The object \Lkeyword{point} defines a \Index{point}. The simplest method is to use the argument \texttt{\Lkeyword{args}=$x$ $y$ $z$} to specify its coordinates.
If we have already named a point $M(x, y, z)$ (see chapter ``\textit{Advanced usage\/}''), we can easily use the argument \texttt{args=$M$}.
\subsection{Some other definitions}
There are some other possibilities for defining a point. Here a list of possible definitions with the appropriate arguments:
{This gives a ``dilation'' \ of the coordinates of the point $M (x, y,
z)$ on the axes $Ox$, $Oy$ and $Oz$ each multiplied by an appropriate factor $k_1$,
$k_2$ and $k_3$}
{The image of $M$ through consecutive rotations---centered at $O$---and with respective angles
$\alpha_x$, $\alpha_y$ and $\alpha_z$ around the axes $Ox$,
$Oy$ and $Oz$.}
%% Projection orthogonale d'un point 3d sur un plan
%% Mx My Mz (=le point a projeter)
%% Ax Ay Az (=un point du plan)
%% Vx Vy Vz (un vecteur normal au plan)
\item \Lkeyword{definition}=\Lkeyval{orthoprojplane3d};
\texttt{\Lkeyword{args}= {$M$ $A$ $\vec v$}}.
{The projection of the point $M$ to the plane $P$ which is defined
by the point $A$ and the vector $\vec v$, perpendicular to $P$.}