% tx@geoDict and tx@geoIIDict
%
% version 0.04 2021-09-01 (hv)
%
[email protected]
%
[email protected]
%
/tx@geoDict 100 dict def
tx@geoDict begin
%%
/CalcCoor{
/Y exch def /X exch def
/Xpoint Y cos X cos mul Rsphere mul def
/Ypoint Y cos X sin mul Rsphere mul def
/Zpoint Y sin Rsphere mul def
} def
/CompteurRegions{%
/regions_visibles [] def
/compteur 0 def
{
/region exch def
/nbr region length def % nombre de points
0 1 nbr 1 sub {
/counter exch def % pour memoriser le premier point vu
region counter get aload pop
CalcCoor
CalculsPointsAfterTransformations
Test
PS condition {% marque le point
/regions_visibles [regions_visibles aload pop compteur ] def
exit % termine
} if
} for
/compteur compteur 1 add def
} forall
/TableauRegionsVisibles [
0 1 regions_visibles length 1 sub {
/NoRegion exch def
/No regions_visibles NoRegion get def
REGION No get
} for
] def
TableauRegionsVisibles
} def
/CalculsPointsRegion{%
/region1 exch def
region1 0 get aload pop
CalcCoor
newpath
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { moveto }{ 2 mul exch 2 mul exch moveto} ifelse
%
0 1 region1 length 1 sub {
/NoPoint exch def
region1 NoPoint get aload pop
CalcCoor
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { lineto }{ 2 mul exch 2 mul exch lineto} ifelse
} for
} def
/MatriceTransformation{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul def
/M12 RotZ cos RotY sin mul RotX sin mul
RotZ sin RotX cos mul sub def
/M13 RotZ cos RotY sin mul RotX cos mul
RotZ sin RotX sin mul add def
/M21 RotZ sin RotY cos mul def
/M22 RotZ sin RotY sin RotX sin mul mul
RotZ cos RotX cos mul add def
/M23 RotZ sin RotY sin mul RotX cos mul
RotZ cos RotX sin mul sub def
/M31 RotY sin neg def
/M32 RotX sin RotY cos mul def
/M33 RotX cos RotY cos mul def
} def
% RotZ -> RotX -> RotY
/MatriceTransformationZXY{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul RotZ sin RotX sin mul RotY sin mul sub def
/M12 RotZ sin RotY cos mul RotZ cos RotX sin mul RotY sin mul add def
/M13 RotX cos RotY sin mul def
/M21 RotZ sin RotX cos mul neg def
/M22 RotZ cos RotX cos mul def
/M23 RotX sin neg def
/M31 RotZ cos neg RotY sin mul RotZ sin RotX sin mul RotY cos mul sub def
/M32 RotZ sin neg RotY sin mul RotZ cos RotX sin mul RotY cos mul add def
/M33 RotX cos RotY cos mul def
} def
%
/CalcCoordinates{%
formulesTroisD
Xi xunit Yi yunit
} def
% pour la 3D conventionnelle
/formulesTroisD{%
/xObservateur Xabscisse Sin1 mul neg Yordonnee Cos1 mul add def
/yObservateur Xabscisse Cos1Sin2 mul neg Yordonnee Sin1Sin2 mul sub Zcote Cos2 mul add def
/zObservateur Xabscisse neg Cos1Cos2 mul Yordonnee Sin1Cos2 mul sub Zcote Sin2 mul sub Dobs add def
/Xi DScreen xObservateur mul zObservateur div def
/Yi DScreen yObservateur mul zObservateur div def
} def
%
/CalculsPointsAfterTransformations{%
/Xabscisse M11 Xpoint mul M12 Ypoint mul add M13 Zpoint mul add def
/Yordonnee M21 Xpoint mul M22 Ypoint mul add M23 Zpoint mul add def
/Zcote M31 Xpoint mul M32 Ypoint mul add M33 Zpoint mul add def
}
def
%
/Test { % test de visibilite d'un point
% rayon vers point de vue
/RXvue XpointVue Xabscisse sub def
/RYvue YpointVue Yordonnee sub def
/RZvue ZpointVue Zcote sub def
% test de visibilite
/PS RXvue Xabscisse mul % produit scalaire
RYvue Yordonnee mul add
RZvue Zcote mul add
def
} def
%
/MaillageSphere {
gsave
maillagewidth
maillagecolor
0.25 setlinewidth
0 increment 360 increment sub {%
/theta exch def
-90 increment 90 increment sub {%
/phi exch def
% newpath
/Xpoint Rsphere theta cos mul phi cos mul def
/Ypoint Rsphere theta sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
% Centre de la facette
/Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul def
/Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul def
/Zpoint Rsphere phi increment 2 div add sin mul def
CalculsPointsAfterTransformations
/xCentreFacette Xabscisse def
/yCentreFacette Yordonnee def
/zCentreFacette Zcote def
% normale a la facette
/nXfacette xCentreFacette def
/nYfacette yCentreFacette def
/nZfacette zCentreFacette def
% rayon vers point de vue
/RXvue XpointVue xCentreFacette sub def
/RYvue YpointVue yCentreFacette sub def
/RZvue ZpointVue zCentreFacette sub def
% test de visibilite
/PSfacette RXvue nXfacette mul
RYvue nYfacette mul add
RZvue nZfacette mul add
def
PSfacette condition {
theta 1 theta increment add {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi cos mul def
/Ypoint Rsphere theta1 sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi 1 phi increment add {
/phi1 exch def
/Xpoint Rsphere theta increment add cos mul phi1 cos mul def
/Ypoint Rsphere theta increment add sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
theta increment add -1 theta {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi increment add cos mul def
/Ypoint Rsphere theta1 sin mul phi increment add cos mul def
/Zpoint Rsphere phi increment add sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi increment add -1 phi {
/phi1 exch def
/Xpoint Rsphere theta cos mul phi1 cos mul def
/Ypoint Rsphere theta sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
} if
} for
} for
stroke
grestore
} def
%
/DrawCities {
/CITY exch def
/Rayon exch def
/nbr CITY length def % nombre de villes
0 1 nbr 1 sub {
/compteur exch def
CITY compteur get aload pop
/X exch def /Y exch def
/Xpoint {%
Y cos X cos mul Rsphere mul
} def
/Ypoint {%
Y cos X sin mul Rsphere mul
} def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition %
{1 0 0 setrgbcolor newpath Rayon 0 360 arc closepath fill}{pop pop}
ifelse
} for
} def
/oceans_seas_hatched {
-90 circlesep 90 {
/latitude_parallel exch def
Parallel
circlecolor
circlewidth
stroke
} for
} def
/meridien {
% liste des points vus
/TabPointsVusNeg[
-180 1 0{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
% plus grand et plus petit
/phi_minNeg 0 def
/phi_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_minNeg le {/phi_minNeg phi def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_maxNeg ge {/phi_maxNeg phi def} if
} for
/phi_minPos 180 def
/phi_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_minPos le {/phi_minPos phi def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_maxPos ge {/phi_maxPos phi def} if
} for
/Xpoint Rsphere longitude_meridien cos mul phi_minNeg cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minNeg cos mul def
/Zpoint Rsphere phi_minNeg sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minNeg 1 phi_maxNeg{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
/Xpoint Rsphere longitude_meridien cos mul phi_minPos cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minPos cos mul def
/Zpoint Rsphere phi_minPos sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minPos 1 phi_maxPos{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
}
def
%% macros de Jean-Paul Vignault
%% dans solides.pro
%% produit vectoriel de deux vecteurs 3d
/vectprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
y zp mul z yp mul sub
z xp mul x zp mul sub
x yp mul y xp mul sub
end
} def
% coordonnees spheriques -> coordonnees cartesiennes
/rtp2xyz {
6 dict begin
/phi exch def
/theta exch def
/r exch def
/x phi cos theta cos mul r mul def
/y phi cos theta sin mul r mul def
/z phi sin r mul def
x y z
end
} def
%% norme d'un vecteur 3d
/norme3d { %% x y z
3 dict begin
/z exch def
/y exch def
/x exch def
x dup mul y dup mul add z dup mul add sqrt
end
} def
%% duplique le vecteur 3d
/dupp3d { %% x y z
3 copy
} def
/dupv3d {dupp3d} def
%%%%% ### mulv3d ###
%% (scalaire)*(vecteur 3d) Attention : dans l autre sens !
/mulv3d { %% x y z lambda
4 dict begin
/lambda exch def
/z exch def
/y exch def
/x exch def
x lambda mul
y lambda mul
z lambda mul
end
} def
%%%%% ### defpoint3d ###
%% creation du point A a partir de xA yA yB et du nom /A
/defpoint3d { %% xA yA zA /nom
1 dict begin
/memo exch def
[ 4 1 roll ] cvx memo exch
end def
}def
%%%%% ### scalprod3d ###
%% produit scalaire de deux vecteurs 3d
/scalprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp mul y yp mul add z zp mul add
end
} def
%%%%% ### addv3d ###
%% addition de deux vecteurs 3d
/addv3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp add
y yp add
z zp add
end
} def
/arccos {
dup
dup mul neg 1 add sqrt
exch
atan
} def
%% fin des macros de Jean-Paul Vignault
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% ### rotV3d ###
%% rotation autour d'un vecteur u
%% defini par (ux,uy,uz)
%% ici l'axe des peles de la Terre
%% d'un angle theta
/rotV3d {
15 dict begin
/N2uvw ux dup mul uy dup mul add uz dup mul add def
/N2uv ux dup mul uy dup mul add def
/N2vw uz dup mul uy dup mul add def
/N2uw uz dup mul ux dup mul add def
/z exch def /y exch def /x exch def
/uxvywz ux x mul uy y mul add uz z mul add def
/uxvy ux x mul uy y mul add def
/uxwz ux x mul uz z mul add def
/vywz uy y mul uz z mul add def
/_wyvz uz y mul neg uy z mul add def
/wx_uz uz x mul ux z mul sub def
/_vxuy uy x mul neg ux y mul add def
ux uxvywz mul x N2vw mul ux vywz mul sub theta cos mul add N2uvw sqrt _wyvz mul theta sin mul add N2uvw div
uy uxvywz mul y N2uw mul uy uxwz mul sub theta cos mul add N2uvw sqrt wx_uz mul theta sin mul add N2uvw div
uz uxvywz mul z N2uv mul uz uxvy mul sub theta cos mul add N2uvw sqrt _vxuy mul theta sin mul add N2uvw div
end
} def
/the_night{
50 dict begin
/theta {180 hour 15 mul sub} bind def
% direction des rayons du soleil au solstice d'hiver
u1 u2 u3 /u defpoint3d
% vecteur normal dans le plan meridien
% la latitude
% /phi0 u2 neg u3 atan def
u1 u2 u3 rotV3d
/nZ exch def /nY exch def pop
/phi0 nY neg nZ atan def
% vecteur normal dans le plan equateur
/theta0 u1 neg u2 atan def
theta0 cos theta0 sin 0 /v defpoint3d
% w tels que le triadre u v w soit direct
u v vectprod3d dupp3d norme3d 1 exch div mulv3d /w defpoint3d
/TabPointsVusNeg[
-180 1 0{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
/t_minNeg 0 def
/t_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_minNeg le {/t_minNeg t def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_maxNeg ge {/t_maxNeg t def} if
} for
/t_minPos 180 def
/t_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_minPos le {/t_minPos t def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_maxPos ge {/t_maxPos t def} if
} for
theta -90 ge theta 90 le and {
v t_minNeg cos Rsphere mul mulv3d
w t_minNeg sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minNeg 1 t_maxPos{
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
}{
v t_minPos cos Rsphere mul mulv3d
w t_minPos sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minPos 1 t_maxPos {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
t_minNeg 1 t_maxNeg {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
} ifelse
closepath
end
}
def
% ondes seismes
/ondes {
50 dict begin
/l exch def % latitude : phi
/L exch def % longitude : theta
/dlmax exch def % intervalle maximal en degres
/nbr exch def % nombre de cercles
/dl dlmax nbr div def
% le vecteur unitaire normal
% a la sphere au point considere
L cos l cos mul
L sin l cos mul
l sin
/u defpoint3d
1 1 nbr { /i exch def
/l' l dl i mul add def
/r Rsphere dl i mul cos mul def
/r' Rsphere dl i mul sin mul def
% le centre de l'onde
/x_o r L cos mul l cos mul def
/y_o r L sin mul l cos mul def
/z_o r l sin mul def
% un vecteur unitaire du plan du cercle
% perpendiculaire a n et dans le plan meridien
% donc meme longitude
/x_I Rsphere L cos mul l' cos mul def
/y_I Rsphere L sin mul l' cos mul def
/z_I Rsphere l' sin mul def
x_I x_o sub
y_I y_o sub
z_I z_o sub
/uOI defpoint3d
uOI dupp3d norme3d 1 exch div mulv3d
/v defpoint3d
% un vecteur w normal a u et v dans le plan du cercle
u v vectprod3d dupp3d norme3d 1 exch div mulv3d
/w defpoint3d
% on decrit le cercle
v 0 cos r' mul mulv3d
w 0 sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
MatriceTransformation %%%%%%%%%%%%%%%%% hv 2009-08-11
CalculsPointsAfterTransformations
CalcCoordinates
moveto
0 1 360 {
/t exch def
v t cos r' mul mulv3d
w t sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
stroke
} for
end
} def
%% nouvelle construction des paralleles
/Parallel {
0 1 360{ % for
/theta exch def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
moveto
/theta theta 1 add def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
lineto }
{
/theta theta 1 sub def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} ifelse
} if
} for
} def
end
%
%
/tx@geoIIDict 100 dict def
tx@geoIIDict begin
%
/CalculsPoints{%
/region exch def
newpath
/nbr region length def % nombre de régions
nbr 2 sub -2 2 {
/Counter exch def
region Counter get
/Y exch def
region Counter 1 add get
/X exch def
/Xpoint { Y cos X cos mul Rsphere mul } def
/Ypoint { Y cos X sin mul Rsphere mul } def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS 0 lt {% marque le point
moveto
exit % termine
} {pop pop} ifelse
} for
/ncount 0 def % hv 2004-05-04
/stepPoint Counter step div 2 lt { 1 }{ step } ifelse def % hv 2004-05-04
Counter 2 sub -2 2 {
/Counter exch def
/ncount ncount 1 add def % hv 2004-05-04
ncount stepPoint ge Counter 2 le or { % hv 2004-05-04
region Counter get
/Y exch def
region Counter 1 add get
/X exch def
/Xpoint { Y cos X cos mul Rsphere mul } def
/Ypoint { Y cos X sin mul Rsphere mul } def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS 0 lt { lineto }{ pop pop } ifelse
/ncount 0 def % hv 2004-05-04
}{ /ncount ncount 1 add def } ifelse % hv 2004-05-04
} for
} def
%
/MatriceTransformation{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul def
/M12 RotZ cos RotY sin mul RotX sin mul
RotZ sin RotX cos mul sub def
/M13 RotZ cos RotY sin mul RotX cos mul
RotZ sin RotX sin mul add def
/M21 RotZ sin RotY cos mul def
/M22 RotZ sin RotY sin RotX sin mul mul
RotZ cos RotX cos mul add def
/M23 RotZ sin RotY sin mul RotX cos mul
RotZ cos RotX sin mul sub def
/M31 RotY sin neg def
/M32 RotX sin RotY cos mul def
/M33 RotX cos RotY cos mul def
} def
/CalcCoordinates{%
formulesTroisD
Xi xunit Yi yunit
} def
% pour la 3D conventionnelle
/formulesTroisD{%
/xObservateur Xabscisse Sin1 mul neg Yordonnee Cos1 mul add def
/yObservateur Xabscisse Cos1Sin2 mul neg Yordonnee Sin1Sin2 mul sub Zcote Cos2 mul add def
/zObservateur Xabscisse neg Cos1Cos2 mul Yordonnee Sin1Cos2 mul sub Zcote Sin2 mul sub Dobs add def
/Xi DScreen xObservateur mul zObservateur div def
/Yi DScreen yObservateur mul zObservateur div def
}
def
%
/CalculsPointsAfterTransformations{%
/Xabscisse M11 Xpoint mul M12 Ypoint mul add M13 Zpoint mul add def
/Yordonnee M21 Xpoint mul M22 Ypoint mul add M23 Zpoint mul add def
/Zcote M31 Xpoint mul M32 Ypoint mul add M33 Zpoint mul add def
}
def
%
/Test { % test de visibilité d'un point
% rayon vers point de vue
/RXvue Xabscisse XpointVue sub def
/RYvue Yordonnee YpointVue sub def
/RZvue Zcote ZpointVue sub def
% test de visibilité
/PS RXvue Xabscisse mul % produit scalaire
RYvue Yordonnee mul add
RZvue Zcote mul add
def
} def
%
/MaillageSphereII {
0 increment 360 increment sub {%
/theta exch def
departPhi increment 90 increment sub {%
/phi exch def
% newpath
/Xpoint Rsphere theta cos mul phi cos mul def
/Ypoint Rsphere theta sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
% Centre de la facette
/Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul def
/Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul def
/Zpoint Rsphere phi increment 2 div add sin mul def
CalculsPointsAfterTransformations
/xCentreFacette Xabscisse def
/yCentreFacette Yordonnee def
/zCentreFacette Zcote def
% normale à la facette
/nXfacette xCentreFacette def
/nYfacette yCentreFacette def
/nZfacette zCentreFacette def
% rayon vers point de vue
/RXvue xCentreFacette XpointVue sub def
/RYvue yCentreFacette YpointVue sub def
/RZvue zCentreFacette ZpointVue sub def
% test de visibilité
/PSfacette RXvue nXfacette mul
RYvue nYfacette mul add
RZvue nZfacette mul add
def
condition {
theta 1 theta increment add {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi cos mul def
/Ypoint Rsphere theta1 sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi 1 phi increment add {
/phi1 exch def
/Xpoint Rsphere theta increment add cos mul phi1 cos mul def
/Ypoint Rsphere theta increment add sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
theta increment add -1 theta {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi increment add cos mul def
/Ypoint Rsphere theta1 sin mul phi increment add cos mul def
/Zpoint Rsphere phi increment add sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi increment add -1 phi {
/phi1 exch def
/Xpoint Rsphere theta cos mul phi1 cos mul def
/Ypoint Rsphere theta sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
} if
} for
} for
gsave
0 setgray
stroke
grestore
} def
%
/DrawCities {
/CITY exch def
/Rayon exch def
/nbr CITY length def % nombre de villes
0 1 nbr 1 sub {
/compteur exch def
CITY compteur get aload pop
/X exch def /Y exch def
/Xpoint { Y cos X cos mul Rsphere mul } def
/Ypoint { Y cos X sin mul Rsphere mul } def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS 0 lt %
{ 1 0 0 setrgbcolor newpath Rayon 0 360 arc closepath fill }{ pop pop } ifelse
} for
} def
end