = (dx_ab * dy_ac - dx_ac * dy_ab) / det;
return 0;
}
void
find_polygon_plane (PLANE * plane, POLYGON_3D * polygon)
{
int i, j;
VECTOR_3D sum, dif;
zero_vec_3d (plane->p);
zero_vec_3d (plane->n);
for (i = 0, j = polygon->n_sides - 1; i < polygon->n_sides; j = i++)
{
add_vecs_3d (plane->p, plane->p, polygon->v[i]);
add_vecs_3d (sum, polygon->v[j], polygon->v[i]);
sub_vecs_3d (dif, polygon->v[j], polygon->v[i]);
plane->n[X] += dif[Y] * sum[Z];
plane->n[Y] += dif[Z] * sum[X];
plane->n[Z] += dif[X] * sum[Y];
}
scale_vec_3d (plane->p, plane->p, 1.0 / polygon->n_sides);
find_unit_vec_3d (plane->n, plane->n);
plane->c = -dot_3d (plane->p, plane->n);
}
int
pt_side_of_plane (PLANE * plane, POINT_3D p)
{
FLOAT d = dot_3d (p, plane->n) + plane->c;
return d < -PLANE_HALF_THICKNESS ? S_IN :
d > PLANE_HALF_THICKNESS ? S_OUT :
d < 0 ? S_IN_ON : d > 0 ? S_OUT_ON : S_ON;
}
int
polygon_side_of_plane (POLYGON_3D * polygon, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// initialize with last point in polygon
// scan for OUT-IN or IN-OUT pair
j = polygon->n_sides - 1;
j_side = pt_side_of_plane (plane, polygon->v[j]);
n_in = n_out = 0;
for (i = 0; i < polygon->n_sides; i++)
{
// advance to next vertex
i_side = pt_side_of_plane (plane, polygon->v[i]);
if ((i_side | j_side) == (S_IN | S_OUT))
// found a straddling pair
return S_SPLIT;
if (i_side & (S_IN | S_OUT))
// found an IN or an OUT; remember it
j_side = i_side;
// keep counts for polygons entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
j_side & (S_IN | S_OUT) ? j_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
# if TREAT_POLYLINE_POINTS_ON_PLANE_AS_IN_OR_OUT
// this will work only with BSPs, not with depth sort
// it causes polylines that end on a plane to be split into a line and a point
int
polyline_side_of_plane (POLYLINE_3D * polyline, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// predicate for "if more than one bit set..."
// 0 1 2 3 4 5 6 7
static int is_split_p[] = { 0, 0, 0, 1, 0, 1, 1, 1 };
// initialize with first point in polyline
// scan for OUT-IN or IN-OUT pair
j = 0;
i_side = pt_side_of_plane (plane, polyline->v[j]);
n_in = n_out = 0;
for (i = 1; i < polyline->n_vertices; i++)
{
// advance to next vertex, remembering side of last
j_side = i_side;
i_side = pt_side_of_plane (plane, polyline->v[i]);
if (is_split_p[(i_side | j_side) & 7])
return S_SPLIT;
// keep counts for polylines entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
i_side & (S_IN | S_OUT) ? i_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
#else
int
polyline_side_of_plane (POLYLINE_3D * polyline, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// initialize with last point in polygon
// scan for OUT-IN or IN-OUT pair
j = polyline->n_vertices - 1;
j_side = pt_side_of_plane (plane, polyline->v[j]);
n_in = n_out = 0;
for (i = 0; i < polyline->n_vertices; i++)
{
// advance to next vertex
i_side = pt_side_of_plane (plane, polyline->v[i]);
if ((i_side | j_side) == (S_IN | S_OUT))
// found a straddling pair
return S_SPLIT;
if (i_side & (S_IN | S_OUT))
// found an IN or an OUT; remember it
j_side = i_side;
// keep counts for polylines entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
j_side & (S_IN | S_OUT) ? j_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
#endif
void
init_box_2d (BOX_2D * b)
{
b->min[X] = b->min[Y] = FLOAT_MAX;
b->max[X] = b->max[Y] = -FLOAT_MAX;
}
void
init_box_3d (BOX_3D * b)
{
b->min[X] = b->min[Y] = b->min[Z] = FLOAT_MAX;
b->max[X] = b->max[Y] = b->max[Z] = -FLOAT_MAX;
}
void
fold_min_max_pt_2d (BOX_2D * b, POINT_2D p)
{
fold_min_pt_2d (b->min, p);
fold_max_pt_2d (b->max, p);
}
void
fold_min_max_pt_3d (BOX_3D * b, POINT_3D p)
{
fold_min_pt_3d (b->min, p);
fold_max_pt_3d (b->max, p);
}
void
fold_min_max_polygon_2d (BOX_2D * b, POLYGON_2D * polygon)
{
int i;
for (i = 0; i < polygon->n_sides; i++)
fold_min_max_pt_2d (b, polygon->v[i]);
}
void
fold_min_max_polygon_3d (BOX_3D * b, POLYGON_3D * polygon)
{
int i;
for (i = 0; i < polygon->n_sides; i++)
fold_min_max_pt_3d (b, polygon->v[i]);
}
void
fold_min_max_polyline_2d (BOX_2D * b, POLYLINE_2D * polyline)
{
int i;
for (i = 0; i < polyline->n_vertices; i++)
fold_min_max_pt_2d (b, polyline->v[i]);
}
void
fold_min_max_polyline_3d (BOX_3D * b, POLYLINE_3D * polyline)
{
int i;
for (i = 0; i < polyline->n_vertices; i++)
fold_min_max_pt_3d (b, polyline->v[i]);
}
void
copy_box_2d (BOX_2D * r, BOX_2D * s)
{
*r = *s;
}
void
copy_box_3d (BOX_3D * r, BOX_3D * s)
{
*r = *s;
}
int
boxes_2d_intersect_p (BOX_2D * a, BOX_2D * b)
{
if (a->max[X] < b->min[X]) // a left of b
return 0;
if (a->min[X] > b->max[X]) // a right of b
return 0;
if (a->max[Y] < b->min[Y]) // a below b
return 0;
if (a->min[Y] > b->max[Y]) // a above b
return 0;
return 1;
}
int
boxes_3d_intersect_p (BOX_2D * a, BOX_2D * b)
{
if (a->max[X] < b->min[X]) // a left of b
return 0;
if (a->min[X] > b->max[X]) // a right of b
return 0;
if (a->max[Y] < b->min[Y]) // a below b
return 0;
if (a->min[Y] > b->max[Y]) // a above b
return 0;
if (a->max[Z] < b->min[Z]) // a behind b
return 0;
if (a->min[Z] > b->max[Z]) // a in front of b
return 0;
return 1;
}
void
copy_transform (TRANSFORM r, TRANSFORM s)
{
int i;
for (i = 0; i < 16; i++)
r[i] = s[i];
}
#define R(I,J) r[IT(I,J)]
void
set_ident (TRANSFORM r)
{
R (1, 1) = 1; // hard code for speed
R (2, 1) = 0;
R (3, 1) = 0;
R (4, 1) = 0;
R (1, 2) = 0;
R (2, 2) = 1;
R (3, 2) = 0;
R (4, 2) = 0;
R (1, 3) = 0;
R (2, 3) = 0;
R (3, 3) = 1;
R (4, 3) = 0;
R (1, 4) = 0;
R (2, 4) = 0;
R (3, 4) = 0;
R (4, 4) = 1;
}
void
set_scale (TRANSFORM r, FLOAT sx, FLOAT sy, FLOAT sz)
{
set_ident (r);
R (1, 1) = sx;
R (2, 2) = sy;
R (3, 3) = sz;
}
void
set_translation (TRANSFORM r, FLOAT dx, FLOAT dy, FLOAT dz)
{
set_ident (r);
R (1, 4) = dx;
R (2, 4) = dy;
R (3, 4) = dz;
}
#define SQR(A) ((A) * (A))
void
set_angle_axis_rot (TRANSFORM r, FLOAT theta, VECTOR_3D u)
{
FLOAT c = cos (theta);
FLOAT s = sin (theta);
FLOAT d = 1 - c;
R (1, 1) = d * (SQR (u[X]) - 1) + 1;
R (1, 2) = d * u[X] * u[Y] - u[Z] * s;
R (1, 3) = d * u[X] * u[Z] + u[Y] * s;
R (2, 1) = d * u[X] * u[Y] + u[Z] * s;
R (2, 2) = d * (SQR (u[Y]) - 1) + 1;
R (2, 3) = d * u[Y] * u[Z] - u[X] * s;
R (3, 1) = d * u[X] * u[Z] - u[Y] * s;
R (3, 2) = d * u[Y] * u[Z] + u[X] * s;
R (3, 3) = d * (SQR (u[Z]) - 1) + 1;
R (1, 4) = R (4, 1) = R (2, 4) = R (4, 2) = R (3, 4) = R (4, 3) = 0;
R (4, 4) = 1;
}
void
set_angle_axis_rot_about_point (TRANSFORM r, FLOAT theta, POINT_3D p,
VECTOR_3D u)
{
VECTOR_3D u_unit;
TRANSFORM tmp;
if (u)
{
find_unit_vec_3d (u_unit, u);
}
else
{
u_unit[X] = u_unit[Y] = 0;
u_unit[Z] = 1;
}
set_angle_axis_rot (r, theta, u_unit);
if (p)
{
set_translation (tmp, -p[X], -p[Y], -p[Z]);
compose (r, r, tmp);
set_translation (tmp, p[X], p[Y], p[Z]);
compose (r, tmp, r);
}
}
void
set_perspective_projection (TRANSFORM r, FLOAT p)
{
set_scale (r, p, p, p);
R (4, 4) = 0;
R (4, 3) = -1;
}
void
set_perspective_transform (TRANSFORM r, FLOAT p)
{
set_scale (r, p, p, 1);
R (3, 4) = 1;
R (4, 3) = -1;
R (4, 4) = 0;
}
void
set_parallel_projection (TRANSFORM r)
{
set_scale (r, 1, 1, 0);
}
void
set_view_transform (TRANSFORM r, POINT_3D eye, VECTOR_3D vd, VECTOR_3D up)
{
static VECTOR_3D default_up = { 0, 1, 0 };
VECTOR_3D unit_vd, unit_up, h, v;
TRANSFORM tmp;
if (vd)
{
find_unit_vec_3d (unit_vd, vd);
}
else
{
negate_vec_3d (unit_vd, eye); // assumes point and vector are compatible
find_unit_vec_3d (unit_vd, unit_vd);
}
if (up)
find_unit_vec_3d (unit_up, up);
else
copy_vec_3d (unit_up, default_up);
cross (h, unit_vd, unit_up);
cross (v, h, unit_vd);
R (1, 1) = h[X];
R (1, 2) = h[Y];
R (1, 3) = h[Z];
R (1, 4) = 0;
R (2, 1) = v[X];
R (2, 2) = v[Y];
R (2, 3) = v[Z];
R (2, 4) = 0;
R (3, 1) = -unit_vd[X];
R (3, 2) = -unit_vd[Y];
R (3, 3) = -unit_vd[Z];
R (3, 4) = 0;
R (4, 1) = 0;
R (4, 2) = 0;
R (4, 3) = 0;
R (4, 4) = 1;
if (eye)
{
set_translation (tmp, -eye[X], -eye[Y], -eye[Z]);
compose (r, r, tmp);
}
}
void
set_view_transform_with_look_at (TRANSFORM r, POINT_3D eye,
POINT_3D look_at, VECTOR_3D up)
{
VECTOR_3D vd;
sub_vecs_3d (vd, look_at, eye);
set_view_transform (r, eye, vd, up);
}
#define M(I,J) m[IT(I,J)]
// invert a transform using the method of cofactors
// this code was generated by the Perl program geninv.pl
void
invert (TRANSFORM r, FLOAT * det_rtn, TRANSFORM m, FLOAT min_det)
{
int i;
FLOAT det;
FLOAT t001, t002, t003, t004, t005, t006, t007, t008,
t009, t010, t011, t012, t013, t014, t015, t016,
t017, t018, t019, t020, t021, t022, t023, t024,
t025, t026, t027, t028, t029, t030, t031, t032,
t033, t034, t035, t036, t037, t038, t039, t040,
t057, t058, t061, t062, t065, t066, t072, t073,
t076, t077, t085, t086, t097, t098, t101, t102,
t105, t106, t112, t113, t116, t117, t125, t126;
t001 = M (3, 3) * M (4, 4);
t002 = M (3, 4) * M (4, 3);
t003 = t001 - t002;
t004 = M (2, 2) * t003;
t005 = M (3, 2) * M (4, 4);
t006 = M (3, 4) * M (4, 2);
t007 = t006 - t005;
t008 = M (2, 3) * t007;
t009 = M (3, 2) * M (4, 3);
t010 = M (3, 3) * M (4, 2);
t011 = t009 - t010;
t012 = M (2, 4) * t011;
t013 = t004 + t008 + t012;
R (1, 1) = t013;
t014 = t002 - t001;
t015 = M (2, 1) * t014;
t016 = M (3, 1) * M (4, 4);
t017 = M (3, 4) * M (4, 1);
t018 = t016 - t017;
t019 = M (2, 3) * t018;
t020 = M (3, 1) * M (4, 3);
t021 = M (3, 3) * M (4, 1);
t022 = t021 - t020;
t023 = M (2, 4) * t022;
t024 = t015 + t019 + t023;
R (2, 1) = t024;
t025 = t005 - t006;
t026 = M (2, 1) * t025;
t027 = t017 - t016;
t028 = M (2, 2) * t027;
t029 = M (3, 1) * M (4, 2);
t030 = M (3, 2) * M (4, 1);
t031 = t029 - t030;
t032 = M (2, 4) * t031;
t033 = t026 + t028 + t032;
R (3, 1) = t033;
t034 = t010 - t009;
t035 = M (2, 1) * t034;
t036 = t020 - t021;
t037 = M (2, 2) * t036;
t038 = t030 - t029;
t039 = M (2, 3) * t038;
t040 = t035 + t037 + t039;
R (4, 1) = t040;
det =
(M (1, 1) * t013) + (M (1, 2) * t024) + (M (1, 3) * t033) +
(M (1, 4) * t040);
R (1, 2) = (M (1, 2) * t014) + (M (1, 3) * t025) + (M (1, 4) * t034);
R (2, 2) = (M (1, 1) * t003) + (M (1, 3) * t027) + (M (1, 4) * t036);
R (3, 2) = (M (1, 1) * t007) + (M (1, 2) * t018) + (M (1, 4) * t038);
R (4, 2) = (M (1, 1) * t011) + (M (1, 2) * t022) + (M (1, 3) * t031);
t057 = M (2, 3) * M (4, 4);
t058 = M (2, 4) * M (4, 3);
t061 = M (2, 2) * M (4, 4);
t062 = M (2, 4) * M (4, 2);
t065 = M (2, 2) * M (4, 3);
t066 = M (2, 3) * M (4, 2);
R (1, 3) =
((t057 - t058) * M (1, 2)) + ((t062 - t061) * M (1,
3)) + ((t065 -
t066) * M (1,
4));
t072 = M (2, 1) * M (4, 4);
t073 = M (2, 4) * M (4, 1);
t076 = M (2, 1) * M (4, 3);
t077 = M (2, 3) * M (4, 1);
R (2, 3) =
((t058 - t057) * M (1, 1)) + ((t072 - t073) * M (1,
3)) + ((t077 -
t076) * M (1,
4));
t085 = M (2, 1) * M (4, 2);
t086 = M (2, 2) * M (4, 1);
R (3, 3) =
((t061 - t062) * M (1, 1)) + ((t073 - t072) * M (1,
2)) + ((t085 -
t086) * M (1,
4));
R (4, 3) =
((t066 - t065) * M (1, 1)) + ((t076 - t077) * M (1,
2)) + ((t086 -
t085) * M (1,
3));
t097 = M (2, 3) * M (3, 4);
t098 = M (2, 4) * M (3, 3);
t101 = M (2, 2) * M (3, 4);
t102 = M (2, 4) * M (3, 2);
t105 = M (2, 2) * M (3, 3);
t106 = M (2, 3) * M (3, 2);
R (1, 4) =
((t098 - t097) * M (1, 2)) + ((t101 - t102) * M (1,
3)) + ((t106 -
t105) * M (1,
4));
t112 = M (2, 1) * M (3, 4);
t113 = M (2, 4) * M (3, 1);
t116 = M (2, 1) * M (3, 3);
t117 = M (2, 3) * M (3, 1);
R (2, 4) =
((t097 - t098) * M (1, 1)) + ((t113 - t112) * M (1,
3)) + ((t116 -
t117) * M (1,
4));
t125 = M (2, 1) * M (3, 2);
t126 = M (2, 2) * M (3, 1);
R (3, 4) =
((t102 - t101) * M (1, 1)) + ((t112 - t113) * M (1,
2)) + ((t126 -
t125) * M (1,
4));
R (4, 4) =
((t105 - t106) * M (1, 1)) + ((t117 - t116) * M (1,
2)) + ((t125 -
t126) * M (1,
3));
if (-min_det <= det && det <= min_det)
{
*det_rtn = 0;
}
else
{
*det_rtn = det;
for (i = 0; i < 16; i++)
r[i] *= 1 / det;
}
}
#define A(I,J) a[IT(I,J)]
#define B(I,J) b[IT(I,J)]
void
compose_unsafe (TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
int i, j;
FLOAT *p = r;
for (j = 1; j <= 4; j++)
for (i = 1; i <= 4; i++)
*p++ =
A (i, 1) * B (1, j) + A (i, 2) * B (2, j) + A (i, 3) * B (3,
j) +
A (i, 4) * B (4, j);
}
void
compose (TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
TRANSFORM t;
compose_unsafe (t, a, b);
copy_transform (r, t);
}
void
transform_pt_3d (POINT_3D r, TRANSFORM m, POINT_3D p)
{
POINT_3D t;
FLOAT wi;
wi = 1 / (M (4, 1) * p[X] + M (4, 2) * p[Y] + M (4, 3) * p[Z] + M (4, 4));
t[X] =
(M (1, 1) * p[X] + M (1, 2) * p[Y] + M (1, 3) * p[Z] + M (1, 4)) * wi;
t[Y] =
(M (2, 1) * p[X] + M (2, 2) * p[Y] + M (2, 3) * p[Z] + M (2, 4)) * wi;
t[Z] =
(M (3, 1) * p[X] + M (3, 2) * p[Y] + M (3, 3) * p[Z] + M (3, 4)) * wi;
copy_pt_3d (r, t);
}
void
transform_vec_3d (VECTOR_3D r, TRANSFORM m, VECTOR_3D v)
{
VECTOR_3D t;
t[X] = M (1, 1) * v[X] + M (1, 2) * v[Y] + M (1, 3) * v[Z];
t[Y] = M (2, 1) * v[X] + M (2, 2) * v[Y] + M (2, 3) * v[Z];
t[Z] = M (3, 1) * v[X] + M (3, 2) * v[Y] + M (3, 3) * v[Z];
copy_vec_3d (r, t);
}
void
set_ident_quat (QUATERNION q)
{
q[W] = 1;
q[X] = q[Y] = q[Z] = 0;
}
void
set_angle_axis_quat (QUATERNION q, FLOAT theta, VECTOR_3D axis)
{
VECTOR_3D v;
find_unit_vec_3d (v, axis);
scale_vec_3d (&q[X], v, sin (theta));
q[W] = cos (theta);
}
void
mult_quat (QUATERNION r, QUATERNION a, QUATERNION b)
{
r[W] = a[W] * b[W] - a[X] * b[X] - a[Y] * b[Y] - a[Z] * b[Z];
r[X] = a[W] * b[X] + a[X] * b[W] + a[Y] * b[Z] - a[Z] * b[Y];
r[Y] = a[W] * b[Y] - a[X] * b[Z] + a[Y] * b[W] + a[Z] * b[X];
r[Z] = a[W] * b[Z] + a[X] * b[Y] - a[Y] * b[X] + a[Z] * b[W];
}
#define R(I,J) r[IT(I,J)]
#define SQR(A) ((A) * (A))
void
find_rot_from_quat (TRANSFORM r, QUATERNION q)
{
FLOAT len2 = SQR (q[W]) + SQR (q[X]) + SQR (q[Y]) + SQR (q[Z]);
FLOAT s = len2 > 0 ? 2 / len2 : 0;
R (1, 1) = 1 - s * (SQR (q[Y]) + SQR (q[Z]));
R (1, 2) = s * (q[X] * q[Y] - q[W] * q[Z]);
R (1, 3) = s * (q[X] * q[Z] + q[W] * q[Y]);
R (2, 1) = s * (q[X] * q[Y] + q[W] * q[Z]);
R (2, 2) = 1 - s * (SQR (q[X]) + SQR (q[Z]));
R (2, 3) = s * (q[Y] * q[Z] - q[W] * q[X]);
R (3, 1) = s * (q[X] * q[Z] - q[W] * q[Y]);
R (3, 2) = s * (q[Y] * q[Z] + q[W] * q[X]);
R (3, 3) = 1 - s * (SQR (q[X]) + SQR (q[Y]));
R (1, 4) = R (4, 1) = R (2, 4) = R (4, 2) = R (3, 4) = R (4, 3) = 0;
R (4, 4) = 1;
}
void
find_quat_from_rot (QUATERNION q, TRANSFORM r)
{
if (R (1, 1) + R (2, 2) + R (3, 3) >= 0)
{ // w first
FLOAT w2 = sqrt (R (1, 1) + R (2, 2) + R (3, 3) + 1);
q[W] = 0.5 * w2; // 1st
q[X] = (0.5 / w2) * (R (3, 2) - R (2, 3)); // (f)
q[Y] = (0.5 / w2) * (R (1, 3) - R (3, 1)); // (d)
q[Z] = (0.5 / w2) * (R (2, 1) - R (1, 2)); // (b)
return;
}
// x, y, or z first
if (R (1, 1) > R (2, 2))
if (R (1, 1) > R (3, 3))
goto x_first;
else
goto z_first;
else // R(2,2) >= R(1,1)
if (R (2, 2) > R (3, 3))
goto y_first;
else
goto z_first;
x_first:{
FLOAT x2 = sqrt (R (1, 1) - R (2, 2) - R (3, 3) + 1);
q[W] = (0.5 / x2) * (R (3, 2) - R (2, 3)); // (f)
q[X] = 0.5 * x2; // 1st
q[Y] = (0.5 / x2) * (R (2, 1) + R (1, 2)); // (a)
q[Z] = (0.5 / x2) * (R (1, 3) + R (3, 1)); // (c)
return;
}
y_first:{
FLOAT y2 = sqrt (-R (1, 1) + R (2, 2) - R (3, 3) + 1);
q[W] = (0.5 / y2) * (R (1, 3) - R (3, 1)); // (d)
q[X] = (0.5 / y2) * (R (2, 1) + R (1, 2)); // (a)
q[Y] = 0.5 * y2; // 1st
q[Z] = (0.5 / y2) * (R (3, 2) + R (2, 3)); // (e)
return;
}
z_first:{
FLOAT z2 = sqrt (-R (1, 1) - R (2, 2) + R (3, 3) + 1);
q[W] = (0.5 / z2) * (R (2, 1) - R (1, 2)); // (b)
q[X] = (0.5 / z2) * (R (1, 3) + R (3, 1)); // (c)
q[Y] = (0.5 / z2) * (R (3, 2) + R (2, 3)); // (e)
q[Z] = 0.5 * z2; // 1st
return;
}
}
#undef R
void
make_cso_polygon_2d (POLYGON_2D * r, POLYGON_2D * a, POINT_2D p,
POLYGON_2D * b)
{
int j, ia, ja, ib, jb, ir, nb;
FLOAT x, y, dx_a, dy_a, dx_b, dy_b;
setup_polygon_2d (r, a->n_sides + b->n_sides);
r->n_sides = a->n_sides + b->n_sides;
ja = 0;
x = a->v[ja][X];
for (j = 1; j < a->n_sides; j++)
if (a->v[j][X] < x)
{
x = a->v[j][X];
ja = j;
}
jb = 0;
x = b->v[0][X];
for (j = 1; j < b->n_sides; j++)
if (b->v[j][X] > x)
{
x = b->v[j][X];
jb = j;
}
// this point is certain to be an extreme point of the cso
x = b->v[jb][X] + (p[X] - a->v[ja][X]);
y = b->v[jb][Y] + (p[Y] - a->v[ja][Y]);
ia = (ja + 1) % a->n_sides;
dx_a = a->v[ja][X] - a->v[ia][X];
dy_a = a->v[ja][Y] - a->v[ia][Y];
ib = (jb + 1) % b->n_sides;
dx_b = b->v[ib][X] - b->v[jb][X];
dy_b = b->v[ib][Y] - b->v[jb][Y];
nb = b->n_sides;
ir = 0;
for (;;)
{
// record obstacle polygon point and quit if done
r->v[ir][X] = x;
r->v[ir][Y] = y;
if (++ir == r->n_sides)
break;
// merge next edge of lowest theta. */
if (nb == 0 || dx_a * dy_b - dy_a * dx_b > 0)
{
x += dx_a;
y += dy_a;
ja = ia;
ia = (ja + 1) % a->n_sides;
dx_a = a->v[ja][X] - a->v[ia][X];
dy_a = a->v[ja][Y] - a->v[ia][Y];
}
else
{
x += dx_b;
y += dy_b;
jb = ib;
ib = (jb + 1) % b->n_sides;
dx_b = b->v[ib][X] - b->v[jb][X];
dy_b = b->v[ib][Y] - b->v[jb][Y];
nb--;
}
}
}
int
point_near_convex_polygon_2d_p (POINT_2D p, POLYGON_2D * a, FLOAT eps)
{
int i, j;
VECTOR_2D vji_perp, vjp;
// if the point is more than eps right of any edge, we're outside
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
{
vji_perp[X] = a->v[j][Y] - a->v[i][Y];
vji_perp[Y] = a->v[i][X] - a->v[j][X];
find_unit_vec_2d (vji_perp, vji_perp);
sub_pts_2d (vjp, p, a->v[j]);
if (dot_2d (vjp, vji_perp) <= eps)
return 0;
}
// else we're inside!
return 1;
}
int
point_inside_convex_polygon_2d_p (POINT_2D p, POLYGON_2D * a)
{
int i, j;
// if the point is right of any edge, we're outside
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
if ((p[X] - a->v[j][X]) * (a->v[i][Y] - a->v[j][Y]) -
(p[Y] - a->v[j][Y]) * (a->v[i][X] - a->v[j][X]) >= 0)
return 0;
// else we're inside!
return 1;
}
// The Franklin code...
int
point_inside_polygon_2d_p (POINT_2D p, POLYGON_2D * a)
{
int i, j, r = 0;
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
{
if (((a->v[i][Y] <= p[Y] && p[Y] < a->v[j][Y]) ||
(a->v[j][Y] <= p[Y] && p[Y] < a->v[i][Y])) &&
(p[X] < (a->v[j][X] - a->v[i][X]) * (p[Y] - a->v[i][Y]) /
(a->v[j][Y] - a->v[i][Y]) + a->v[i][X]))
r ^= 1;
}
return r;
}
#ifdef TEST_INVERT
void
print_transform (TRANSFORM m)
{
int i, j;
printf ("[\n");
for (i = 1; i <= 4; i++)
{
printf ("[");
for (j = 1; j <= 4; j++)
{
printf (" %8.3g", m[IT (i, j)]);
}
printf ("]\n");
}
printf ("]\n");
}
int
main (void)
{
TRANSFORM m = { 1, 0, 1, 1, 2, 4, 0, 19, 3, 5, 6, 57, 14, -3, 34, 1 }, r;
FLOAT det;
VECTOR_3D axis = { 1, 2, 3 };
POINT_3D pt = { -10, 2, 41 };
// set_angle_axis_rot_about_point(m, 30, pt, axis);
print_transform (m);
invert (r, &det, m, 1e-4);
printf ("det=%.3g\n", det);
print_transform (r);
invert (m, &det, r, 1e-4);
printf ("det=%.3g\n", det);
print_transform (m);
}
#endif
#ifdef TEST_DYNARRAY_H
// we need a dynamic arrao of these things
typedef struct foo_t
{
char *name;
int count;
}
FOO;
typedef struct foo_array_t
{
DYNAMIC_ARRAY_FIELDS (FOO, val, n_vals);
}
FOO_ARRAY;
// do the prototypes for the constructor, destructor, and accessor functions
DECLARE_DYNAMIC_ARRAY_PROTOS (FOO_ARRAY, FOO, foo_list, val, n_vals)
// ---- in foo.c ----
// create the bodies for the constructor, destructor, and accessor functions
DECLARE_DYNAMIC_ARRAY_FUNCS (FOO_ARRAY, FOO, foo_list, val, n_vals)
// use all the new stuff!
void do_stuff_with_foos (void)
{
int i;
char buf[100];
FOO_ARRAY list[1]; // or FOO_ARRAY list; but then we're forever &'ing
FOO_ARRAY copy[1];
init_foo_list (list); // do this JUST ONCE right after declaration
init_foo_list (copy); // (not necessary for static/global decls)
setup_foo_list (list, 10); // allow for 10 elements
// read some data and push it on the list tail
while (scanf ("%d %s", &i, buf) == 2)
{
// get pointer to new (empty) element at the end of array
FOO *p = pushed_foo_list_val (list);
// fill in field values
p->name = strdup (buf);
p->count = i;
}
// shows unsafe access to elements
printf ("forward listing:\n");
for (i = 0; i < list->n_vals; i++)
printf ("name=%s count=%d (%d)\n", list->val[i].name, // fast unsafe access
foo_list_val_ptr (list, i)->count, // slower safe pointer access
foo_list_val (list, i).count); // copying access
copy_foo_list_filled (copy, list); // copies only filled elements
// print in reverse order by popping from tail
printf ("backward listing:\n");
while (copy->n_vals > 0)
{
FOO *p = popped_foo_list_val (copy);
printf ("name=%s count=%d\n", p->name, p->count);
}
// clear out all the allocated storage for the ilst
clear_foo_list (list);
clear_foo_list (copy);
}
#endif