/*
Package fourier_sec, to study piecewise defined functions
(sectionally defined, hence the name).
Author: Jose A. Vallejo
Faculty of Sciences
Universidad Autonoma de San Luis Potosi (Mexico)
http://galia.fc.uaslp.mx/~jvallejo
It is assumed that the functions are defined using the format
if ... then ... else ...
as, for example,
(%i1) absolute(x):=if (x<=0) then -x elseif (x>0) then x$
(it will not work with 'abs').
It provides three functions:
1. 'paritycheck', to check if a given piecewise defined
function is even or odd (or none). For instance,
(%i2) paritycheck(absolute(x),x);
(%o2) 0
A '0' means 'even', '1' is 'odd', and '-1' is 'none'
2. 'fourier_sec_coeff', to compute the Fourier sine and cosine
coefficients. The function must have compact support.For
instance, for the unit step we have:
(%i3) h(x):=if (-%pi<=x and x<0) then 0 elseif (0<=x and x<=%pi) then 1$
(%i4) fourier_sec_coeff(h(x),x);
(%o4) [1/2,0,-((-1)^n-1)/(%pi*n)]
3. 'fourier_sec_series', to compute the Fourier series, truncated
or not. The series for the unit step to the 10th order:
(%i5) fourier_sec_series(h(x),x,10);
(%o5) (2*sin(9*x))/(9*%pi)+(2*sin(7*x))/(7*%pi)+(2*sin(5*x))/(5*%pi)+(2*sin(3*x))/(3*%pi)+(2*sin(x))/%pi+1/2
and the whole Fourier series
(%i6) fourier_sec_series(h(x),x,inf);
(%o6) (sum(((1/n-(-1)^n/n)*sin(n*x))/%pi,n,1,inf))+1/2
*/
load(fourie)$
load(simplify_sum)$
paritycheck(funvar,x):=block([subintervals,subvalues,tmp1,tmp2,token1,token0,tmp3,
subvalues_list,subintervals_list,icentral:0,middle,minusmiddle,token2,
side_subintervals_list,L,side_subvalues_list,
zero_subintervals,tmp4,tmp5,non_zero_side_subvalues_list,
non_zero_side_subintervals_list,LL,token3,expr1,expr2],
local(M,N,P,Q,count1,count2,count3,count4),
subintervals:makelist(part(funvar,i),i,makelist(2*k-1,k,1,(length(funvar)-2)/2)),
subvalues:makelist(part(funvar,i),i,makelist(2*k,k,1,(length(funvar)-2)/2)),
for j:1 thru length(subintervals) do (if operatorp(subintervals[j],["<",">","<=",">="]) then tmp1[j]:1 else tmp1[j]:0),
tmp1:makelist(tmp1[j],j,1,length(subintervals)),
tmp2:sublist_indices(tmp1,lambda([x],x=1)),
/* if length(tmp2)=0 all the subintervals in the domain of funvar are bounded! */
if is(equal(length(tmp2),0)) then
(
subvalues_list:copylist(subvalues),
tmp3:copylist(subintervals),
for j:1 thru length(tmp3) do
(
M[j]:makelist(part(tmp3[j],k),k,1,length(tmp3[j])),
for m:1 thru 2 do N[j,m]:makelist(part(M[j],m,n),n,1,length(M[j])),
P[j]:append(N[j,1],N[j,2]),Q[j]:sort(delete(x,P[j]),"<")
),
subintervals_list:makelist(Q[j],j,1,length(tmp3)),
for i:1 thru length(subintervals_list) do (if is(lmin(subintervals_list[i])*lmax(subintervals_list[i])<0) then icentral:i),
if is(icentral>0) then middle:subvalues_list[icentral],
if is(icentral>0) then
(if evenfunp(middle,x) then token2:0 elseif oddfunp(middle,x) then token2:1 else return(-1))
else
/* now we analyze what happens if icentral=0, so there are only side intervals */
(
/* as before, there must be an even number of symmetric intervals, otherwise -1 */
side_subintervals_list:copylist(subintervals_list),
if not(evenp(length(side_subintervals_list))) then return(-1),
L:length(side_subintervals_list)/2,
for k:1 thru L do count1[k]:charfun(is(equal(side_subintervals_list[k],reverse(map("-",side_subintervals_list[2*L+1-k]))))),
if sum(count1[j],j,1,L)#L then return(-1),
side_subvalues_list:copylist(subvalues_list),
for k:1 thru L do count2[k]:charfun(is(equalp(side_subvalues_list[k],ratsubst(-x,x,side_subvalues_list[2*L+1-k])))),
if is(equal(sum(count2[j],j,1,L),L)) then token3:0,
for k:1 thru L do count3[k]:charfun(is(equalp(side_subvalues_list[k],-ratsubst(-x,x,side_subvalues_list[2*L+1-k])))),
if is(equal(sum(count3[j],j,1,L),L)) then token3:1,
if is(not(equalp(token3,0)) and not(equalp(token3,1))) then return(-1) ,
return(token3)
),
/* and what happens if icentral#0 */
side_subintervals_list:delete(subintervals_list[icentral],subintervals_list),
if is(equal(length(side_subintervals_list),0)) then (if is(equal(token1,token2)) then return(token1*token2) else return(-1)),
if not(evenp(length(side_subintervals_list))) then return(-1),
L:length(side_subintervals_list)/2,
for k:1 thru L do count1[k]:charfun(is(equal(side_subintervals_list[k],reverse(map("-",side_subintervals_list[2*L+1-k]))))),
if sum(count1[j],j,1,L)#L then return(-1),
side_subvalues_list:delete(subvalues_list[icentral],subvalues_list),
/* remove those subintervals in which funvar vanishes */
zero_subintervals:sublist_indices(side_subvalues_list,lambda([x],x=0)),
tmp4:copylist(side_subintervals_list),
for j:1 thru length(zero_subintervals) do
(tmp4:delete(side_subintervals_list[zero_subintervals[j]],tmp4)),
non_zero_side_subintervals_list:tmp4,
tmp5:copylist(side_subvalues_list),
for j:1 thru length(zero_subintervals) do
(tmp5:delete(side_subvalues_list[zero_subintervals[j]],tmp5)),
non_zero_side_subvalues_list:tmp5,
/* if length(non_zero_side_subintervals_list)=0 then we are done just with token2 */
if is(equal(length(non_zero_side_subintervals_list),0)) then return(token2),
/* otherwise, we must also take into account token3 */
LL:length(non_zero_side_subintervals_list)/2,
for k:1 thru LL do count2[k]:charfun(is(equalp(non_zero_side_subvalues_list[k],ratsubst(-x,x,non_zero_side_subvalues_list[2*LL+1-k])))),
if is(equal(sum(count2[j],j,1,LL),LL)) then token3:0,
for k:1 thru LL do count3[k]:charfun(is(equalp(non_zero_side_subvalues_list[k],-ratsubst(-x,x,non_zero_side_subvalues_list[2*LL+1-k])))),
if is(equal(sum(count3[j],j,1,LL),LL)) then token3:1,
if is(not(equal(token3,0) or equal(token3,1))) then return(-1) elseif
is(token2#token3) then return(-1)
elseif is(equal(token2,0)) then return(0)
elseif is(equal(token2,1)) then return(1)
),
/* we continue here with unbounded intervals */
expr1:subvalues[tmp2[1]],
expr2:ratsubst(-x,x,subvalues[tmp2[2]]),
if is(equalp(expr1,expr2)) then token1:0
elseif is(equalp(expr1,-expr2)) then token1:1
else return(-1),
/* the problem when defining token1 is that if the asymptotic value is 0, then it is always token1:0 */
/* although the function could be odd. To cope with this, we define token0 below */
tmp3:makelist(subintervals[i],i,sublist_indices(tmp1,lambda([x],x=0))),
if is(equal(length(tmp3),0)) then return(token1),
subvalues_list:makelist(subvalues[i],i,sublist_indices(tmp1,lambda([x],x=0))),
token0:if member(0,makelist(subvalues[i],i,tmp2)) then 0 else 7,
for j:1 thru length(tmp3) do
(
M[j]:makelist(part(tmp3[j],k),k,1,length(tmp3[j])),
for m:1 thru 2 do N[j,m]:makelist(part(M[j],m,n),n,1,length(M[j])),
P[j]:append(N[j,1],N[j,2]),Q[j]:sort(delete(x,P[j]),"<")
),
subintervals_list:makelist(Q[j],j,1,length(tmp3)),
for i:1 thru length(subintervals_list) do (if is(lmin(subintervals_list[i])*lmax(subintervals_list[i])<0) then icentral:i),
if is(icentral>0) then middle:subvalues_list[icentral],
if is(icentral>0) then
(if evenfunp(middle,x) then token2:0 elseif oddfunp(middle,x) then token2:1 else return(-1))
else
/* now we analyze what happens if icentral=0, so there are only non-bounded intervals and side intervals */
(
/* as before, there must be an even number of symmetric intervals, otherwise -1 */
side_subintervals_list:copylist(subintervals_list),
if not(evenp(length(side_subintervals_list))) then return(-1),
L:length(side_subintervals_list)/2,
for k:1 thru L do count1[k]:charfun(is(equal(side_subintervals_list[k],reverse(map("-",side_subintervals_list[2*L+1-k]))))),
if sum(count1[j],j,1,L)#L then return(-1),
side_subvalues_list:copylist(subvalues_list),
for k:1 thru L do count2[k]:charfun(is(equalp(side_subvalues_list[k],ratsubst(-x,x,side_subvalues_list[2*L+1-k])))),
if is(equal(sum(count2[j],j,1,L),L)) then token3:0,
for k:1 thru L do count3[k]:charfun(is(equalp(side_subvalues_list[k],-ratsubst(-x,x,side_subvalues_list[2*L+1-k])))),
if is(equal(sum(count3[j],j,1,L),L)) then token3:1,
if is(not(equal(token3,0)) and not(equal(token3,1))) then return(-1) elseif
is(not(equal(token1,token3)) and not(equal(token0,0))) then return(-1)
elseif is( equal(token0,0) and equal(token3,0)) then return(0)
elseif is( equal(token0,0) and equal(token3,1)) then return(1)
elseif is(not(equal(token0,0)) and equal(token1,token3)) then return(token3)
elseif is(not(equal(token0,0)) and not(equal(token1,token3))) then return(-1)
),
/* and what happens if icentral#0 */
side_subintervals_list:delete(subintervals_list[icentral],subintervals_list),
if is(equal(length(side_subintervals_list),0)) then (if is(equal(token1,token2)) then return(token1*token2) else return(-1)),
if not(evenp(length(side_subintervals_list))) then return(-1),
L:length(side_subintervals_list)/2,
for k:1 thru L do count1[k]:charfun(is(equal(side_subintervals_list[k],reverse(map("-",side_subintervals_list[2*L+1-k]))))),
if sum(count1[j],j,1,L)#L then return(-1),
side_subvalues_list:delete(subvalues_list[icentral],subvalues_list),
/* remove those subintervals in which funvar vanishes */
zero_subintervals:sublist_indices(side_subvalues_list,lambda([x],x=0)),
tmp4:copylist(side_subintervals_list),
for j:1 thru length(zero_subintervals) do
(tmp4:delete(side_subintervals_list[zero_subintervals[j]],tmp4)),
non_zero_side_subintervals_list:tmp4,
tmp5:copylist(side_subvalues_list),
for j:1 thru length(zero_subintervals) do
(tmp5:delete(side_subvalues_list[zero_subintervals[j]],tmp5)),
non_zero_side_subvalues_list:tmp5,
/* if length(non_zero_side_subintervals_list)=0 then we are done just with token1 and token2 */
if is(equal(length(non_zero_side_subintervals_list),0)) then (if is(equal(token1,token2)) then return(token1*token2) else return(-1)),
/* otherwise, we must also take into account token3 */
LL:length(non_zero_side_subintervals_list)/2,
for k:1 thru LL do count2[k]:charfun(is(equalp(non_zero_side_subvalues_list[k],ratsubst(-x,x,non_zero_side_subvalues_list[2*LL+1-k])))),
if is(equal(sum(count2[j],j,1,LL),LL)) then token3:0,
for k:1 thru LL do count3[k]:charfun(is(equalp(non_zero_side_subvalues_list[k],-ratsubst(-x,x,non_zero_side_subvalues_list[2*LL+1-k])))),
if is(equal(sum(count3[j],j,1,LL),LL)) then token3:1,
if is(not(equal(token0,0)) and is(not(equal(token1,token2)) or not(equal(token1,token3)) or not(equal(token2,token3))) ) then return(-1)
elseif is(not(equal(token0,0)) and is(equal(token1,0)) ) then return(0)
elseif is(not(equal(token0,0)) and is(equal(token1,1)) ) then return(1)
elseif is( equal(token0,0) and equal(token3,0) and equal(token2,0)) then return(0)
elseif is( equal(token0,0) and equal(token3,1) and equal(token2,1)) then return(1)
else return(-1)
)$
fourier_sec_coeff(fuvar,x):=
block([pp,LL,lm,a0,coeff],
local(a,b,n,MM,NN,PP,QQ),
declare(n,integer),
pp:((length(fuvar)/2)-1),
LL:makelist(part(fuvar,i),i,makelist(2*s-1,s,1,pp)),
for j:1 thru length(LL) step 1 do
(
MM[j]:makelist(part(LL[j],r),r,1,length(LL[j])),
for r:1 thru 2 do NN(j,r):=makelist(part(MM[j],r,k),k,1,length(MM[j])),
PP[j]:append(NN(j,1),NN(j,2)),QQ[j]:delete(x,PP[j])
),
for i:1 thru pp step 1 do partsums[i]:sort(QQ[i],"<"),
for i:1 thru pp step 1 do partfunc[i]:part(fuvar,2*i),
lm:lmax(unique(flatten(makelist(QQ[q],q,1,length(LL))))),
a0:(1/(2*lm))*sum(integrate(partfunc[i],x,partsums[i][1],partsums[i][2]),i,1,pp),
if is(equal(paritycheck(fuvar,x),1)) then a(n):=0 else a(n):=(1/lm)*sum(adefint(partfunc[i]*cos(%pi*n*x/lm),x,partsums[i][1],partsums[i][2]),i,1,pp),
if is(equal(paritycheck(fuvar,x),0)) then b(n):=0 else b(n):=(1/lm)*sum(adefint(partfunc[i]*sin(%pi*n*x/lm),x,partsums[i][1],partsums[i][2]),i,1,pp),
coeff:[a0,simplify_sum(a(n)),simplify_sum(b(n))],
factor(ratsimp(coeff))
)$
fourier_sec_series(fuvar,x,u):=
block([pp,LL,lm,a0,coeff],
local(a,b,n,MM,NN,PP,QQ),
declare(n,integer),
pp:((length(fuvar)/2)-1),
LL:makelist(part(fuvar,i),i,makelist(2*s-1,s,1,pp)),
for j:1 thru length(LL) step 1 do
(
MM[j]:makelist(part(LL[j],r),r,1,length(LL[j])),
for r:1 thru 2 do NN(j,r):=makelist(part(MM[j],r,k),k,1,length(MM[j])),
PP[j]:append(NN(j,1),NN(j,2)),QQ[j]:delete(x,PP[j])
),
for i:1 thru pp step 1 do partsums[i]:sort(QQ[i],"<"),
for i:1 thru pp step 1 do partfunc[i]:part(fuvar,2*i),
lm:lmax(unique(flatten(makelist(QQ[q],q,1,length(LL))))),
a0:(1/(2*lm))*sum(integrate(partfunc[i],x,partsums[i][1],partsums[i][2]),i,1,pp),
if is(equal(paritycheck(fuvar,x),1)) then a(n):=0 else a(n):=(1/lm)*sum(adefint(partfunc[i]*cos(%pi*n*x/lm),x,partsums[i][1],partsums[i][2]),i,1,pp),
if is(equal(paritycheck(fuvar,x),0)) then b(n):=0 else b(n):=(1/lm)*sum(adefint(partfunc[i]*sin(%pi*n*x/lm),x,partsums[i][1],partsums[i][2]),i,1,pp),
a0+intosum(sum(a(n)*cos(%pi*n*x/lm),n,1,u))+intosum(sum(b(n)*sin(%pi*n*x/lm),n,1,u)))$