The following command~
\texttt{\Lcs{psSolid}[object=cube,+\textit{options}](x,y,z)} shifts the
centre of the cube to the point with the coordinates $\mathtt{(x,y,z)}$.
The next example will copy the cube with edge length of 1
\begin{pspicture}(-0.5,-0.5)(.5,.5)
\psset{Decran=40,viewpoint=50 35 35 rtp2xyz,a=1,lightsrc=50 30 20}
\psset{fillcolor=yellow,mode=3}
\psSolid[object=cube](0.5,0.5,0.5)% c1
\end{pspicture}
to the points with the coordinates $\mathtt{(0.5,0.5,0.5)}$,
$\mathtt{(4.5,0.5,0.5)}$ etc. so that the copied cubes setup the vertices
of a new cube with the edge length 5.
\begin{center}
\begin{pspicture}(-4,-5)(5,5)
\psframe(-4,-5)(5,5)
%\psset{SphericalCoor,Decran=3,viewpoint=10 35 35,a=1,lightsrc=50 20 10}
\psset{Decran=40,viewpoint=50 35 35 rtp2xyz,a=1,lightsrc=50 30 20}
\psSolid[object=grille,base=0 6 0 6,fillcolor=gray!40]%%
\psSolid[object=grille,base=0 6 0 6,RotY=90,fillcolor=gray!30](0,0,6)%
\psSolid[object=grille,base=0 6 0 6,RotX=-90,fillcolor=gray!20](0,0,6)%
\psPoint(1,0.5,0.5){c11}
\psPoint(0.5,0.5,1){c12}
\psPoint(0.5,1,0.5){c13}
\psPoint(4.5,4.5,1){c21}
\psPoint(4,4.5,0.5){c22}
\psPoint(4.5,4,0.5){c23}
\psPoint(4,0.5,0.5){c41}
\psPoint(4.5,0.5,1){c42}
\psPoint(4.5,1,0.5){c43}
\psPoint(0.5,4,0.5){c51}
\psPoint(0.5,4.5,1){c52}
\psPoint(1,4.5,0.5){c53}
\psPoint(0.5,0.5,4){c61}
\psPoint(0.5,1,4.5){c62}
\psPoint(1,0.5,4.5){c63}
\psPoint(4,0.5,4.5){c71}
\psPoint(4.5,1,4.5){c72}
\psPoint(4.5,0.5,4){c73}
\axesIIID(1,1,1)(6,6,6)
{\psset{fillcolor=yellow,mode=3}
\psSolid[object=cube](0.5,0.5,0.5)% c1
\psline[linestyle=dashed,linecolor=red,linewidth=1.5pt](c11)(c41)
\psline[linestyle=dashed,linecolor=red,linewidth=1.5pt](c12)(c61)
\psline[linestyle=dashed,linecolor=red,linewidth=1.5pt](c13)(c51)
\psSolid[object=cube](4.5,0.5,0.5)
\psSolid[object=cube](0.5,4.5,0.5)
\psSolid[object=cube](0.5,0.5,4.5)
\psSolid[object=cube](4.5,4.5,4.5)
\psSolid[object=cube](4.5,0.5,4.5)
\psSolid[object=cube](4.5,4.5,0.5)
\psSolid[object=cube](0.5,4.5,4.5)}
\psSolid[object=grille,base=0 5 0 5,action=draw,linecolor=blue!70,linewidth=1.2pt](0,0,5)%
\psSolid[object=grille,base=0 5 0 5,action=draw,linecolor=blue!70,RotY=90,linewidth=1.2pt](5,0,5)%
\psSolid[object=grille,base=0 5 0 5,action=draw,RotX=-90,linecolor=blue!70,linewidth=1.2pt](0,5,5)%
\end{pspicture}
\end{center}
\begin{verbatim}
\psset{fillcolor=yellow,mode=3}
\psSolid[object=cube](0.5,0.5,0.5)
\psSolid[object=cube](4.5,0.5,0.5)
\psSolid[object=cube](0.5,4.5,0.5)
\psSolid[object=cube](0.5,0.5,4.5)
\psSolid[object=cube](4.5,4.5,4.5)
\psSolid[object=cube](4.5,0.5,4.5)
\psSolid[object=cube](4.5,4.5,0.5)
\psSolid[object=cube](0.5,4.5,4.5)
\end{verbatim}
\subsection{Rotation}
\subsection{Default sequence xyz}
The \Index{rotation} is effected around the three axes $Ox$, $Oy$ and $Oz$. Let's take a cuboid as an example,
\begin{pspicture}(-1,-0.2)(1,.5)
\psset{Decran=40,viewpoint=50 35 35 rtp2xyz,a=2,b=3,c=1,lightsrc=50 30 30}
\psset{fillcolor=yellow,unit=0.5,
fcol= 0 (red)
1 (Lavender)
2 (SkyBlue)
3 (LimeGreen)
4 (OliveGreen)
5 (Yellow)
6 (Bittersweet)}
\psSolid[object=parallelepiped](0.5,0.5,0.5)%
\end{pspicture}
which will be rotated seperately around the axes $Ox$, $Oy$ and $Oz$.