%% $Id: pst-feyn-doc.tex 826 2018-09-27 09:21:43Z herbert $
\PassOptionsToPackage{dvipsnames,svgnames,x11names}{xcolor}
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
   headexclude,footexclude,oneside,dvipsnames,svgnames]{pst-doc}
\listfiles

\usepackage[utf8]{inputenc}
\usepackage{pst-feyn}
\let\pstFV\fileversion
\let\pstFD\filedate
\let\belowcaptionskip\abovecaptionskip
\usepackage{pst-plot}


%\usepackage[dvipsnames,svgnames,x11names]{xcolor}

\def\textRed#1{\textcolor{red}{#1}}
\def\textBlack#1{\textcolor{black}{#1}}
\def\textOliveGreen#1{\textcolor{OliveGreen}{#1}}

\makeatletter
\renewcommand*\l@subsection{\bprot@dottedtocline{2}{1.5em}{3.6em}}
\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.5em}}
\makeatother
\def\bgImage{\begin{pspicture}(0,-1)(4.4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt,linecolor=blue](1,1)(3,1)
\psGluon[windings=4,amplitude=3pt,linecolor=Green](3.5,1.5)(4.2,0.9)
\rput(0.5,1.9){$\mathrm{e}^-$} \rput(3.5,1.9){$\bar{\mathrm{q}}$}
\rput(0.5,0.2){$\mathrm{e}^+$} \rput(3.5,0.2){q}
\rput(2,1.5){$\gamma$}\rput[r](4.2,1.3){$\mathrm{g}$}
\psline{->}(0,-0.2)(4,-0.2)\uput[0](4,-0.2){$t$}
\end{pspicture}
}
\lstset{explpreset={pos=l,width=-99pt,overhang=0pt,hsep=\columnsep,vsep=\bigskipamount,rframe={}},
   escapechar=?}
\def\textat{\char064}%

\let\KeyWord\Lkeyword
%#1{$\backslash\!\!\textRed{#1}\textBlack\!\!$}

\addbibresource{\jobname.bib}


\begin{document}
\author{Herbert Voß}
\date{\today}
\title{pst-feyn}
\subtitle{A PSTricks package for drawing Feynman diagrams\newline  v\pstFV~--~\pstFD}
\maketitle

\tableofcontents

\begin{abstract}
\LPack{pst-feyn} is a set of drawing graphical elements which are used for Feynman diagrams.
Simple flow charts and other graphics are possible, too. The package is based on the
macros of the old package \LPack{axodraw} from John Collins and Jos Vermaseren (\cite{axodraw2}), but uses the
capabilities of PSTricks (\cite{PSTricks2,PSTricksE}).


\vfill\noindent
Thanks for feedback and contributions to:\\

\end{abstract}
\clearpage

\section{Using pst-feyn}

The commands of \LPack{pst-feyn} should be executed inside either the \Lenv{pspicture}
environment. Inside this environment it is possible to place objects
at arbitrary positions and put text between them.  An example would be


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-1,-3.3)(4,3)
\psGluonArc[linecolor=red,windings=8,radius=2cm](1.5,0)(0,180)
\psGluonArc[linecolor=green,windings=8,radius=2cm](1.5,0)(180,360)
\psGluon[linecolor=blue,windings=4](-0.5,0)(1,0)\psdot(-0.5,0)
\psGluon[linecolor=blue,windings=4](2,0)(3.5,0)\psdot(3.5,0)
\end{pspicture}
\end{LTXexample}

The syntax and the meaning of these command are explained in the next
section. One should note that all coordinates are presented in the current
user units, which is by default 1cm.
It is possible to use scale
transformations if these units are not convenient.



\section{The commands}

The commands that are currently available in \LPack{pst-feyn} are (in alphabetic
order):

\subsection*{\Lcs{psArrowArc}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

   Draws an arc segment centered around $(x,y)$. The radius can be set by the optional argument \Lkeyword{radius}
The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All
   angles are given in degrees. In the middle of the segment there will
   be an arrow.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.4)
\psArrowArc[linecolor=blue,
 linewidth=1.5pt,radius=1.75](2,0)(0,180)
\end{pspicture}
\end{LTXexample}

\subsection*{\Lcs{psArrowArcn}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

The same, but clockwise.

\subsection*{\Lcs{psArrowLine}\OptArgs\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}

   Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$). There will be an
   arrow in the middle of the line.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.4)
\psArrowLine[linecolor=blue,
 linewidth=1.5pt](0,0)(4,2)
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psBCirc}\OptArgs\Largr{x,y}\Largb{radius}}

   Draws a circle of which the contents are blanked out. This means that
   anything that was present at the position of the circle will be
   overwritten. The center of the circle is at $(x,y)$.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psBCirc[linecolor=blue,
 linewidth=1.5pt](2,2){2}
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psBText}\OptArgs\Largr{$x,y$}\Largb{text}}
   Draws a box with one line of text in it. The coordinates refer to the
   center of the box. The box is like a BBox in that it blanks out
   whatever was at the position of the box.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psBText[linecolor=blue](2,3.5){A short line}
\psBText[linecolor=red](2,1.5){%
 A short line\\ and another one \\a.s.o.}
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psCArc}\OptArgs\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

   Draws an arc segment centered around $(x,y)$. The radius is set by the optional argument \Lkeyword{radius}. The
   arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. The star version (\Lcs{psCArc*}) creates a filled arc.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,2.2)
\psCArc[linecolor=blue,radius=2,
 linewidth=1.5pt](2,0)(80,180)
\psCArc[linecolor=red,linestyle=dashed,radius=2,
 linewidth=1.5pt](2,0)(0,80)
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psCCirc}\Largr{$x,y$}\Largb{radius}\Largb{color1}\Largb{color2}}
Draws a circle around $(x,y)$. The contents of
   the circle are lost. The color of the box will be color1 and the color
   of the background inside the box will be color2. It is the same as\\
\verb|\pscircle[linecolor=color1,fillstyle=solid,fillcolor=color2](x,y){radius}|

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4)
\psCCirc[linewidth=1.5pt](1.5,2){1.5}{blue}{red}
\psCCirc[linewidth=2.5pt](3,1){1}{green}{cyan}
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psCText}\OptArgs\Largr{$x,y$}\Largb{col1}\Largb{col2}\Largb{text}}
   Draws a box with test in it. The
   box is just big enough to fit around the text. The box is like a CBox in that it blanks out
   whatever was at the position of the box. The color of the box and the
   text inside is color1 and the background inside has the color color2.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psCText(2,3.5){red}{cyan}{A short line}
\psCText(2,1.5){green}{yellow}{%
 A short line\\ and another one \\a.s.o.}
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psGluonArc}\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}

   Draws a gluon on an arc-segment. The center of the arc is (x,y) and r
   is its radius. The arc segment runs counterclockwise from $\phi_1$
   to $\phi_2$. The width of the gluon is twice `amplitude'. Note that whether
   the curls are inside or outside can be influenced with the sign of
   the amplitude. When it is positive the curls are on the inside.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psGluonArc(0,2)(-90,90)% shows the default setting
\psGluonArc[windings=8,amplitude=5mm,radius=2cm,
          linecolor=red](4,2)(90,270)
\psGluonArc[windings=8,amplitude=-3mm,radius=2cm,
          linecolor=blue](4,2)(90,270)
\end{pspicture}
\end{LTXexample}

\subsection*{\Lcs{psGluon}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
   Draws a gluon from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the
   gluon will be twice the value of `amplitude'. If the number of windings is not an integer
   it will be rounded. The side at which the
   windings lie is determined by the order of the two coordinates. Also
   a negative amplitude can change this side.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psGluon(0,3)(4,3)% shows the default setting
\psGluon[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psGluon[windings=6,amplitude=-3mm,linecolor=blue](0,1)(4,1)
\end{pspicture}
\end{LTXexample}

\subsection*{\Lcs{psPhoton}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
   Draws a photon from $(x_1,y_1)$ to $(x_2,y_2)$. The width of the
   photon will be twice the value of `amplitude'. The number of wiggles
   is given by the last parameter. If twice this parameter is not an integer
   it will be rounded to an integer value. Whether the first wiggle
   starts up or down can be influenced with the sign of the amplitude.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPhoton(0,3)(4,3)% shows the default setting
\psPhoton[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psPhoton[windings=6,amplitude=-2mm,linecolor=blue](0,1)(4,1)
\end{pspicture}
\end{LTXexample}



\subsection*{\Lcs{psPhotonArc}\Largr{$x,y$}\Largr{$\phi_1,\phi_2$}}
   Draws a photon on an arc-segment. The center of the arc is $(x,y)$. The arc segment runs counterclockwise from $\phi_1$
   to $\phi_2$. The width of the photon is twice `amplitude', and the
   number of wiggles is given by the last parameter. Note that
   the sign of the amplitude influences whether the photon starts going
   outside (positive) or starts going inside (negative). If one likes
   the photon to reach both endpoints from the outside the number of
   wiggles should be an integer plus 0.5.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPhotonArc(0,2)(-90,90)% shows the default setting
\psPhotonArc[windings=8,amplitude=5mm,radius=2cm,
          linecolor=red](4,2)(90,270)
\psPhotonArc[windings=8,amplitude=-3mm,radius=2cm,
          linecolor=blue](4,2)(90,270)
\end{pspicture}
\end{LTXexample}


\subsection*{\Lcs{psPText}\OptArg{mode}\Largr{$x,y$}\Largr{$\phi$}\Largb{text}}
   The focal point of the text box is $(x,y)$. The mode parameter tells how the text should be
   positioned with respect to the focal point. If this parameter is
   omitted the center of the text will correspond to the focal point.
   Other options are: l for having the left side correspond to the
   focal point, r for having the right side correspond to it, t for
   having the top at the focal point and b for the bottom. One may
   combine two letters as in [bl], as long as it makes sense. The
   parameter $\phi$ is a rotation angle. The command is the same as\\
   \verb|\rput[mode]{phi}(x,y){\shortstack{#4}}|


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psPText(2,3.5)(0){A short line}
\psPText[lb](3,0)(90){%
 A short line\\ and another one \\a.s.o.}
\end{pspicture}
\end{LTXexample}



\subsection*{\Lcs{psText}\OptArg{mode}\Largr{$x,y$}\Largb{text}}
Same as \Lcs{rput}.



\subsection*{\Lcs{psZigZag}\Largr{$x_1,y_1$}\Largr{$x_2,y_2$}}
   Draws a zigzag line from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the
   zigzagging will be twice the value of `amplitude'. The number of zigzags
   is given by the last parameter. If twice this parameter is not an integer
   it will be rounded to an integer value. Whether the first zigzag
   starts up or down can be influenced with the sign of the amplitude.

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](-0.4,-0.4)(4,4.2)
\psZigZag(0,3)(4,3)% shows the default setting
\psZigZag[windings=5,amplitude=5mm,linecolor=red](0,2)(4,2)
\psZigZag[windings=6,amplitude=-2mm,linecolor=blue](0,1)(4,1)
\end{pspicture}
\end{LTXexample}



\iffalse
\begin{itemize}
\item \Lcs{psLinAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_D$,$d$,hashsize
   ,offset,width) \hfill \\
   This draws a line to be used as an axis in a graph. Along the axis
   are hash marks. Going from the first coordinate to the second, the
   hash marks are on the left side if `hashsize', which is the size of the
   hash marks, is positive and on the right side if it is negative.
   $N_D$ is the number of `decades', indicated by fat hash marks, and
   $d$ is the number of subdivisions inside each decade. The offset
   parameter tells to which subdivision the first coordinate
   corresponds. When it is zero, this coordinate corresponds to a fat
   mark of a decade. Because axes have their own width, this is
   indicated with the last parameter.
\item \Lcs{psLogAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_L$,hashsize
   ,offset,width) \hfill \\
   This draws a line to be used as an axis in a graph. Along the axis
   are hash marks. Going from the first coordinate to the second, the
   hash marks are on the left side if `hashsize', which is the size of the
   hash marks, is positive and on the right side if it is negative.
   $N_L$ is the number of orders of magnitude, indicated by fat
   hash marks. The offset parameter tells to which integer subdivision
   the first coordinate corresponds. When it is zero, this coordinate
   corresponds to a fat mark, which is identical to when the value
   would have been 1. Because axes have their own width, this is
   indicated with the last parameter.
\end{itemize}
\fi

A note about color. The names of the colors can be found in the documentation
of package \LPack{xcolor}.
This package gives also the commands that allow the user to change the color of the text.
It is loaded by default with PSTricks.

\section{Examples}

\subsection{Text modes}
The meaning of the mode characters in the text commands can best be
demonstrated. The statements
produce 9 texts and for each the focal point is indicated by a little
circle. It looks like


\begin{LTXexample}[width=7cm]
\begin{pspicture}[showgrid](7,2)
\psset{linecolor=BrickRed,radius=2pt}\footnotesize
\psCArc*(0,2)(0,360)\psText[lt](0,2){left-top}
\psCArc(0,1)(0,360) \psText[l] (0,1){left-center}
\psCArc*(0,0)(0,360)\psText[lb](0,0){left-bottom}
\psCArc*(3,2)(0,360)\psText[t] (3,2){center-top}
\psCArc(3,1)(0,360) \psText    (3,1){center-center}
\psCArc*(3,0)(0,360)\psText[b] (3,0){center-bottom}
\psCArc*(7,2)(0,360)\psText[rt](7,2){right-top}
\psCArc(7,1)(0,360) \psText[r](7,1){right-center}
\psCArc*(7,0)(0,360)\psText[rb](7,0){right-bottom}
\end{pspicture}
\end{LTXexample}

This illustrates exactly all the combinations of the mode characters and
what their effects are. The text is
insensitive to the scaling commands, and the color of the text should be
set with the regular color commands. In the case of \LaTeX{} text
it can of course contain different fonts,
math mode and all those little things.



\subsection{The windings of a gluon}

Gluons are traditionally represented by a two dimensional projection of
a helix. Actually close inspection of some pretty gluons reveals that
it is usually not quite a helix. Hence the gluons in pst-feyn are also
not quite helices. In addition one may notice that the begin and end
points deviate slightly from the regular windings. This makes it more in
agreement with hand drawn gluons. When a gluon is drawn, one needs not
only its begin and end points but there is an amplitude connected to
this almost helix, and in addition there are windings. The number of
windings is the number of curls that the gluon will have. Different
people may prefer different densities of curls. This can effect the
appearance considerably:

\begin{LTXexample}[pos=t]
\begin{pspicture}[showgrid](0,-0.4)(10,4)
\psset{linecolor=Red}\footnotesize
\psGluon[windings=4](1,0.5)(1,4)\psText(1,0.25){4 windings}
\psGluon[windings=5](3,0.5)(3,4)\psText(3,0.25){5 windings}
\psGluon[windings=6](5,0.5)(5,4)\psText(5,0.25){6 windings}
\psGluon[windings=7](7,0.5)(7,4)\psText(7,0.25){7 windings}
\psGluon[windings=8](9,0.5)(9,4)\psText(9,0.25){8 windings}
\end{pspicture}
\end{LTXexample}

The influence of the amplitude is also rather great. The user should
experiment with it. There is however an aspect to the amplitude that
should be discussed. For a straight gluon the amplitude can determine on
which side the curls are. So does the direction of the gluon:


\begin{LTXexample}[pos=t]
\begin{pspicture}[showgrid](0,-0.4)(10,4)
\psset{linecolor=Red,windings=10}\footnotesize
\psGluon[amplitude=0.2](2,0.5)(2,4) \psText(2,0.2){amp $> 0$}\psText(1.5,2){$\uparrow$}
\psGluon[amplitude=0.2](4,4)(4,0.5) \psText(4,0.2){amp $> 0$}\psText(3.5,2){$\downarrow$}
\psGluon[amplitude=-0.2](6,0.5)(6,4)\psText(6,0.2){amp $< 0$}\psText(5.5,2){$\uparrow$}
\psGluon[amplitude=-0.2](8,4)(8,0.5)\psText(8,0.2){amp $< 0$}\psText(7.5,2){$\downarrow$}
\end{pspicture}
\end{LTXexample}

For straight gluons one does not need the option of the negative
amplitude. It is however necessary for gluons on an arc segment. In that
case the arc is always drawn in an anticlockwise direction. Hence the
direction is fixed and only the amplitude is left as a tool for
determining the side with the curls.

\subsection{Scaling}

Sometimes it is much easier to design a figure on a larger scale than it
is needed in the eventual printing. In that case one can use a scale
factor, either during the design or in the final result. We use the
figure in the first section as an example:

\begin{LTXexample}[pos=t]
\psset{unit=0.3,amplitude=0.2}
\begin{pspicture}[shift=*](0,-0.4)(10,3.5)
\psGluonArc[linecolor=Red,radius=2,windings=8](5,2)(0,180)
\psGluonArc[linecolor=Green,radius=2,windings=8](5,2)(180,360)
\psGluon[windings=6,linecolor=Blue](0,2)(3,2)\psdot(3,2)
\psGluon[windings=6,linecolor=Blue](7,2)(10,2)\psdot(7,2)
\end{pspicture}
$+ \textrm{ others} = C_A(\frac{5}{3}+\frac{31}{9}\epsilon)
  + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$
\end{LTXexample}

This way it is rather straightforward to make whole pictorial equations.
Of course some things are not scale invariant. The appreciation of a
figure may be somewhat different when the scale is changed. In the above
case one might consider changing the amplitude of the gluons a little
bit. Changing this to 0.5cm and at the same time reducing the number
of windings from 6 to 3 for the straight gluons and from 8 to 7 for the
gluons in the arcs gives

\begin{LTXexample}[pos=t]
\psset{unit=0.3,amplitude=0.5}
\begin{pspicture}[shift=*](0,-0.4)(10,3.5)
\psGluonArc[linecolor=Red,radius=2,windings=7](5,2)(0,180)
\psGluonArc[linecolor=Green,radius=2,windings=7](5,2)(180,360)
\psGluon[windings=3,linecolor=Blue](0,2)(3,2)\psdot(3,2)
\psGluon[windings=3,linecolor=Blue](7,2)(10,2)\psdot(7,2)
\end{pspicture}
$+ \textrm{ others} = C_A(\frac{5}{3}+\frac{31}{9}\epsilon)
  + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$
\end{LTXexample}

\subsection{Photons}

When drawing photons one should take care that the number of wiggles is
selected properly. Very often this number should be an integer plus
$0.5$. This can be seen in the following example:

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=4pt,windings=8.5,% wiggles
 radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture}
\end{LTXexample}



When the number of wiggles is reduced to 8 we obtain:

\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=4pt,windings=8,% wiggles
 radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture}
\end{LTXexample}

This is not as nice. Somehow the symmetry is violated. One should also
take care that the wiggles start in the proper way. If we make the
amplitude negative we see that the photons are not `right' either:


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,3)
\psdot(0.5,0.4)\psdot(3.5,0.4)
\psArrowLine[linecolor=Red](0,0.4)(4,0.4)
\psarc[linecolor=Green,arrowscale=2]{->}(2,0.4){1}{60}{120}
\psPhotonArc[amplitude=-4pt,windings=8.5,% wiggles
 radius=1.5,linecolor=Brown](2,0.4)(0,180)
\end{pspicture}
\end{LTXexample}


\begin{LTXexample}[width=5cm]
\begin{pspicture}[showgrid](0,-0.4)(4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt](1,1)(3,1)
\psdot(1,1) \psdot(3,1)
\end{pspicture}
\end{LTXexample}


\begin{LTXexample}[width=5cm]
\begin{pspicture}(0,-1)(4.4,2)
\psArrowLine(0,0)(1,1) \psArrowLine(1,1)(0,2)
\psArrowLine(3,1)(4,0) \psArrowLine(4,2)(3,1)
\psPhoton[windings=4.5,amplitude=4pt,linecolor=blue](1,1)(3,1)
\psGluon[windings=4,amplitude=3pt,linecolor=Green](3.5,1.5)(4.2,0.9)
\rput(0.5,1.9){$\mathrm{e}^-$} \rput(3.5,1.9){$\bar{\mathrm{q}}$}
\rput(0.5,0.2){$\mathrm{e}^+$} \rput(3.5,0.2){q}
\rput(2,1.5){$\gamma$}\rput[r](4.2,1.3){$\mathrm{g}$}
\psline{->}(0,-0.2)(4,-0.2)\uput[0](4,-0.2){$t$}
\end{pspicture}
\end{LTXexample}



\subsection{Curves and graphs}

\LPack{pst-feyn} is a PSTricks related package and can use all commands by one of
the nearly``endless'' PSTricks packages.
An example of a complete picture would be:

%\begin{LTXexample}[pos=t]
\psset{unit=1pt}
\begin{pspicture}(-30,-30)(360,440)
\psLinAxis(0,0)(300,0)(3,10,5,0)\psLinAxis(0,400)(300,400)(3,10,-5,0)
\psLogAxis(0,0)(0,400)(4,-5,2)  \psLogAxis(300,0)(300,400)(4,5,2)
\readdata\DataA{data/data0.dat} \readdata\DataB{data/data1.dat}
\listplot[plotstyle=curve,linecolor=Blue,linewidth=1.5pt,unit=100,curvature=.5 2 0]{\DataA}
\listplot[plotstyle=curve,linecolor=Red,linewidth=1.5pt,linestyle=dashed,unit=100,
       curvature=.5 2 0]{\DataB}
\psline[linecolor=Blue](200,360)(270,360)
\rput[r](195,360){\blue\large$e^+e^-\rightarrow\mu^+\mu^-$}
\psline[linestyle=dashed,linecolor=Red](200,330)(270,330)
\rput[r](195,330){\red\large$e^+e^-\rightarrow\tau^+\tau^-$}
\rput(0,-10){0} \rput(100,-10){1}\rput(200,-10){2}\rput(300,-10){3}
\rput(150,-25){Beam energy in GeV (Threshold effects for $\mu$ and $\tau$)}
\rput(-10,70){$1$} \rput(-10,170){$10$}\rput(-10,270){$10^2$}\rput(-10,370){$10^3$}
\rput{90}(-25,220){\large$\sigma$ in nb}
\psArrowLine(190,270)(160,300) \psArrowLine(160,240)(190,270)
\psArrowLine(270,300)(240,270) \psArrowLine(240,270)(270,240)
\psPhoton[windings=4.5,amplitude=4](190,270)(240,270)
\psdot(190,270) \psdot(240,270)
\end{pspicture}
%\end{LTXexample}

\begin{lstlisting}
\psset{unit=1pt}
\begin{pspicture}(-30,-30)(360,440)
\psLinAxis(0,0)(300,0)(3,10,5,0)\psLinAxis(0,400)(300,400)(3,10,-5,0)
\psLogAxis(0,0)(0,400)(4,-5,2)  \psLogAxis(300,0)(300,400)(4,5,2)
\readdata\DataA{data/data0.dat} \readdata\DataB{data/data1.dat}
\listplot[plotstyle=curve,linecolor=Blue,linewidth=1pt,unit=100,curvature=.5 2 0]{\DataA}
\listplot[plotstyle=curve,linecolor=Red,linewidth=1.5pt,linestyle=dashed,unit=100,
       curvature=.5 2 0]{\DataB}
\psline[linecolor=Blue](200,360)(270,360)
\rput[r](195,360){\blue\large$e^+e^-\rightarrow\mu^+\mu^-$}
\psline[linestyle=dashed,linecolor=Red](200,330)(270,330)
\rput[r](195,330){\red\large$e^+e^-\rightarrow\tau^+\tau^-$}
\rput(0,-10){0} \rput(100,-10){1}\rput(200,-10){2}\rput(300,-10){3}
\rput(150,-25){Beam energy in GeV (Threshold effects for $\mu$ and $\tau$)}
\rput(-10,70){$1$} \rput(-10,170){$10$}\rput(-10,270){$10^2$}\rput(-10,370){$10^3$}
\rput{90}(-25,220){\large$\sigma$ in nb}
\psArrowLine(190,270)(160,300) \psArrowLine(160,240)(190,270)
\psArrowLine(270,300)(240,270) \psArrowLine(240,270)(270,240)
\psPhoton[windings=4.5,amplitude=4](190,270)(240,270)
\psdot(190,270) \psdot(240,270)
\end{pspicture}
\end{lstlisting}

\psset{unit=1cm}


\begin{LTXexample}[width=5cm]
\begin{pspicture}(0,-0.4)(4,2)
\psline[linecolor=Blue](0,1)(2,1)
\psGluon[linecolor=Green,amplitude=3pt,windings=6](2,1)(4,1)
\psPhoton[linecolor=Red,amplitude=3pt,windings=6](2,1.5)(4,2)
\psZigZag[linecolor=Lime,amplitude=3pt,windings=6](2,0.5)(4,0)
\psellipse[fillcolor=Yellow,fillstyle=solid](2,1)(0.45,0.8)
\end{pspicture}
\end{LTXexample}



\subsection{Flowcharts}

There are several commands for creating boxes with text in them. The rest
is just a matter of drawing lines and circle segments with arrows. It might describe
a system for the automatic computation of cross-sections:

%\begin{LTXexample}[pos=t]
\begin{center}
\psscalebox{0.9}{%
\begin{pspicture}(11,14)
\sffamily\psset{unit=1pt,linecolor=Magenta}
\psArrowLine(200,40)(200,10)  \psArrowLine(200,100)(200,40)
\psArrowLine(200,150)(200,100)\psArrowLine(100,130)(200,100)
\psArrowLine(85,95)(200,100)  \psArrowLine(260,105)(200,100)
\psArrowLine(250,135)(200,100)\psArrowLine(160,75)(200,100)
\psArrowLine(200,100)(250,70) \psArrowLine(200,185)(200,150)
\psArrowLine(200,220)(200,185)\psArrowLine(200,250)(200,220)
\psArrowLine(240,263)(200,250)\psArrowLine(240,237)(200,250)
\psArrowLine(200,285)(200,250)\psArrowLine(200,310)(200,285)
\psArrowLine(200,335)(200,310)\psArrowLine(180,360)(200,335)
\psArrowLine(200,385)(180,360)\psArrowLine(50,370)(180,360)
\psArrowArc[radius=62.5](200,247.5)(90,180)\psArrowArc[radius=62.5](200,247.5)(180,270)
\psArrowLine(210,385)(300,360) \psArrowLine(210,335)(300,360)
\psArrowLine(80,300)(80,130)   \psArrowLine(190,335)(80,300)
\psArrowLine(190,385)(80,300)  \psArrowLine(50,335)(80,300)
\psArrowLine(300,360)(340,340) \psArrowArcn[radius=37.5](205,347.5)(90,270)
\psBCirc[linecolor=Blue](200,100){10} \psBCirc[linecolor=Blue](200,100){5}
\psBCirc[linecolor=Blue](200,40){7.5} \psBCirc[linecolor=Blue](200,250){10}
\psBCirc[linecolor=Blue](200,250){5}  \psBCirc[linecolor=Blue](200,310){7.5}
\psBCirc[linecolor=Blue](180,360){7.5}\psBCirc[linecolor=Blue](80,300){7.5}
\psBCirc[linecolor=Blue](300,360){7.5}\psCCirc(200,185){7.5}{Blue}{Yellow}
\footnotesize\psBText[linecolor=Red](200,285){\red Form program}
\psBText[linecolor=Red](200,335){\red Diagrams}\psBText[linecolor=Red](200,385){\red Model}
\psBText[linecolor=Red](200,10){\red events}\psBText[linecolor=Red](80,95){\red Axolib}
\psBText[linecolor=Red](350,335){\red Pictures}\psCText(137.5,247.5){Blue}{Yellow}{instructions}
\psBText(260,70){Cross-sections\\Histograms}\psBText(140,75){Monte Carlo\\Routine}
\psBText(275,105){FF\\1 loop integrals}\psCText(260,135){Blue}{Yellow}{Spiderlib\\Fortran/C}
\psCText(200,150){Blue}{Yellow}{Matrix\\Element}\psBText(80,130){Kinematics\\Configuration}
\psCText(200,220){Blue}{Yellow}{Output\\Formula}
\psCText(260,263){Blue}{Yellow}{Spiderlib\\Form part}
\psCText(260,237){Blue}{Yellow}{FF support\\library}\psBText(40,370){Reaction\\selection}
\psBText(40,340){Specification\\Cuts, etc.}\psPText[lb](211,36)(0){Event Generator}
\psPText[lb](211,181)(0){Code Generator}\psPText[lb](162,258)(0){FORM}
\psPText[lb](211,301)(0){Form program construction}\psPText[lb](191,362)(0){Diagram}
\psPText[lb](191,352)(0){Generator}\psPText[lb](311,370)(0){Postscript}
\psPText[lb](311,360)(0){Generator}\psPText[lb](91,292)(0){Kinematics}
\psPText[lb](91,282)(0){Generator}
\end{pspicture}%
}
%\end{LTXexample}
\end{center}

\begin{lstlisting}
\begin{pspicture}(11,14)
\sffamily\psset{unit=1pt,linecolor=Magenta}
\psArrowLine(200,40)(200,10)  \psArrowLine(200,100)(200,40)
\psArrowLine(200,150)(200,100)\psArrowLine(100,130)(200,100)
\psArrowLine(85,95)(200,100)  \psArrowLine(260,105)(200,100)
\psArrowLine(250,135)(200,100)\psArrowLine(160,75)(200,100)
\psArrowLine(200,100)(250,70) \psArrowLine(200,185)(200,150)
\psArrowLine(200,220)(200,185)\psArrowLine(200,250)(200,220)
\psArrowLine(240,263)(200,250)\psArrowLine(240,237)(200,250)
\psArrowLine(200,285)(200,250)\psArrowLine(200,310)(200,285)
\psArrowLine(200,335)(200,310)\psArrowLine(180,360)(200,335)
\psArrowLine(200,385)(180,360)\psArrowLine(50,370)(180,360)
\psArrowArc[radius=62.5](200,247.5)(90,180)\psArrowArc[radius=62.5](200,247.5)(180,270)
\psArrowLine(210,385)(300,360) \psArrowLine(210,335)(300,360)
\psArrowLine(80,300)(80,130)   \psArrowLine(190,335)(80,300)
\psArrowLine(190,385)(80,300)  \psArrowLine(50,335)(80,300)
\psArrowLine(300,360)(340,340) \psArrowArcn[radius=37.5](205,347.5)(90,270)
\psBCirc[linecolor=Blue](200,100){10} \psBCirc[linecolor=Blue](200,100){5}
\psBCirc[linecolor=Blue](200,40){7.5} \psBCirc[linecolor=Blue](200,250){10}
\psBCirc[linecolor=Blue](200,250){5}  \psBCirc[linecolor=Blue](200,310){7.5}
\psBCirc[linecolor=Blue](180,360){7.5}\psBCirc[linecolor=Blue](80,300){7.5}
\psBCirc[linecolor=Blue](300,360){7.5}\psCCirc(200,185){7.5}{Blue}{Yellow}
\footnotesize\psBText[linecolor=Red](200,285){\red Form program}
\psBText[linecolor=Red](200,335){\red Diagrams}\psBText[linecolor=Red](200,385){\red Model}
\psBText[linecolor=Red](200,10){\red events}\psBText[linecolor=Red](80,95){\red Axolib}
\psBText[linecolor=Red](350,335){\red Pictures}\psCText(137.5,247.5){Blue}{Yellow}{instructions}
\psBText(260,70){Cross-sections\\Histograms}\psBText(140,75){Monte Carlo\\Routine}
\psBText(275,105){FF\\1 loop integrals}\psCText(260,135){Blue}{Yellow}{Spiderlib\\Fortran/C}
\psCText(200,150){Blue}{Yellow}{Matrix\\Element}\psBText(80,130){Kinematics\\Configuration}
\psCText(200,220){Blue}{Yellow}{Output\\Formula}
\psCText(260,263){Blue}{Yellow}{Spiderlib\\Form part}
\psCText(260,237){Blue}{Yellow}{FF support\\library}\psBText(40,370){Reaction\\selection}
\psBText(40,340){Specification\\Cuts, etc.}\psPText[lb](211,36)(0){Event Generator}
\psPText[lb](211,181)(0){Code Generator}\psPText[lb](162,258)(0){FORM}
\psPText[lb](211,301)(0){Form program construction}\psPText[lb](191,362)(0){Diagram}
\psPText[lb](191,352)(0){Generator}\psPText[lb](311,370)(0){Postscript}
\psPText[lb](311,360)(0){Generator}\psPText[lb](91,292)(0){Kinematics}
\psPText[lb](91,282)(0){Generator}
\end{pspicture}
\end{lstlisting}


\clearpage
\section{List of all optional arguments for \nxLPack{pst-feyn}}

\xkvview{family=pst-feyn,columns={key,type,default}}


\bgroup
\raggedright
\nocite{*}
\printbibliography
\egroup

\printindex




\end{document}