/* encoder.cpp -- various PostScript and PDF encoding filter implementations
* by
[email protected] at Sun Mar 3 14:16:00 CET 2002
* --- Mon Mar 4 00:00:20 CET 2002
*/
/* Imp: make built-in FlateEncode DYNALLOC */
/* Imp: add lzw_codec */
/* Imp: add gzip */
/* Imp: add zlib */
#ifdef __GNUC__
#ifndef __clang__
#pragma implementation
#endif
#endif
#include "encoder.hpp"
#include "error.hpp"
#include "gensio.hpp"
#include <stdlib.h> /* getenv() */
#include <string.h>
/* --- */
/** Does output EOD (end-of-data) marker `>' */
class ASCIIHexEncode: public PSEncoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
ASCIIHexEncode(GenBuffer::Writable &out_, unsigned maxcpl_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned maxcpl;
/** Number of hex digits already printed. */
unsigned curcpl;
GenBuffer::Writable &out;
};
/** Does output EOD (end-of-data) marker `~>' */
class ASCII85Encode: public PSEncoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
ASCII85Encode(GenBuffer::Writable &out_, unsigned maxcpl_);
virtual void vi_write(char const*buf, slen_t len);
protected:
void wencoded(char const *encoded);
void wout(unsigned PTS_INT32_T buf_);
unsigned maxcpl;
/** Number of digits available in this line */
GenBuffer::Writable &out;
unsigned ascii85breaklen;
unsigned ascii85left;
unsigned PTS_INT32_T ascii85buf;
char *obuf, *obufend, *op;
char dscst; /* For converting `%%' to `% %' to avoid DSC parser errors */
};
/** Doesn't output EOD (end-of-data) marker `>' */
class RunLengthEncode: public PSEncoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
RunLengthEncode(GenBuffer::Writable &out_, slen_t RecordSize_);
virtual void vi_write(char const*buf, slen_t len);
protected:
slen_t recordsize;
GenBuffer::Writable &out;
// char *obuf, *obufend, *op;
slen_t record_left;
unsigned saved_c, saved_rep;
/** size == header+buffer+EOD */
char saved[130];
};
static int gen_write(char *block, unsigned len, void *zfile);
#if USE_BUILTIN_ZIP
#include "pts_defl.h" /* Imp: because pts_defl_interface :-( */
#if OBJDEP
# warning REQUIRES: pts_defl
#endif
class FlateEncode: public PSEncoder {
#if PTS_DEFL_RIPPED_ZLIB /* Dat: defined in pts_defl.h */
public:
/** @param level: 1..9: 9==highest compression */
FlateEncode(GenBuffer::Writable &out_, unsigned level_);
virtual ~FlateEncode() { zlib_deflateEnd(&zs); } /* Dat: ==Z_OK check (for unflushed buffers) omitted */
virtual void vi_write(char const*buf, slen_t len);
protected:
/** Formerly only one instance of FlateEncode was allowed.
* It exists <=> loced==true
*/
// static bool locked;
/** Writable that this filter writes to */
GenBuffer::Writable &out;
char workspace[ZLIB_DEFLATE_WORKSPACESIZE_MIN]; /* big, about 270k */
char obuf[4096];
/*struct*/ z_stream zs;
#else /* old, ripped from Info-ZIP 2.2 */
public:
/** @param level: 1..9: 9==highest compression */
FlateEncode(GenBuffer::Writable &out_, unsigned level_);
virtual ~FlateEncode() { if (fs!=NULLP) fs->delete2(fs); }
virtual void vi_write(char const*buf, slen_t len);
static void *gen_malloc(unsigned n);
static void gen_free(void *p);
protected:
/** Formerly only one instance of FlateEncode was allowed.
* It exists <=> loced==true
*/
// static bool locked;
/** Writable that this filter writes to */
GenBuffer::Writable &out;
#if SIZEOF_INT>2
typedef unsigned s_t;
#else
typedef unsigned short s_t;
#endif
/** Adler32 checksum */
s_t s1, s2;
bool had_header;
struct pts_defl_interface* fs;
#endif /* else PTS_DEFL_RIPPED_ZLIB */
};
#endif
/** Just store the data in Flate (ZLIB) format, no real compression. Adds
* about 3 bytes of overhead per 65535 bytes (compression ratio:
* 100.004578%)
*/
class FlateStoreEncode: public PSEncoder {
public:
/** @param level: 1..9: 9==highest compression */
FlateStoreEncode(GenBuffer::Writable &out_);
inline virtual ~FlateStoreEncode() {}
virtual void vi_write(char const*buf, slen_t len);
protected:
GenBuffer::Writable &out;
#if SIZEOF_INT>2
typedef unsigned s_t;
#else
typedef unsigned short s_t;
#endif
/** Adler32 checksum */
s_t s1, s2;
bool had_header;
/** Number of bytes already in buf */
unsigned abuflen;
/** Max: 65535 */
#if HAVE_STATIC_CONST
static const unsigned ABUFSIZE=65535;
#else
#define ABUFSIZE 65535
#endif
/** Should really not allocate a FlateStoreEncode on the stack. */
char abuf[ABUFSIZE+5];
};
#if USE_BUILTIN_FAXE
#include "pts_fax.h"
#if OBJDEP
# warning REQUIRES: pts_faxe
#endif
class CCITTFaxEncode: public PSEncoder {
public:
CCITTFaxEncode(GenBuffer::Writable &out_, slendiff_t K, slen_t Columns, bool EndOfLine, bool BlackIs1);
virtual void vi_write(char const*buf, slen_t len);
protected:
GenBuffer::Writable &out;
stream_CFE_state sCFEs;
unsigned char rbuf[4096];
unsigned char wbuf[4096];
stream_cursor_read r;
stream_cursor_write w;
unsigned char *hard, *rlimit;
static void*gen_xalloc(unsigned n);
static void gen_free(void *ptr);
static void gen_memset(void *s, int c, unsigned n);
static void gen_memcpy(void *dest, const void *src, unsigned n);
};
#endif
#if USE_BUILTIN_LZW
#include "pts_lzw.h" /* Imp: because pts_lzw_state :-( */
#if OBJDEP
# warning REQUIRES: pts_lzw
#endif
class LZWEncode: public PSEncoder {
public:
LZWEncode(GenBuffer::Writable &out_);
virtual void vi_write(char const*buf, slen_t len);
protected:
GenBuffer::Writable &out;
struct pts_lzw_state fs;
};
#endif
/**
* Reporting of GS errors is somewhat dump: the actual message isn't reported,
* only the fact that something went wrong.
* Imp: force a no-error trailer output by gs, and check that
*/
class GSEncode: public PSEncoder {
public:
/** @param filter_psname is a full-featured PostScript *Encode filter
* specification string, for example: "<</Effort 5>>/FlateEncode" or
* "0/RunLengthEncode" or "72 pop/ASCIIHexEncode"; will be surrounded as
* `currentfile ... filter'
*/
GSEncode(GenBuffer::Writable &out_, char const*filter_psname);
inline virtual ~GSEncode() {}
/* vvv Imp: correct these */
virtual void vi_write(char const*buf, slen_t len);
protected:
class P: public Filter::PipeE {
protected: virtual void vi_check();
public: P(GenBuffer::Writable &out_, char const*filter_psname);
};
/** We need this delegator because `delete ...' won't work with multiple
* inheritance. (?? )
*/
P p;
};
class CjpegEncode: public PSEncoder {
public:
/** @param filter_psname is a full-featured PostScript *Encode filter
* specification string, for example: "<</Effort 5>>/FlateEncode" or
* "0/RunLengthEncode" or "72 pop/ASCIIHexEncode"; will be surrounded as
* `currentfile ... filter'
*/
CjpegEncode(GenBuffer::Writable &out_, char const*filter_psname, slen_t Columns, slen_t Rows, bool rgbp_, unsigned char quality);
inline virtual ~CjpegEncode() {}
virtual void vi_write(char const*buf, slen_t len);
protected:
class P: public Filter::PipeE { public:
// protected: virtual void vi_check();
P(GenBuffer::Writable &out_, slen_t Columns, slen_t Rows, bool rgbp_, unsigned char quality);
protected: /* Not needed: protected -> public: pacify VC6.0 */
virtual void vi_copy(FILE *f);
bool rgbp;
};
/** We need this delegator because `delete ...' won't work with multiple
* inheritance. (?? )
*/
P p;
};
#if !USE_BUILTIN_LZW
class Lzw_codecEncode: public PSEncoder {
public:
/** @param filter_psname is a full-featured PostScript *Encode filter
* specification string, for example: "<</Effort 5>>/FlateEncode" or
* "0/RunLengthEncode" or "72 pop/ASCIIHexEncode"; will be surrounded as
* `currentfile ... filter'
*/
Lzw_codecEncode(GenBuffer::Writable &out_, char const*filter_psname);
inline virtual ~Lzw_codecEncode() {}
virtual void vi_write(char const*buf, slen_t len);
protected:
class P: public Filter::PipeE { public:
// protected: virtual void vi_check();
P(GenBuffer::Writable &out_);
protected:
// virtual void vi_copy(FILE *f);
};
/** We need this delegator because `delete ...' won't work with multiple
* inheritance. (?? )
*/
P p;
};
#endif
class TIFFPredictor2: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
TIFFPredictor2(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h;
unsigned char *obuf, *op, bpc, cpp;
slen_t rlen;
GenBuffer::Writable &out;
};
class PNGPredictorNone: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorNone(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
slen_t rlen, opleft;
GenBuffer::Writable &out;
};
class PNGPredictorSub: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorSub(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h;
unsigned char *obuf, *op;
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
};
class PNGPredictorUp: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorUp(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned char *obuf, *op, *oq;
slen_t rlen;
GenBuffer::Writable &out;
};
class PNGPredictorAverage: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorAverage(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h/*, g*/;
unsigned char *obuf, *op, *oq;
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
};
class PNGPredictorPaeth: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorPaeth(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h, g;
unsigned char *obuf, *op, *oq;
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
};
/** This class implements inferior predictor autoselection heuristics.
* Please use PNGPredictorAuto instead.
* Imp: code reuse with PNGPredictorAuto
*/
class PNGPredictorAutoBadSigned: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorAutoBadSigned(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h, g;
unsigned char *obuf, *o_prior, *o_0, *o_1, *o_2, *o_3, *o_4, *oo[5];
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
slen_t opleft;
};
/** This class implements inferior predictor autoselection heuristics.
* Please use PNGPredictorAuto instead.
* Imp: code reuse with PNGPredictorAuto
*/
class PNGPredictorAutoBadUnsigned: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorAutoBadUnsigned(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h, g;
unsigned char *obuf, *o_prior, *o_0, *o_1, *o_2, *o_3, *o_4, *oo[5];
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
slen_t opleft;
};
/** This class implements to so-called ``minimum sum of absolute differences''
* predictior autoselection heuristics, the same as what pngwutil.c
* contains in function png_write_find_filter() in libpng 1.2.20. (See that
* function for a discussion of other heuristics. A summary of this heuristics:
* we find which method provides the smallest value when summing the absolute
* values of the distances from zero, using anything >= 128 as negative
* numbers.
*/
class PNGPredictorAuto: public Encoder {
public:
/** @param maxcpl_: maximum # hex digits per line, should be even */
PNGPredictorAuto(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_);
virtual void vi_write(char const*buf, slen_t len);
protected:
unsigned PTS_INT32_T h, g;
unsigned char *obuf, *o_prior, *o_0, *o_1, *o_2, *o_3, *o_4, *oo[5];
slen_t rlen;
GenBuffer::Writable &out;
unsigned char bpccpp;
slen_t opleft;
};
/* --- */
FlateStoreEncode::FlateStoreEncode(GenBuffer::Writable &out_)
:out(out_)
,s1(1)
,s2(0)
,had_header(false)
,abuflen(0)
{}
#if 0
/** 0x7801: ZLIB header signaling fastest compression
* 0: 2 bits: DEFLATE block header signaling stored (uncompressed) block +
* 6 bits of padding.
*/
char FlateStoreEncode::header[3]= { 0x78, 1, 0 };
#endif
void FlateStoreEncode::vi_write(char const*buf, slen_t len) {
register s_t sold;
register char const*p=buf; char const*pend=p+len;
(void)sold;
if (len==0) { /* EOF: flush and send trailer */
/* Dat: Last block has to be written even if it's empty. */
if (!had_header) { out.vi_write("\x78\x01", 2); had_header=true; }
abuf[0]=(char)1; /* Last, stored block with padding */
abuf[1]=abuflen; abuf[2]=abuflen>>8;
abuf[3]=~(abuflen); abuf[4]=~(abuflen>>8);
out.vi_write(abuf, abuflen+5);
if (s1>=65521) s1-=65521;
if (s2>=65521) s2-=65521;
unsigned char trailer[4];
trailer[0]=s2>>8; trailer[1]=s2&255; trailer[2]=s1>>8; trailer[3]=s1&255;
out.vi_write((char const*)trailer,4);
out.vi_write(0,0); /* Signal EOF */
return;
}
/* From rfc1950.txt:
Adler-32 is composed of two sums accumulated per byte: s1 is
the sum of all bytes, s2 is the sum of all s1 values. Both sums
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
Adler-32 checksum is stored as s2*65536 + s1 in most-
significant-byte first (network) order.
*/
/* Update Adler-32 checksum */
while (p!=pend) {
#if SIZEOF_INT>2
if ((s1+=*(unsigned char const*)p)>=65521) s1-=65521;
if ((s2+=s1)>=65521) s2-=65521;
#elif SIZEOF_SHORT==2
sold=s1;
if ((s1+=*(unsigned char const*)p))<sold) s1+=15; /* 15==65536-21 */
sold=s2;
s2=(s2+s1)&0xffff;
if ((s2+=s1)<sold) s2+=15;
#else
/* vvv 0xffff is needed since unsigned short may be > 0..65535 */
sold=s1;
s1=(s1+*(unsigned char const*)p)&0xffff;
if (s1<sold) s1+=15; /* 15==65536-21 */
sold=s2;
s2=(s2+s1)&0xffff;
if (s2<sold) s2+=15;
#endif
p++;
}
// fprintf(stderr, "len=%u\n", len);
unsigned abufleft;
while ((abufleft=ABUFSIZE-abuflen)<len) {
// putchar('.');
// fprintf(stderr, "ABUFSIZE=%u abuflen=%u\n", ABUFSIZE, abuflen);
memcpy(abuf+abuflen+5, buf, abufleft);
abuf[0]=0; /* Stored block with padding */
abuf[1]=(char)ABUFSIZE; abuf[2]=(char)(ABUFSIZE>>8);
abuf[3]=(char)~(ABUFSIZE); abuf[4]=(char)~(ABUFSIZE>>8);
if (!had_header) { out.vi_write("\x78\x01", 2); had_header=true; }
/* fprintf(stderr,"%02x %02x", abuf[1], abuf[2]); */
out.vi_write(abuf, ABUFSIZE+5); /* emit next stored block with header */
abuflen=0;
len-=abufleft;
buf+=abufleft;
}
// putchar('X');
memcpy(abuf+abuflen+5, buf, len);
abuflen+=len;
/* Now abuf is possibly full. That is intentional, so we will be able to
* emit a full last block instead of an empty one.
*/
}
/* --- */
ASCIIHexEncode::ASCIIHexEncode(GenBuffer::Writable &out_, unsigned maxcpl_)
:maxcpl(maxcpl_)
,curcpl(0)
,out(out_) {}
void ASCIIHexEncode::vi_write(char const*buf, slen_t len) {
/* Imp: buffering (1K etc.) */
static char const hextable []="0123456789abcdef";
char obuf[3];
obuf[0]='\n';
if (len==0) { out.vi_write(">",1); out.vi_write(0,0); }
else while (len--!=0) {
obuf[1]=hextable[(*(unsigned char const*)buf)>>4];
obuf[2]=hextable[(*(unsigned char const*)buf)&15];
if (curcpl>=maxcpl) { curcpl=2; out.vi_write(obuf, 3); }
else { curcpl+=2; out.vi_write(obuf+1, 2); }
buf++;
}
}
/* --- */
ASCII85Encode::ASCII85Encode(GenBuffer::Writable &out_, unsigned maxcpl_)
:maxcpl(maxcpl_)
,out(out_)
,ascii85breaklen(maxcpl_)
,ascii85left(4)
,dscst(1) {
obufend=(op=obuf=new char[4096])+4096;
}
void ASCII85Encode::wencoded(char const *cp) {
for (; *cp!='\0'; ) {
if (op==obufend) out.vi_write(op=obuf, obufend-obuf);
// if (*cp<='!') { fprintf(stderr, "e=%d.\n", cp-encoded); }
assert(*cp>='!');
assert(*cp<='~');
if (dscst) {
if (dscst == 1) {
dscst = (*cp == '%') ? 2 : 0;
} else { /* if (dscst == 2) { */
if (*cp == '%') {
if (--ascii85breaklen == 0) {
*op++ = '\n';
ascii85breaklen = maxcpl;
} else {
/* Add space for `% %' instead of `%%' at BOL. */
*op++ = ' ';
}
if (op==obufend) out.vi_write(op=obuf, obufend-obuf);
}
dscst = 0;
}
}
*op++=*cp++;
if (--ascii85breaklen == 0) {
if (op==obufend) out.vi_write(op=obuf, obufend-obuf);
*op++='\n';
ascii85breaklen = maxcpl;
dscst = 1;
}
} /* NEXT */
}
void ASCII85Encode::vi_write(char const*buf, slen_t len) {
if (len==0) {
char encoded[6];
assert(ascii85left<=4);
if (ascii85left!=4) {
unsigned PTS_INT32_T buf_=ascii85buf<<8*ascii85left;
unsigned PTS_INT32_T q;
unsigned w1;
q = buf_ / ((unsigned PTS_INT32_T)85*85*85*85); /* actually only a byte */
assert(q<=85);
encoded[0] = q + '!';
buf_ -= q * ((unsigned PTS_INT32_T)85*85*85*85); q = buf_ / ((unsigned PTS_INT32_T)85*85*85);
encoded[1] = q + '!';
buf_ -= q * ((unsigned PTS_INT32_T)85*85*85); q = buf_ / (85*85);
encoded[2] = q + '!';
w1 = (unsigned) (buf_ - q*(unsigned PTS_INT32_T)(85*85));
assert(w1/85<85);
encoded[3] = (w1 / 85) + '!';
encoded[4] = (w1 % 85) + '!';
encoded[5-ascii85left] = '\0';
wencoded(encoded);
} /* IF */
if (op!=obuf) out.vi_write(obuf, op-obuf); /* flush buffer cache */
out.vi_write("~>",2); out.vi_write(0,0);
delete [] obuf;
obuf=(char*)NULLP;
} else {
assert(obuf!=NULLP);
register unsigned PTS_INT32_T abuf=ascii85buf;
register unsigned aleft=ascii85left;
assert(aleft>=1 && aleft<=4);
do {
while (len!=0 && aleft!=0) {
abuf=(abuf<<8)+*(unsigned char const*)buf++; len--; aleft--;
}
if (aleft!=0) break;
wout(abuf);
aleft=4;
} while (len!=0);
ascii85buf=abuf; ascii85left=aleft;
}
}
void ASCII85Encode::wout(unsigned PTS_INT32_T buf_) {
char encoded[6];
if (buf_ != (unsigned PTS_INT32_T)0) {
unsigned PTS_INT32_T q;
unsigned w1;
q = buf_ / ((unsigned PTS_INT32_T)85*85*85*85); /* actually only a byte */
encoded[0] = q + '!';
buf_ -= q * ((unsigned PTS_INT32_T)85*85*85*85); q = buf_ / ((unsigned PTS_INT32_T)85*85*85);
encoded[1] = q + '!';
buf_ -= q * ((unsigned PTS_INT32_T)85*85*85); q = buf_ / (85*85);
encoded[2] = q + '!';
w1 = (unsigned) (buf_ - q*(unsigned PTS_INT32_T)(85*85));
encoded[3] = (w1 / 85) + '!';
encoded[4] = (w1 % 85) + '!';
encoded[5] = '\0';
} else {
encoded[0] = 'z', encoded[1] = '\0';
}
wencoded(encoded);
}
/* --- */
RunLengthEncode::RunLengthEncode(GenBuffer::Writable &out_, slen_t RecordSize_)
:recordsize(RecordSize_==0?(slen_t)-1:RecordSize_)
,out(out_) {
record_left=recordsize;
// obufend=(op=obuf=new char[4096])+4096; /* Imp: implement write buffering */
saved_c=saved_rep=0;
}
void RunLengthEncode::vi_write(char const*buf, slen_t len) {
unsigned j, umax;
char b;
if (len==0) { /* handle EOF */
if (saved_rep!=0) {
assert(saved_rep>=2);
(saved+1)[-1]=257-saved_rep;
(saved+1)[1]=(char)128; /* EOD */
out.vi_write((saved+1)-1,3);
// fprintf(stderr,"rd=%u\n",saved_rep);
} else if (saved_c!=0) {
(saved+1)[-1]=saved_c-1;
(saved+1)[saved_c]=(char)128; /* EOD */
out.vi_write((saved+1)-1, saved_c+2);
// fprintf(stderr,"re=%u\n",saved_c);
} else {
(saved+1)[-1]=(char)128;
out.vi_write((saved+1)-1, 1);
}
out.vi_write(0,0); /* propagate EOF */
record_left=0; /* signal that no further data will be accepted */
return;
}
again:
assert(record_left>=1);
assert(len>=1);
/* Imp: locally cache vars saved* */
j=0;
if (saved_c==0) {
saved_rep=0; saved_c=1; b=(saved+1)[0]=*buf++; len--;
if (0==--record_left) goto put_norep;
if (0==len) return;
goto yes;
}
if (saved_c==1 && saved_rep==0) { yes:
if (*buf++==(saved+1)[0]) {
saved_rep=2; len--;
if (0==--record_left) goto put_rep;
} else {
(saved+1)[1]=buf[-1]; saved_c=2; len--;
if (0==--record_left) goto put_norep;
}
if (0==len) return;
}
assert(record_left>=1);
assert(len>=1);
assert((saved_rep==0 && saved_c>=2) || (saved_rep>=2 && saved_c==1));
if (saved_rep!=0) { /* Try to increase the repeating sequence */
assert(saved_rep>=2);
assert(saved_c==1);
assert(len>=1);
b=(saved+1)[0];
umax=len>128?128:len; if (umax>record_left) umax=record_left;
/* fprintf(stderr,"um1=%u\n", umax); */
if (umax>128-saved_rep) umax=128-saved_rep;
assert(umax>=1);
j=0; while (j!=umax && buf[j]==b) { j++; saved_rep++; }
if (j!=len || saved_rep==128) {
put_rep: /* Found a maximal repeat width */
(saved+1)[-1]=257-saved_rep;
out.vi_write((saved+1)-1,2);
/* fprintf(stderr,"ra=%u\n",saved_rep); */
if ((record_left-=j)==0) record_left=recordsize;
buf+=j;
saved_c=saved_rep=0;
if (0==(len-=j)) return;
goto again;
} /* Current repeat width can be further increased */
} else { /* Try to increase the non-repeating sequence */
assert(saved_c>=2);
if (buf[0]==(saved+1)[saved_c-1]) { /* this decision might be sub-optimal */
saved_c--;
/* Now: saved_c: non-repeat length, >=1 */
(saved+1)[-1]=saved_c-1;
out.vi_write((saved+1)-1, saved_c+1);
/* fprintf(stderr,"rb=%u\n",saved_c); */
// record_left++; /* because of saved_c--; but we would increase it later anyway */
// buf+=saved_c;
(saved+1)[0]=buf[0]; /* first matching char-pair data */
saved_c=1; saved_rep=2; /* make the new block a >=2 repeat */
record_left--; buf++;
if (0==--len) return;
goto again;
}
(saved+1)[saved_c++]=buf[0];
//record_left--;
//buf++;
//len--;
//if (saved_c==128) goto put_norep;
//if (0==len) return;
umax=len>128?128:len; if (umax>record_left) umax=record_left;
if (umax>128-saved_c) umax=128-saved_c;
/* fprintf(stderr,"um2=%u\n", umax); */
assert(umax>=1);
j=1; while (j!=umax && buf[j]!=buf[j-1]) (saved+1)[saved_c++]=buf[j++];
if (j!=len || saved_c==128) {
put_norep: /* Found a maximal non-repeat width */
(saved+1)[-1]=saved_c-1;
out.vi_write((saved+1)-1, saved_c+1);
/* fprintf(stderr,"rc=%u\n",saved_c); */
if ((record_left-=j)==0) record_left=recordsize;
buf+=j;
saved_c=saved_rep=0;
if (0==(len-=j)) return;
goto again;
} /* Current non-repeat width can be further increased */
}
assert(j==len);
record_left-=j;
assert(saved_rep<128);
assert(saved_c<128);
}
/* --- */
#if USE_BUILTIN_ZIP
// bool FlateEncode::locked=false;
#if PTS_DEFL_RIPPED_ZLIB
FlateEncode::FlateEncode(GenBuffer::Writable &out_, unsigned level_)
:out(out_) {
// assert(!locked); locked /* locking is not necessary anymore */
// pts_deflate_init(&fs); /* obsolete */
zs.total_in=0;
zs.total_out=0;
zs.workspace=workspace;
zs.msg=(char*)0;
zs.state=(struct zlib_internal_state*)0;
zs.data_type=Z_UNKNOWN; /* Imp: do we have to initialize it? */
assert(zlib_deflate_workspacesize()+(unsigned)0<sizeof(workspace) && "Flate workspace too small");
if (Z_OK!=zlib_deflateInit(&zs, level_))
Error::sev(Error::EERROR) << "Flate init error (out of memory?)" << (Error*)0;
}
void FlateEncode::vi_write(char const*buf, slen_t len) {
slen_t got, zgot;
/* fprintf(stderr,"wcall\n"); */
zs.next_in=(unsigned char*)const_cast<char*>(buf); zs.avail_in=len;
if (len==0) { /* flush all output */
do { /* SUXX: C compiler should emit a warning: while (1) { ... } while(...); */
zs.next_out=(unsigned char*)obuf; zs.avail_out=sizeof(obuf);
/* fprintf(stderr,"wdone zai=%d zao=%d\n", zs.avail_in, zs.avail_out); */
if (Z_STREAM_END!=(zgot=zlib_deflate(&zs, Z_FINISH)) && Z_OK!=zgot)
Error::sev(Error::EERROR) << "Flate close error: " << zs.msg << (Error*)0;
got=sizeof(obuf)-zs.avail_out;
/* fprintf(stderr, "got=%u zgot=%d Z_OK=%d\n", got, zgot, Z_OK); */
if (got>0) out.vi_write(obuf, got);
} while (zgot==Z_OK);
/* Dat: zlib_deflateEnd() will be called in the destructur */
out.vi_write(0,0); /* Signal EOF */
/* Dat: zlib_deflate() adds RFC 1950 header and adler32 checksum automatically */
} else {
do {
/* fprintf(stderr,"writ\n"); */
zs.next_out=(unsigned char*)obuf; zs.avail_out=sizeof(obuf);
if (Z_OK!=zlib_deflate(&zs, 0))
Error::sev(Error::EERROR) << "Flate write error: " << zs.msg << (Error*)0;
if (0<(got=sizeof(obuf)-zs.avail_out)) out.vi_write(obuf, got);
} while (0!=zs.avail_in);
}
}
#else
FlateEncode::FlateEncode(GenBuffer::Writable &out_, unsigned level_)
:out(out_)
,s1(1)
,s2(0)
,had_header(false) {
// assert(!locked); locked /* locking is not necessary anymore */
// pts_deflate_init(&fs); /* obsolete */
fs=pts_defl_new(
/*zpfwrite=*/ gen_write,
/*zpfmalloc=*/ gen_malloc,
/*zpffree=*/ gen_free,
/*pack_level=*/ level_,
/*zfile=*/ (void*)&out_
);
if (fs==NULL) Error::sev(Error::EERROR) << "Flate init error (out of memory?)" << (Error*)0;
}
void *FlateEncode::gen_malloc(unsigned n) {
return operator new(n);
// return new char[n];
}
void FlateEncode::gen_free(void *p) {
/*return*/ operator delete(p);
// delete [] (char*)p;
}
void FlateEncode::vi_write(char const*buf, slen_t len) {
register s_t sold;
register char const*p=buf; char const*pend=p+len;
(void)sold;
if (!had_header) {
out.vi_write("\x78\xda",2); /* ZLIB (RFC 1950): max compression header */
had_header=true;
}
if (len==0) { /* EOF: send trailer */
fs->deflate2(0,0,fs); /* Let the compressor flush its buffers. */
if (fs->err!=0) Error::sev(Error::EERROR) << "Flate compression error" << (Error*)0;
fs->delete2(fs);
fs=(struct pts_defl_interface*)NULL;
if (s1>=65521) s1-=65521;
if (s2>=65521) s2-=65521;
unsigned char trailer[4];
trailer[0]=s2>>8; trailer[1]=s2&255; trailer[2]=s1>>8; trailer[3]=s1&255;
out.vi_write((char const*)trailer,4);
out.vi_write(0,0); /* Signal EOF */
return;
}
assert(fs!=NULL);
/* From rfc1950.txt:
Adler-32 is composed of two sums accumulated per byte: s1 is
the sum of all bytes, s2 is the sum of all s1 values. Both sums
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
Adler-32 checksum is stored as s2*65536 + s1 in most-
significant-byte first (network) order.
*/
/* Update Adler-32 checksum */
while (p!=pend) {
#if SIZEOF_INT>2
if ((s1+=*(unsigned char const*)p)>=65521) s1-=65521;
if ((s2+=s1)>=65521) s2-=65521;
#elif SIZEOF_SHORT==2
sold=s1;
if ((s1+=*(unsigned char const*)p))<sold) s1+=15; /* 15==65536-21 */
sold=s2;
s2=(s2+s1)&0xffff;
if ((s2+=s1)<sold) s2+=15;
#else
/* vvv 0xffff is needed since unsigned short may be > 0..65535 */
sold=s1;
s1=(s1+*(unsigned char const*)p)&0xffff;
if (s1<sold) s1+=15; /* 15==65536-21 */
sold=s2;
s2=(s2+s1)&0xffff;
if (s2<sold) s2+=15;
#endif
p++;
}
while (len>=0x8000) { fs->deflate2(const_cast<char*>(buf),0x8000, fs); len-=0x8000; buf+=0x8000; }
if (len!=0) fs->deflate2(const_cast<char*>(buf),len, fs);
}
#endif /* PTS_DEFL_RIPPED_ZLIB */
#endif /* USE_BUILTIN_ZIP */
int /*FlateEncode::*/gen_write(char *block, unsigned len, void *zfile) {
static_cast<GenBuffer::Writable*>(zfile)->vi_write(block, len);
return 0;
}
/* --- */
#if USE_BUILTIN_FAXE
void* CCITTFaxEncode::gen_xalloc(unsigned n) {
return operator new(n);
// void *ret; if ((ret=malloc(n))==0) abort(); return ret;
}
void CCITTFaxEncode::gen_free(void *ptr) {
/*return*/ operator delete(ptr);
// free(ptr);
}
void CCITTFaxEncode::gen_memset(void *s, int c, unsigned n) {
/*return*/ memset(s,c,n);
}
void CCITTFaxEncode::gen_memcpy(void *dest, const void *src, unsigned n) {
/*return*/ memcpy(dest, src, n);
}
CCITTFaxEncode::CCITTFaxEncode(GenBuffer::Writable &out_, slendiff_t K, slen_t Columns, bool EndOfLine, bool BlackIs1): out(out_) {
sCFEs.memset_=gen_memset;
sCFEs.xalloc_=gen_xalloc;
sCFEs.free_=gen_free;
sCFEs.memcpy_=gen_memcpy;
s_CFE_template.set_defaults((stream_state*)&sCFEs);
sCFEs.K=K;
sCFEs.Columns=Columns;
sCFEs.EndOfLine=EndOfLine;
sCFEs.BlackIs1=BlackIs1;
const int cf_max_height=(unsigned)-1/2-100; /* Dat: was slen_t */
if (sCFEs.K < -cf_max_height || sCFEs.K > cf_max_height /* Dat: .K is an int */
|| sCFEs.Columns < 0 || sCFEs.Columns > cfe_max_width /* Dat: .Columns is an int */
|| sCFEs.Rows < 0 || sCFEs.Rows > cf_max_height /* Dat: .Rows is an int */
|| sCFEs.DamagedRowsBeforeError < 0
|| sCFEs.DamagedRowsBeforeError > cf_max_height /* Dat: .DamagedRowsBeforeError is an int */
|| sCFEs.DecodedByteAlign < 1 || sCFEs.DecodedByteAlign > 16
|| (sCFEs.DecodedByteAlign & (sCFEs.DecodedByteAlign - 1)) != 0
) Error::sev(Error::EERROR) << "pts_fax: invalid params" << (Error*)0;
if (0!=s_CFE_template.init((stream_state*)&sCFEs))
Error::sev(Error::EERROR) << "pts_fax: init failed" << (Error*)0;
#if __CHECKER__
memset(&r, 0, sizeof(r));
memset(&w, 0, sizeof(w));
#endif
r.ptr=rlimit=rbuf-1;
hard=rbuf+sizeof(rbuf)-1;
assert(hard-r.ptr>=(int)s_CFE_template.min_in_size);
}
void CCITTFaxEncode::vi_write(char const*buf, slen_t len) {
int pog;
// unsigned char *save_wptr;
if (len==0) {
r.limit=rlimit;
do {
w.ptr=wbuf-1;
w.limit=wbuf+sizeof(wbuf)-1;
assert(w.limit-w.ptr>=(int)s_CFE_template.min_out_size);
pog=s_CFE_template.process((stream_state*)&sCFEs, &r, &w, /*last:*/ true);
// fprintf(stderr, "pog=%d write=%d last=%d\n", pog, w.ptr-(wbuf-1), true);
assert(pog!=PTSFAX_ERRC); /* /CCITTFaxEncode filter must accept any input */
assert(pog!=PTSFAX_EOFC); /* /CCITTFaxEncode filter doesn't have EOD markers */
if (w.ptr!=wbuf-1) out.vi_write((char const*)wbuf, w.ptr-(wbuf-1));
} while (pog==1);
s_CFE_template.release((stream_state*)&sCFEs);
out.vi_write(0,0); /* propagate EOF */
return;
}
while (len!=0) {
assert(r.ptr==rbuf-1);
assert(hard>rlimit);
unsigned clen=hard-rlimit;
if (clen>len) clen=len;
assert(clen>0);
// fprintf(stderr, "clen=%u\n", clen);
memcpy(rlimit+1, buf, clen);
rlimit+=clen;
buf+=clen;
len-=clen;
/* if (r.ptr==rlimit) break; */
r.limit=rlimit;
do {
w.ptr=wbuf-1;
w.limit=wbuf+sizeof(wbuf)-1;
assert(w.limit-w.ptr>=(int)s_CFE_template.min_out_size);
pog=s_CFE_template.process((stream_state*)&sCFEs, &r, &w, /*last:*/ false);
// fprintf(stderr, "len=%d pog=%d write=%d last=%d\n", len, pog, w.ptr-(wbuf-1), false);
assert(pog!=PTSFAX_ERRC); /* /CCITTFaxEncode filter must accept any input */
assert(pog!=PTSFAX_EOFC); /* /CCITTFaxEncode filter doesn't have EOD markers */
if (w.ptr!=wbuf-1) out.vi_write((char const*)wbuf, w.ptr-(wbuf-1));
} while (pog==1);
// assert(pog!=1); /* not true: output space is enough (sizeof(wbuf)>min_out_size) */
assert(pog==0); /* more input is needed */
if (r.ptr!=rbuf-1) {
// fprintf(stderr, "limit=%d\n", rlimit-r.ptr);
memmove(rbuf, r.ptr+1, rlimit-r.ptr);
rlimit=rbuf-1+(rlimit-r.ptr);
r.ptr=rbuf-1;
}
}
// fprintf(stderr, "done\n");
}
#endif /* USE_BUILTIN_FAXE */
/* --- */
#if USE_BUILTIN_LZW
LZWEncode::LZWEncode(GenBuffer::Writable &out_): out(out_) {
fs.tif_writer=/*FlateEncode::*/gen_write;
fs.tif_sout=(void*)&out_;
if (0==pts_lzw_init(&fs)) Error::sev(Error::EERROR) << "LZW init error" << (Error*)0;
}
void LZWEncode::vi_write(char const*buf, slen_t len) {
/* Imp: report real error _reason_ (if appropriate?? ) */
if (len==0) {
if (0==fs.tif_feeder(0,0,&fs)) goto we;
out.vi_write(0,0); /* propagate EOF */
return;
}
while (len>=0x8000) {
if (0==fs.tif_feeder(const_cast<char*>(buf),0x8000,&fs)) we:
Error::sev(Error::EERROR) << "LZW write error" << (Error*)0;
len-=0x8000; buf+=0x8000;
}
if (len!=0 && 0==fs.tif_feeder(const_cast<char*>(buf),len,&fs)) goto we;
}
#endif /* USE_BUILTIN_LZW */
/* --- */
#if !USE_BUILTIN_LZW
Lzw_codecEncode::Lzw_codecEncode(GenBuffer::Writable &out_, char const*filter_psname)
:p(out_) {
(void)filter_psname;
}
void Lzw_codecEncode::vi_write(char const*buf, slen_t len) { p.vi_write(buf,len); }
/* Imp: figure out path-to-gs: gs or gswin32c */
Lzw_codecEncode::P::P(GenBuffer::Writable &out_)
// :PipeEncoder(out_, ">/tmp/t cat - cjpeg quality %i", quality), rgbp(rgbp_) {
// :Filter::PipeE(out_, "cjpeg -quality %i >%D", quality), rgbp(rgbp_) {
:Filter::PipeE(out_, "lzw_codec encode >%D") {}
#endif
/* --- */
CjpegEncode::CjpegEncode(GenBuffer::Writable &out_, char const*filter_psname, slen_t Columns, slen_t Rows, bool rgbp_, unsigned char quality)
:p(out_, Columns, Rows, rgbp_, quality) {
(void)filter_psname;
}
void CjpegEncode::vi_write(char const*buf, slen_t len) { p.vi_write(buf,len); }
/* Imp: figure out path-to-gs: gs or gswin32c */
CjpegEncode::P::P(GenBuffer::Writable &out_, slen_t Columns, slen_t Rows, bool rgbp_, unsigned char quality)
// :PipeEncoder(out_, ">/tmp/t cat - cjpeg quality %i", quality), rgbp(rgbp_) {
:Filter::PipeE(out_, "cjpeg -quality %i >%D", quality), rgbp(rgbp_) {
/* Dat: we're extremely lucky that cjpeg can read PGM or PPM files from stdin */
// operator<<("P5 width height 255\n"); /* RAWBITS PGM */
// operator<<("P6 width height 255\n"); /* RAWBITS PPM */
*this << (rgbp_?"P6 ":"P5 ") << Columns << ' ' << Rows << " 255\n";
}
void CjpegEncode::P::vi_copy(FILE *f) {
char r[10];
static char jfif[9]="\377\340\000\020JFIF";
static unsigned char adobe[16]= {
0xff, /* marker */
0xee, /* APP14 */
0, /* length-hi */
14, /* length-lo */
'A', 'd', 'o', 'b', 'e', /* ID */
1, /* version-hi */
0, /* version-lo */
0, 0, /* flags0 */
0, 0, /* flags1 */
0, /* ColorTransform */
};
if (MACRO_GETC(f)!=0xff || MACRO_GETC(f)!=0xd8 || fread(r, 1, 8, f)!=8) {
bad: Error::sev(Error::EERROR) << "CjpegEncode: cjpeg created bad JPEG" << (Error*)0;
}
out.vi_putcc((char)0xff);
out.vi_putcc((char)0xd8);
r[9]=r[3]; r[3]='\020';
if ((unsigned char)r[9]>=6 && 0==memcmp(r, jfif, 8)) { /* JFIF marker */
r[3]=r[9]; unsigned skip=r[9]-6;
out.vi_write(r, 8);
while (skip--!=0) out.vi_putcc(MACRO_GETC(f));
}
if (ferror(f) || feof(f)) goto bad;
/* Now we can emit the Adobe marker. */
adobe[sizeof(adobe)-1]=rgbp==true; /* ColorTransform value 0 for Gray, 1 for RGB->YCbCr */
out.vi_write((char*)adobe, sizeof(adobe));
/* vvv Dat: pacify VC6.0: Filter::PipeE::vi_copy(f); doesn't work */
PipeE::vi_copy(f);
/* ^^^ copy rest of file verbatim */
// ((Filter::PipeE)*this).vi_copy(f);
}
/* --- */
GSEncode::GSEncode(GenBuffer::Writable &out_, char const*filter_psname)
:p(out_, filter_psname) {}
void GSEncode::vi_write(char const*buf, slen_t len) { p.vi_write(buf,len); }
/* Imp: figure out path-to-gs: gs or gswin32c */
GSEncode::P::P(GenBuffer::Writable &out_, char const*filter_psname)
:Filter::PipeE(out_, "gs -s_OFN=%D -dNODISPLAY -q - >%E")
{
operator<<("{/o _OFN(w)file ");
operator<<(filter_psname);
operator<<(" filter def/s 4096 string def"
"{currentfile s readstring exch o exch writestring not{exit}if}loop "
"o closefile quit}bind exec\n");
}
void GSEncode::P::vi_check() {
/* If STDOUT of gs is not empty, then it is very probably an error message. */
// tmpename.term0(); /* already is */
assert(tmpename.end_()[0]=='\0');
if (0!=Files::statSize(tmpename())) Error::sev(Error::EERROR) << "GSEncode: GS runtime error" << (Error*)0;
/* Imp: display a meaningful error message */
}
/* --- */
PSEncoder* PSEncoder::newASCIIHexEncode(GenBuffer::Writable &out_,unsigned maxcpl_) {
// SimBuffer::B fp; (fp << maxcpl_ << " pop/ASCIIHexEncode").term0();
// PSEncoder *ret=new GSEncode(out_, fp());
PSEncoder *ret=new ASCIIHexEncode(out_,maxcpl_);
// ret->shortname="AHx"; ret->longname="ASCIIHex";
// ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newASCII85Encode(GenBuffer::Writable &out_,unsigned maxcpl_) {
// SimBuffer::B fp; (fp << maxcpl_ << " pop/ASCII85Encode").term0();
PSEncoder *ret=new ASCII85Encode(out_,maxcpl_);
// PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="A85"; ret->longname="ASCII85";
// ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newCCITTFaxEncode(GenBuffer::Writable &out_,slendiff_t K, slen_t Columns, bool EndOfLine, bool BlackIs1) {
#if USE_BUILTIN_FAXE
return new CCITTFaxEncode(out_, K, Columns, EndOfLine, BlackIs1);
#else
// (void)out_; (void)K; (void)Columns;
// assert(0 && "unimplemented");
SimBuffer::B fp("<< /K ");
fp << K << "/Columns " << Columns;
if (EndOfLine) fp << "/EndOfLine true"; /* PS default: false */
if (BlackIs1) fp << "/BlackIs1 true";
(fp << ">>/CCITTFaxEncode").term0();
// fprintf(stderr, "fp=(%s)\n", fp());
PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="CCF"; ret->longname="CCITTFax";
// ret->filter_psname << fp; /* Dat: this could be made faster */
return ret;
#endif
}
PSEncoder* PSEncoder::newLZWEncode(GenBuffer::Writable &out_) {
#if USE_BUILTIN_LZW
SimBuffer::B fp("/LZWEncode");
PSEncoder *ret=new LZWEncode(out_);
// PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="LZW"; ret->longname="LZW";
// ret->filter_psname << fp;
return ret;
#else
(void)out_;
#if 0
Error::sev(Error::EERROR) << "LZW not supported in this compilation of sam2p" << (Error*)0;
#endif
Error::sev(Error::WARNING) << "LZW: please `configure --enable-lzw' for builtin /Compression/LZW support" << (Error*)0;
#if 0
/* This is useless, because gs 5.50--7.04 have dummy LZW compressor:
* it emits a correct LZW stream, but does no real compression, and
* the file size is often increased.
*/
PSEncoder *ret=new GSEncode(out_, "/LZWEncode");
// ret->shortname="LZW"; ret->longname="LZW";
// ret->filter_psname << "/LZWEncode";
return ret;
#endif
#if 1 /* ask lzw_codec from the author of sam2p */
return new Lzw_codecEncode(out_, "/LZWEncode");
#endif
return 0;
#endif
}
PSEncoder* PSEncoder::newFlateEncode(GenBuffer::Writable &out_, signed Effort) {
// (void)out_; (void)K; (void)Columns;
// assert(0 && "unimplemented");
if (Effort==0) {
PSEncoder *ret=new FlateStoreEncode(out_);
// ret->shortname="Fla"; ret->longname="Flate";
// ret->filter_psname << fp;
return ret;
}
if (Effort<1 || Effort>9) Effort=5;
#if USE_BUILTIN_ZIP
PSEncoder *ret=new FlateEncode(out_, Effort);
#else
SimBuffer::B fp("<</Effort "); (fp << Effort << ">>/FlateEncode").term0();
PSEncoder *ret=new GSEncode(out_, fp());
#endif
// ret->shortname="Fla"; ret->longname="Flate";
// ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newRunLengthEncode(GenBuffer::Writable &out_, slen_t RecordSize) {
SimBuffer::B fp; (fp << RecordSize << "/RunLengthEncode").term0();
PSEncoder *ret=new RunLengthEncode(out_, RecordSize);
// PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="RL"; ret->longname="RunLength";
// ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newDCTIJGEncode(GenBuffer::Writable &out_,
slen_t Columns,
slen_t Rows,
unsigned char Colors, /*1..4*/
unsigned char quality /*libJPEG quality: 0..100 */
) {
/* Dat: this supports only the Gray and RGB color spaces of JPEG */
param_assert(Colors==1 || Colors==3);
param_assert(/* quality>=0 && */ quality <=100);
SimBuffer::B fp("<<IJG ");
(fp<< "/Columns " << Columns
<< "/Rows " << Rows
<< "/Colors " << (unsigned)Colors
<< ">>/DCTEncode").term0();
/* Dat: the default of /ColorTransform (defined in DCTEncode in
subsubsection 3.13.3 in PLRM.pdf) is just perfect. */
PSEncoder *ret=new CjpegEncode(out_, fp(), Columns, Rows, Colors==3, quality);
// ret->longname=ret->shortname="DCT"; ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newDCTEncode(GenBuffer::Writable &out_,
slen_t Columns,
slen_t Rows,
unsigned char Colors, /*1..4*/
unsigned char quality, /*libJPEG quality: 0..100 */
unsigned char const*HSamples, /*all 1..4, NULLP OK*/
unsigned char const*VSamples, /*all 1..4, NULLP OK*/
unsigned char (*QuantTables)[64], /*NULLP OK*/
double QFactor, /*0..1000000*/
unsigned numHuffTables,
unsigned char **HuffTables, /*NULLP OK*/
unsigned char ColorTransform /*0,1,2 3=default*/
) {
(void)quality;
(void)QuantTables;
(void)QFactor;
(void)numHuffTables;
(void)HuffTables;
SimBuffer::B tmp;
/* Imp: respect quality */
/* Imp: respect QFactor (double) */
/* Imp: respect QuantTables */
/* Imp: respect numHuffTables, HuffTables */
SimBuffer::B fp("<<");
fp << "/Columns " << Columns
<< "/Rows " << Rows
<< "/Colors " << (unsigned)Colors;
if (HSamples!=(unsigned char const*)NULLP) {
tmp.clear(); tmp.vi_write((char const*)HSamples, (unsigned)Colors);
fp << "/HSamples "; fp.appendDumpPS(tmp,true);
}
if (VSamples!=(unsigned char const*)NULLP) {
tmp.clear(); tmp.vi_write((char const*)VSamples, (unsigned)Colors);
fp << "/VSamples "; fp.appendDumpPS(tmp,true);
}
if (ColorTransform!=3) fp << "/ColorTransform " << (unsigned)ColorTransform;
(fp << ">>/DCTEncode").term0();
// PSEncoder *ret=new DCTEncode(out_,? ? ?);
PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="DCT"; ret->longname="DCT";
// ret->filter_psname << fp;
return ret;
}
PSEncoder* PSEncoder::newDCTEncode(GenBuffer::Writable &out_,
slen_t Columns,
slen_t Rows,
unsigned char Colors, /*1..4*/
unsigned char ColorTransform, /*0,1,2 3=default*/
SimBuffer::Flat const& other_parameters
) {
SimBuffer::B fp("<<");
fp << "/Columns " << Columns
<< "/Rows " << Rows
<< "/Colors " << (unsigned)Colors;
if (ColorTransform!=3) fp << "/ColorTransform " << (unsigned)ColorTransform;
(fp << other_parameters << ">>/DCTEncode").term0();
PSEncoder *ret=new GSEncode(out_, fp());
// ret->shortname="DCT"; ret->longname="DCT";
// ret->filter_psname << fp;
return ret;
}
/* --- */
TIFFPredictor2::TIFFPredictor2(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), bpc(bpc_), cpp(cpp_), out(out_) {
param_assert(cpp_*bpc_<=32);
rlen=(columns_*cpp_*bpc_+7)>>3; /* BUGFIX at Tue Mar 12 12:09:51 CET 2002 */
op=obuf=new unsigned char[rlen];
}
void TIFFPredictor2::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
slen_t opleft=rlen-(op-obuf);
register unsigned int i, d, o, bpccpp;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] obuf;
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
bpccpp=(cpp-1)*bpc;
if (bpc==1) {
while (p!=pend0) {
i=*p++;
d=(i>>7); o =((d-((h>>bpccpp)))&1)<<7; h=(h<<1)|d;
d=(i>>6); o|=((d-((h>>bpccpp)))&1)<<6; h=(h<<1)|d;
d=(i>>5); o|=((d-((h>>bpccpp)))&1)<<5; h=(h<<1)|d;
d=(i>>4); o|=((d-((h>>bpccpp)))&1)<<4; h=(h<<1)|d;
d=(i>>3); o|=((d-((h>>bpccpp)))&1)<<3; h=(h<<1)|d;
d=(i>>2); o|=((d-((h>>bpccpp)))&1)<<2; h=(h<<1)|d;
d=(i>>1); o|=((d-((h>>bpccpp)))&1)<<1; h=(h<<1)|d;
d=(i ); o|=((d-((h>>bpccpp)))&1) ; h=(h<<1)|d;
*op++=o;
if (--opleft==0) { h=0; out.vi_write((char*)obuf,rlen); op=obuf; opleft=rlen; }
}
} else if (bpc==2) {
while (p!=pend0) {
i=*p++;
d=(i>>6); o =((d-((h>>bpccpp)))&3)<<6; h=(h<<2)|d; // fprintf(stderr,"d=%#x\n", d);
d=(i>>4); o|=((d-((h>>bpccpp)))&3)<<4; h=(h<<2)|d;
d=(i>>2); o|=((d-((h>>bpccpp)))&3)<<2; h=(h<<2)|d;
d=(i ); o|=((d-((h>>bpccpp)))&3) ; h=(h<<2)|d;
*op++=o;
if (--opleft==0) { h=0; out.vi_write((char*)obuf,rlen); op=obuf; opleft=rlen; }
}
} else if (bpc==4) {
while (p!=pend0) {
i=*p++;
d=(i>>4); o =((d-((h>>bpccpp)))&15)<<4; h=(h<<4)|d;
d=(i ); o|=((d-((h>>bpccpp)))&15) ; h=(h<<4)|d;
*op++=o;
if (--opleft==0) { h=0; out.vi_write((char*)obuf,rlen); op=obuf; opleft=rlen; }
}
} else if (bpc==8) {
while (p!=pend0) {
i=*p++; *op++=((i-((h>>bpccpp)))/*&255*/); h=(h<<8)|i;
if (--opleft==0) { h=0; out.vi_write((char*)obuf,rlen); op=obuf; opleft=rlen; }
}
} else assert(0);
}
/* --- */
PNGPredictorNone::PNGPredictorNone(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: opleft(0), out(out_) {
rlen=(columns_*cpp_*bpc_+7)>>3;
}
void PNGPredictorNone::vi_write(char const*buf, slen_t len) {
if (len==0) {
assert(opleft==0); /* unflushed (half-ready) row disallowed */
out.vi_write(0,0);
return;
}
/* The following code just inserts a '\0' in front of each scanline */
/* Imp: make it faster by collapsing vi_writes */
if (opleft==0) { opleft=rlen; out.vi_write("\0",1); } /* Scanline (row) header: describes predictor used */
while (len>opleft) {
out.vi_write(buf,opleft);
buf+=opleft; len-=opleft;
opleft=rlen; out.vi_write("\0",1); /* Scanline (row) header: describes predictor used */
}
if (len!=0) out.vi_write(buf,len);
opleft-=len;
}
/* --- */
PNGPredictorSub::PNGPredictorSub(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), out(out_) {
param_assert(cpp_*bpc_<=32);
rlen=(columns_*cpp_*bpc_+7)>>3;
op=obuf=1+new unsigned char[rlen+1];
obuf[-1]='\1'; /* Scanline (row) header: describes predictor used */
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorSub::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
slen_t opleft=rlen-(op-obuf);
register unsigned int i;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] (obuf-1);
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
while (p!=pend0) {
i=*p++; *op++=((i-((h>>bpccpp)))/*&255*/); h=(h<<8)|i;
if (--opleft==0) { h=0;
out.vi_write((char*)obuf-1,rlen+1); op=obuf; opleft=rlen;
}
}
}
/* --- */
PNGPredictorUp::PNGPredictorUp(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: out(out_) {
rlen=(columns_*cpp_*bpc_+7)>>3;
// fprintf(stderr, "rUp.rlen=%u cpp=%u bpc=%u\n", rlen, cpp_, bpc_);
op=obuf=1+new unsigned char[2*rlen+1];
oq=op+rlen; /* prev scanline */
memset(oq, '\0', rlen);
obuf[-1]='\2'; /* Scanline (row) header: describes predictor used */
}
void PNGPredictorUp::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
slen_t opleft=rlen-(op-obuf);
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] (obuf-1);
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
while (p!=pend0) {
*op++=((*p-*oq)/*&255*/); *oq++=*p++;
if (--opleft==0) {
out.vi_write((char*)obuf-1,rlen+1); opleft=rlen;
op=obuf; oq=obuf+rlen;
}
}
}
/* --- */
PNGPredictorAverage::PNGPredictorAverage(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), /*g(0),*/ out(out_) {
param_assert(cpp_*bpc_<=32);
rlen=(columns_*cpp_*bpc_+7)>>3;
op=obuf=1+new unsigned char[2*rlen+1];
oq=op+rlen; /* prev scanline */
memset(oq, '\0', rlen);
obuf[-1]='\3'; /* Scanline (row) header: describes predictor used */
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorAverage::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
slen_t opleft=rlen-(op-obuf);
register unsigned int i;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] (obuf-1);
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
while (p!=pend0) {
/* vvv Data: *og+h can be 0..510 */
i=*p; *op++=i-((((h>>bpccpp)&255)+*oq)>>1); h=(h<<8)|i; *oq++=*p++;
// i=*p; *op++=(*p-((*oq+h)>>1)/*&255*/); h=i; *oq++=*p++;
if (--opleft==0) {
out.vi_write((char*)obuf-1,rlen+1); opleft=rlen;
op=obuf; oq=obuf+rlen; h=0;
}
}
}
/* --- */
/* Dat: egcs-2.91.60 is buggy */
// static inline unsigned abs_(unsigned i) { return ((signed)i)<0 ? -i : i; }
static inline unsigned abs_(unsigned i) { return ((signed)i)<0 ? (i*-1) : i; }
static inline unsigned paeth_predictor(unsigned a, unsigned b, unsigned c) {
/* Code ripped from RFC 2083 (PNG specification), which also says:
* The calculations within the PaethPredictor function must be
* performed exactly, without overflow. Arithmetic modulo 256 is to
* be used only for the final step of subtracting the function result
* from the target byte value.
*/
/* a = left, b = above, c = upper left */
unsigned p = a + b - c; /* initial estimate */
unsigned pa = abs_(p - a); /* distances to a, b, c */
unsigned pb = abs_(p - b);
unsigned pc = abs_(p - c);
// assert(abs_(3*(-1))==3);
// fprintf(stderr, "b=%u c=%u %d %d\n", b, c, p-b, ((signed)(p-b))<0 ? (b-p) : (p-b) );
// fprintf(stderr, "pa=%u pb=%u pc=%u\n", pa, pb, pc);
assert(pa<=255);
assert(pb<=255);
assert(pc<=255*2);
/* return nearest of a,b,c, breaking ties in order a,b,c. */
return (pa <= pb && pa <= pc) ? a
: pb <= pc ? b
: c;
}
PNGPredictorPaeth::PNGPredictorPaeth(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), g(0), out(out_) {
param_assert(cpp_*bpc_<=32);
rlen=(columns_*cpp_*bpc_+7)>>3;
op=obuf=1+new unsigned char[2*rlen+2];
oq=obuf+rlen+1; /* prev scanline */
memset(obuf+rlen, '\0', rlen+1);
obuf[-1]='\4'; /* Scanline (row) header: describes predictor used */
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorPaeth::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
slen_t opleft=rlen-(op-obuf);
register unsigned int i;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] (obuf-1);
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
while (p!=pend0) {
// assert(0==obuf[rlen] && 4==obuf[-1]);
i=*p; *op++=i-paeth_predictor((h>>bpccpp)&255, *oq, (g>>bpccpp)&255);
h=(h<<8)|i; g=(g<<8)|*oq; *oq++=*p++;
// i=*p; *op++=i-h; h=i; *oq++=*p++;
if (--opleft==0) {
out.vi_write((char*)obuf-1,rlen+1); opleft=rlen;
op=obuf; oq=obuf+rlen+1; h=0; g=0;
}
}
}
/* --- */
#if SIZEOF_INT >= 4
typedef int weight_t;
#else
typedef long weight_t;
#endif
PNGPredictorAutoBadSigned::PNGPredictorAutoBadSigned(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), g(0), out(out_) {
param_assert(cpp_*bpc_<=32);
opleft=rlen=(columns_*cpp_*bpc_+7)>>3;
obuf=new unsigned char[6*rlen+6];
o_prior=obuf+rlen+1; /* Prior(x): ooprior[-opleft] */
obuf[rlen*1+1]='\0'; o_0=obuf+2*rlen+2;
obuf[rlen*2+2]='\1'; o_1=obuf+3*rlen+3;
obuf[rlen*3+3]='\2'; o_2=obuf+4*rlen+4;
obuf[rlen*4+4]='\3'; o_3=obuf+5*rlen+5;
obuf[rlen*5+5]='\4'; o_4=obuf+6*rlen+6;
oo[0]=o_0; oo[1]=o_1; oo[2]=o_2; oo[3]=o_3; oo[4]=o_4;
memset(obuf, '\0', rlen+1);
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorAutoBadSigned::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
register unsigned int i;
register unsigned raw_x_bpp, prior_x, prior_x_bpp;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] obuf;
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
while (p!=pend0) {
raw_x_bpp=(h>>bpccpp) &255;
prior_x=*(o_prior-opleft);
prior_x_bpp=(g>>bpccpp) &255;
i=*p;
*(o_0-opleft)=i;
*(o_1-opleft)=i-raw_x_bpp;
*(o_2-opleft)=i-prior_x;
*(o_3-opleft)=i-((raw_x_bpp+prior_x)>>1);
*(o_4-opleft)=i-paeth_predictor(raw_x_bpp, prior_x, prior_x_bpp);
h=(h<<8)|i; g=(g<<8)|*(o_prior-opleft); *(o_prior-opleft)=*p++;
if (--opleft==0) {
/* Select the predictor having the smallest signed sum of values. */
weight_t min_weight, cur_weight;
unsigned min_pred=0, cur_pred;
register signed char *beg, *end;
min_weight=0; beg=(end=(signed char*)o_0)-rlen; while (beg!=end) min_weight+=*beg++;
if (min_weight<0) min_weight*=-1;
for (cur_pred=1; cur_pred<=4; cur_pred++) {
cur_weight=0; beg=(end=(signed char*)oo[cur_pred])-rlen; while (beg!=end) cur_weight+=*beg++;
if (cur_weight<0) cur_weight*=-1;
if (cur_weight<min_weight) { min_weight=cur_weight; min_pred=cur_pred; }
}
// fprintf(stderr, "cp=%u\n", min_pred);
out.vi_write((char*)(oo[min_pred]-rlen-1),rlen+1);
opleft=rlen; h=0; g=0;
}
}
}
/* --- */
PNGPredictorAutoBadUnsigned::PNGPredictorAutoBadUnsigned(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), g(0), out(out_) {
param_assert(cpp_*bpc_<=32);
opleft=rlen=(columns_*cpp_*bpc_+7)>>3;
obuf=new unsigned char[6*rlen+6];
o_prior=obuf+rlen+1; /* Prior(x): ooprior[-opleft] */
obuf[rlen*1+1]='\0'; o_0=obuf+2*rlen+2;
obuf[rlen*2+2]='\1'; o_1=obuf+3*rlen+3;
obuf[rlen*3+3]='\2'; o_2=obuf+4*rlen+4;
obuf[rlen*4+4]='\3'; o_3=obuf+5*rlen+5;
obuf[rlen*5+5]='\4'; o_4=obuf+6*rlen+6;
oo[0]=o_0; oo[1]=o_1; oo[2]=o_2; oo[3]=o_3; oo[4]=o_4;
memset(obuf, '\0', rlen+1);
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorAutoBadUnsigned::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
register unsigned int i;
register unsigned raw_x_bpp, prior_x, prior_x_bpp;
// unsigned lines=0;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] obuf;
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
// fprintf(stderr, "rlen=%u len=%u opleft=%u\n", rlen, len, opleft);
while (p!=pend0) {
raw_x_bpp=(h>>bpccpp) &255;
prior_x=*(o_prior-opleft);
prior_x_bpp=(g>>bpccpp) &255;
i=*p;
*(o_0-opleft)=i;
*(o_1-opleft)=i-raw_x_bpp;
*(o_2-opleft)=i-prior_x;
*(o_3-opleft)=i-((raw_x_bpp+prior_x)>>1);
*(o_4-opleft)=i-paeth_predictor(raw_x_bpp, prior_x, prior_x_bpp);
h=(h<<8)|i; g=(g<<8)|*(o_prior-opleft); *(o_prior-opleft)=*p++;
if (--opleft==0) {
/* Select the predictor having the smallest unsigned sum of values. */
weight_t min_weight, cur_weight;
unsigned min_pred=0, cur_pred;
register unsigned char *beg, *end;
min_weight=0; beg=(end=(unsigned char*)o_0)-rlen; while (beg!=end) min_weight+=*beg++;
for (cur_pred=1; cur_pred<=4; cur_pred++) {
cur_weight=0; beg=(end=(unsigned char*)oo[cur_pred])-rlen; while (beg!=end) cur_weight+=*beg++;
if (cur_weight<min_weight) { min_weight=cur_weight; min_pred=cur_pred; }
}
// fprintf(stderr, "cp=%u\n", min_pred);
out.vi_write((char*)(oo[min_pred]-rlen-1),rlen+1);
opleft=rlen; h=0; g=0;
// lines++;
}
}
// fprintf(stderr, "oen=%u opleft=%u lines=%u\n", len, opleft, lines);
}
/* --- */
PNGPredictorAuto::PNGPredictorAuto(GenBuffer::Writable &out_, unsigned char bpc_, slen_t columns_, unsigned char cpp_)
: h(0), g(0), out(out_) {
param_assert(cpp_*bpc_<=32);
opleft=rlen=(columns_*cpp_*bpc_+7)>>3;
obuf=new unsigned char[6*rlen+6];
o_prior=obuf+rlen+1; /* Prior(x): ooprior[-opleft] */
obuf[rlen*1+1]='\0'; o_0=obuf+2*rlen+2;
obuf[rlen*2+2]='\1'; o_1=obuf+3*rlen+3;
obuf[rlen*3+3]='\2'; o_2=obuf+4*rlen+4;
obuf[rlen*4+4]='\3'; o_3=obuf+5*rlen+5;
obuf[rlen*5+5]='\4'; o_4=obuf+6*rlen+6;
oo[0]=o_0; oo[1]=o_1; oo[2]=o_2; oo[3]=o_3; oo[4]=o_4;
memset(obuf, '\0', rlen+1);
bpccpp=((cpp_*bpc_+7)&~7)-8;
}
void PNGPredictorAuto::vi_write(char const*buf, slen_t len) {
unsigned char const *p=(unsigned char const*)buf, *pend0=p+len;
register unsigned int i;
register unsigned raw_x_bpp, prior_x, prior_x_bpp;
// unsigned lines=0;
if (len==0) {
assert(opleft==rlen); /* unflushed (half-ready) row disallowed */
assert(obuf!=NULLP);
delete [] obuf;
obuf=(unsigned char*)NULLP;
out.vi_write(0,0);
return;
}
// fprintf(stderr, "rlen=%u len=%u opleft=%u\n", rlen, len, opleft);
while (p!=pend0) {
raw_x_bpp=(h>>bpccpp) &255;
prior_x=*(o_prior-opleft);
prior_x_bpp=(g>>bpccpp) &255;
i=*p;
*(o_0-opleft)=i;
*(o_1-opleft)=i-raw_x_bpp;
*(o_2-opleft)=i-prior_x;
*(o_3-opleft)=i-((raw_x_bpp+prior_x)>>1);
*(o_4-opleft)=i-paeth_predictor(raw_x_bpp, prior_x, prior_x_bpp);
h=(h<<8)|i; g=(g<<8)|*(o_prior-opleft); *(o_prior-opleft)=*p++;
if (--opleft==0) {
/* Select the predictor having the smallest unsigned sum of values. */
weight_t min_weight, cur_weight;
unsigned min_pred=0, cur_pred;
register signed char *beg, *end;
/* abs_(...) here converts '\xFF' to 1. Good. */
min_weight=0; beg=(end=(signed char*)o_0)-rlen; while (beg!=end) min_weight+=abs_(*beg++);
for (cur_pred=1; cur_pred<=4; cur_pred++) {
cur_weight=0; beg=(end=(signed char*)oo[cur_pred])-rlen; while (beg!=end) cur_weight+=abs_(*beg++);
if (cur_weight<min_weight) { min_weight=cur_weight; min_pred=cur_pred; }
}
// fprintf(stderr, "cp=%u\n", min_pred);
out.vi_write((char*)(oo[min_pred]-rlen-1),rlen+1);
opleft=rlen; h=0; g=0;
// lines++;
}
}
// fprintf(stderr, "oen=%u opleft=%u lines=%u\n", len, opleft, lines);
}
/* --- */
Encoder* PSEncoder::newPredictor(GenBuffer::Writable &out_, unsigned char type, unsigned char bpc_, slen_t columns_, unsigned char cpp_) {
switch ((unsigned)type) {
/* Imp: make these faster with `register int' etc. tricks */
/* See also better_predictor in rule.cpp for the list of predictor numbers */
case 1: return new Filter::VerbatimE(out_);
case 2: return new TIFFPredictor2(out_, bpc_, columns_, cpp_);
case 10: return new PNGPredictorNone(out_, bpc_, columns_, cpp_);
case 11: return new PNGPredictorSub(out_, bpc_, columns_, cpp_);
case 12: return new PNGPredictorUp(out_, bpc_, columns_, cpp_);
case 13: return new PNGPredictorAverage(out_, bpc_, columns_, cpp_);
case 14: return new PNGPredictorPaeth(out_, bpc_, columns_, cpp_);
case 15: return new PNGPredictorAuto(out_, bpc_, columns_, cpp_);
case 45: return new PNGPredictorAutoBadUnsigned(out_, bpc_, columns_, cpp_); /* pts' extension */
case 55: return new PNGPredictorAutoBadSigned(out_, bpc_, columns_, cpp_); /* pts' extension */
}
// fprintf(stderr, "pred=%d\n", type);
param_assert(0 && "invalid predictor requested");
return (Encoder*)0; /*notreached*/
}
/* __END__ */