%%
%% Description: The Serre spectral sequence for $\HF_3$ cohomology of $K(\F_3,n-1)\to pt \to K(\F_3,n)$ for $n=2,3,4$, with Bockstein SS's for going up to $\Zbb_3$ coefficients.
%%
%% This is a computation of the Z_3 cohomology of K(F_3,n). This was part of a way-too-hard problem on Haynes Algebraic Topology II problem set which asked to compute
%% the smallest k>0 such that H_{n+k}(K(--,n);Z_p) : Ab --> Ab is not the zero functor and to compute what functor it is. One of the main ideas is to use the Bockstein
%% spectral sequence, because it handles the badness of integral Kunneth for us too.
%%
\documentclass{article}
\usepackage[margin=0.2in,top=0.4in,landscape]{geometry}
\usepackage{spectralsequences}
\usepackage{amssymb}
\def\Z{\mathbb{Z}}
\begin{document}
\sseqset{
cohomological Serre grading,
title={Page \page},
class placement transform={scale=1.3, rotate=90},
class pattern=linear,
classes={draw=none},
class label handler = \SseqNormalizeMonomial,
bocksteinSS/.style={
page=0, y range={-1}{0},
no differentials, no labels, no y ticks, no title,
yscale=1.5, x axis extend end=40pt, y axis extend end = 40pt, x axis gap =50pt,
class label handler = {},
}
}
\begin{sseqdata}[name=K(Z/3;2),
x range={0}{8}, xscale=2.2, yscale=1.5,
x label={$H^*(K(\Z/3,2),\Z/3)$},
y label={$H^*(K(\Z/3,1),\Z/3)$},
right clip padding=20pt, x axis gap=20pt,
]
\foreach \x/\xlabel in
{ 0/1, 2/\iota_2, 3/\beta\iota_2, 4/\iota_2^2, 5/\iota_2\beta\iota_2, 6/\iota_2^3,
7/\iota_2^2\beta\iota_2, 7/P^1\beta\iota_2, 8/\iota_2^4, 8/\beta P^1\beta\iota_2 }
\foreach \y/\ylabel in
{ 0/1, 1/\alpha, 2/x, 3/\alpha x, 4/x^2, 5/\alpha x^2, 6/x^3} {
\class["\ylabel\xlabel"](\x,\y)
}
\begin{sseqpage}[
name=K(Z/3;2), bocksteinSS,
x axis extend end = 30pt, y axis gap=30pt,
]
\begin{scope}[background]
\node[anchor=west] at (-2,0) { H^*(K(\Z/3,2),\Z/3)};
\node[anchor=west] at (-2,-1) { H^*(K(\Z/3,2),\Z)};
\end{scope}
\newpage
\begin{sseqdata}[name=K(Z/3;3),xscale=2.2,yscale=1.7,y axis gap=40pt,x axis gap=30pt, x range={0}{9},
x label={$H^*(K(\Z/3,2),\Z/3)$},
y label={$H^*(K(\Z/3,1),\Z/3)$}
]