\newcommand{\tdplotmainfig}{%
%Angle Definitions
%-----------------
%
%set the plot display orientation
%synatax: \tdplotsetdisplay{\theta_d}{\phi_d}
\tdplotsetmaincoords{60}{110}
%
%define polar coordinates for some vector
%TODO: look into using 3d spherical coordinate system
\pgfmathsetmacro{\rvec}{.8}
\pgfmathsetmacro{\thetavec}{30}
\pgfmathsetmacro{\phivec}{60}
%
%start tikz picture, and use the tdplot_main_coords style to implement the display coordinate transformation provided by 3dplot
\begin{tikzpicture}[scale=3,tdplot_main_coords]
%set up some coordinates
%-----------------------
\coordinate (O) at (0,0,0);
%determine a coordinate (P) using (r,\theta,\phi) coordinates. This command also determines (Pxy), (Pxz), and (Pyz): the xy-, xz-, and yz-projections of the point (P).
%synatax: \tdplotsetcoord{Coordinate name without parentheses}{r}{\theta}{\phi}
\tdplotsetcoord{P}{\rvec}{\thetavec}{\phivec}
%draw figure contents
%--------------------
%draw the main coordinate system axes
\draw[thick,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
\draw[thick,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
\draw[thick,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
%draw a vector from origin to point (P)
\draw[-stealth,color=red] (O) -- (P);
%draw projection on xy plane, and a connecting line
\draw[dashed, color=red] (O) -- (Pxy);
\draw[dashed, color=red] (P) -- (Pxy);
%draw the angle \phi, and label it
%syntax: \tdplotdrawarc[coordinate frame, draw options]{center point}{r}{angle}{label options}{label}
\tdplotdrawarc{(O)}{0.2}{0}{\phivec}{anchor=north}{$\phi$}
%set the rotated coordinate system so the x'-y' plane lies within the "theta plane" of the main coordinate system
%syntax: \tdplotsetthetaplanecoords{\phi}
\tdplotsetthetaplanecoords{\phivec}
%draw theta arc and label, using rotated coordinate system
\tdplotdrawarc[tdplot_rotated_coords]{(0,0,0)}{0.5}{0}{\thetavec}{anchor=south west}{$\theta$}
%draw some dashed arcs, demonstrating direct arc drawing
\draw[dashed,tdplot_rotated_coords] (\rvec,0,0) arc (0:90:\rvec);
\draw[dashed] (\rvec,0,0) arc (0:90:\rvec);
%set the rotated coordinate definition within display using a translation coordinate and Euler angles in the "z(\alpha)y(\beta)z(\gamma)" euler rotation convention
%syntax: \tdplotsetrotatedcoords{\alpha}{\beta}{\gamma}
\tdplotsetrotatedcoords{\phivec}{\thetavec}{0}
%translate the rotated coordinate system
%syntax: \tdplotsetrotatedcoordsorigin{point}
\tdplotsetrotatedcoordsorigin{(P)}
%use the tdplot_rotated_coords style to work in the rotated, translated coordinate frame
\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (.5,0,0) node[anchor=north west]{$x'$};
\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (0,.5,0) node[anchor=west]{$y'$};
\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (0,0,.5) node[anchor=south]{$z'$};
%WARNING: coordinates defined by the \coordinate command (eg. (O), (P), etc.) cannot be used in rotated coordinate frames. Use only literal coordinates.
%draw some vector, and its projection, in the rotated coordinate frame
\draw[-stealth,color=blue,tdplot_rotated_coords] (0,0,0) -- (.2,.2,.2);
\draw[dashed,color=blue,tdplot_rotated_coords] (0,0,0) -- (.2,.2,0);
\draw[dashed,color=blue,tdplot_rotated_coords] (.2,.2,0) -- (.2,.2,.2);
%show its phi arc and label
\tdplotdrawarc[tdplot_rotated_coords,color=blue]{(0,0,0)}{0.2}{0}{45}{anchor=north west,color=black}{$\phi'$}
%change the rotated coordinate frame so that it lies in its theta plane. Note that this overwrites the original rotated coordinate frame
%syntax: \tdplotsetrotatedthetaplanecoords{\phi'}
\tdplotsetrotatedthetaplanecoords{45}
%draw theta arc and label
\tdplotdrawarc[tdplot_rotated_coords,color=blue]{(0,0,0)}{0.2}{0}{55}{anchor=south west,color=black}{$\theta'$}