\section{Vectors}

\subsection{Direct definition}

The object \Lkeyword{vecteur} allows us to define and draw a \Index{vector}.
To do so in a simple way, we use the option \Lkeyword{args} to define
its components $(x,y)$ and we specify the point from where the
vector starts with the macro \Lcs{psProjection} (or we may use a
named point).

As with points, we can save the components of a vector using the
option \Lkeyword{name}.

\begin{LTXexample}[width=7.5cm]
\begin{pspicture}(-3,-3)(4,3.5)%
\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
\psset{viewpoint=50 30 15,Decran=60}
\psset{solidmemory}
%% definition du plan de projection
\psSolid[object=plan,
  definition=equation,
  args={[1 0 0 0] 90},
  planmarks,
  name=monplan]
\psset{plan=monplan}
%% definition du point A
\psProjection[object=point,
  args=-2 0.75,
  name=A,text=A,
  pos=dl]
\psProjection[object=vecteur,
  linecolor=red,
  args=1 1,
  name=U](1,0)
\psProjection[object=vecteur,
  args=U,
  linecolor=blue](A)
\composeSolid
\axesIIID(4,2,2)(5,4,3)
\end{pspicture}
\end{LTXexample}


\subsection{Some more definitions}

There are other methods to define a vector in 2D. The options
\Lkeyword{definition} and \Lkeyword{args} allow us a variety of supported
methods:

\begin{itemize}

\item \texttt{\Lkeyword{definition}=\Lkeyval{vecteur}};
\texttt{\Lkeyword{args}=$A$ $B$}.

The vector $\overrightarrow {AB}$

\item \texttt{\Lkeyword{definition}=\Lkeyval{orthovecteur}};
\texttt{\Lkeyword{args}=$u$}.

A vector perpendicular to $\vec u$ with the same length.

\item \texttt{\Lkeyword{definition}=\Lkeyval{normalize}};
\texttt{\Lkeyword{args}=$u$}.

The vector $\Vert \vec u \Vert ^{-1} \vec u$
if $\vec u \neq \vec 0$, and $\vec 0$ otherwise.

\item \texttt{\Lkeyword{definition}=\Lkeyval{addv}};
\texttt{\Lkeyword{args}=$u$ $v$}.

The vector $\vec u + \vec v$

\item \texttt{\Lkeyword{definition}=\Lkeyval{subv}};
\texttt{\Lkeyword{args}=$u$ $v$}.

The vector $\vec u - \vec v$

\item \texttt{\Lkeyword{definition}=\Lkeyval{mulv}};
\texttt{\Lkeyword{args}=$u$ $\alpha $}.

The vector $\alpha \vec u$

\end{itemize}

\endinput