%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% GasTeX : Graphs and Automata Simplified in TeX
%%
%% Macros for drawing easily graphs and automata under the picture
%% environment of LaTeX.
%% See the README file.
%%
%% Paul Gastin
%% LMF
%% ENS Paris-Saclay
%% 4, Avenue des Sciences
%% F-91190 Gif-sur-Yvette
%% FRANCE
%% mail: [email protected]
%% http://www.lsv.fr/~gastin/
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{gastex}[2024/02/12 v3.1]
\RequirePackage{iftex}
\RequirePackage{xkeyval}
\RequirePackage{xifthen}
\RequirePackage{calc}
\RequirePackage{trig}
\RequirePackage{environ}
\RequirePackage{xcolor}
\RequirePackage{graphicx}
\newif\ifgastexslide\gastexslidefalse
\DeclareOptionX{slide}{\global\gastexslidetrue}
\DeclareOptionX{paper}{\global\gastexslidefalse}
%
\define@boolkey{gastex.sty}[gastex@]{pdflatex}[true]{}
\PassOptionsToPackage{final}{pst-pdf}
%
\newif\ifgastex@autopstpdf\gastex@autopstpdffalse
\newif\ifgastex@mdfive\gastex@mdfivefalse
\define@choicekey*{gastex.sty}{recompilepics}[\g@val\g@nr]{auto,true,false}[auto]{%
 \ifcase\g@nr\relax
% During the latex+dvips+ps2pdf run, the md5 computations and checks should not
% be executed. Hence, we check whether pdftex is running in pdf mode.
   \ifpdf\gastex@mdfivetrue\else\gastex@mdfivefalse\fi
   \gastex@autopstpdftrue
   \PassOptionsToPackage{off}{auto-pst-pdf}
 \or
   \ifpdf\gastex@mdfivetrue\else\gastex@mdfivefalse\fi
   \gastex@autopstpdftrue
   \PassOptionsToPackage{on}{auto-pst-pdf}
 \or
   \gastex@mdfivefalse
   \gastex@autopstpdffalse
   \PassOptionsToPackage{off}{auto-pst-pdf}
 \fi
}
\ExecuteOptionsX{recompilepics=false} % if not set when loading gastex.sty, this option is off
%
\define@choicekey*{gastex.sty}{pst-pdf}[\g@val\g@nr]{md5,auto,final,draft,off}[md5]{%
 \PackageWarning{gastex}{Option pst-pdf is depreciated. Use options pdflatex
 and recompilepics instead.}{}
}
% \ExecuteOptionsX{pst-pdf=off} % if not set when loading gastex.sty, this option is off
%
\DeclareOptionX*{\PassOptionsToPackage{\CurrentOption}{auto-pst-pdf}}
\ProcessOptionsX
% if it exists, the md5 file should be read now to set the option of
% auto-pst-pdf to on if some pictures have changed
\def\g@hashfilename{\jobname-md5.txt}%
\def\g@extract@mdfive:#1:#2:#3:{\expandafter\edef\csname g@oldmdfive@#2\endcsname{#3}}%
\def\g@changed@mdfive!#1!{\PassOptionsToPackage{on}{auto-pst-pdf}}%
\def\g@read@mdfive#1{\@ifnextchar:{\g@extract@mdfive}{\g@changed@mdfive}#1}%
\def\g@process@mdfivefile{%
 \newif\ifnot@eof\not@eoffalse
 \IfFileExists{\g@hashfilename}{%
   \openin2 = "\g@hashfilename"%
   \loop%
   \read 2 to \g@md%
   \ifeof 2 \not@eoffalse\else\not@eoftrue\fi%
   \ifnot@eof%
   \expandafter\g@read@mdfive\expandafter{\g@md}%
   \repeat%
   \closein2}{}}%
\ifgastex@mdfive\g@process@mdfivefile\fi
%
\ifgastex@pdflatex
 \ifgastex@autopstpdf
   \PassOptionsToPackage{pspdf=-dALLOWPSTRANSPARENCY}{auto-pst-pdf}
   \RequirePackage{auto-pst-pdf}
%     \RequirePackage[pspdf=-dALLOWPSTRANSPARENCY]{auto-pst-pdf}
 \else
   \RequirePackage{pst-pdf}
 \fi
\else
 \special{header=gastex.pro}
\fi
% \input gastex.ps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% History since version 2.0
%
% 3.0
% Many changes in this release.
% - Compatibility with pdflatex using auto-pst-pdf.
% - New gpicture environment and new gusepicture command.
% - New command to draw an arc of circle or a pie (See ex-gastex.tex)
%   \drawarc[linecolor=black](0,10,20,0,45)
%   \drawarc[arcPie=y,linecolor=blue](0,10,20,-50,-15)
% - New command to draw a snaky line (See ex-gastex.tex)
%   \drawsnake[linecolor=red,snakeh=.8,snakew=.8](20,15.5)(20,8.5)
%   \drawsnake[linecolor=red,snakeh=.8,snakew=.8](0,7.5)(0,0.5)
%
% 2.9:
% - added the parameters loopwidth and loopheight to be able to set
% independently the width and height of loops. loopdiam still exists and set
% both loopwidth and loopheight to the same value.
% - added the example "ex-gastex-pdflatex.tex" which contains instructions how
% to use gastex directly with pdflatex using the package auto-pst-pdf
%
% 2.8:
% - packaged for CTAN
%
% 2.7:
% - gastex is now compatible with the xcolor package which allows very
% useful color expressions such as red!50!blue!60!white.
%
% 2.6:
% - improved precision of some computations
%
% 2.5:
% The horizontal shifts that one gets sometimes (e.g. with overlays in
% presentations) should no more occur provided \nullfont is used inside the
% picture environment:
% \begin{picture}(100,35)(-50,0)\nullfont
% ...
% \end{picture}
% \selectfont is automatically used by gastex for node or edge labels.
% I found this solution looking in the package pgf (portable graphics
% format) by Till Tantau. I also recommend his excellent beamer package
% for laptop presentations.
%
% 2.4:
% - added the macro \rpnode to allow nodes whose shape is a regular polygon
%   defined by its radius, its number of sides and an angle for the first point.
% - added the possibility to have arrows at the tail of edges and lines.
%   For this, the following new parameters are provided:
%   ATnb, ATdist, ATangle, ATlength, ATLength
% - added the macro \drawpolygon to draw a polygon defined by a list of points.
% - added the macro \drawrpolygon to draw a regular polygon defined by
%   its radius, its number of sides and an angle for the first point.
% - added the macro \drawline to draw a broken line defined by n points.
% - added the parameter "arcradius" in order to have arcs instead of sharp angles
%   for polygons and broken lines. The default is arcradius=0 for sharp angles.
% - added the macro \drawcurve to draw a continuous curve going through n points.
% - added the macro \drawccurve to draw a continuous closed curve going through n points.
% All these macros use gasset parameters and in particular:
% Nframe, Nfill, linecolor, fillcolor, dash, ...
%
% Uncompatibility: The macro \drawline was introduced in version 2.1 to
% draw a line between two points. The new version allows to draw a line
% defined by an arbitrary number of points but the syntax is different.
% It was \drawline(x1,y1,x2,y2) and it is now \drawline(x1,y1)(x2,y2).
%
% 2.3:
% - added the parameter ELdistC (y or n) allowing to specify whether
% the distance (ELdist) is between the center (y) of the label and the edge
% or between the side (n) of the label and the edge.
% The behaviour of previous gastex versions corresponds to the setting
% (n) which is therefore the default.
% - added the macro \drawqbpedge allowing to specify the auxiliary
% point of a quadratic Bezier curve with two angles instead of the
% absolute coordinates required by \drawqbedge.
% - added parameters sxo, syo, exo, eyo (offsets in \unitlength).
% They define offsets for the virtual starting and ending points of an
% edge with respect to the centers of the starting and ending nodes.
% - improved drawing for arrowheads (in gastex.pro).
% First, the direction of the arrowhead is better for curved edges.
% Second, when several arrowheads are drawn they follow the curve.
% Previously, they followed the tangent at the ending point of the
% edge which was bad for curved edges.
%
% 2.2:
% - added the options slide and paper to the package.
% In order to get the default settings for slides, use
%   \usepackage[slide]{gastex}
% The default settings for papers is obtained with
%   \usepackage[paper]{gastex}
% or
%   \usepackage{gastex}
% - added new option loopCW to define whether loops are in
% clockwise direction or not.
% - Fix a TeX error (Arithmetic overflow) that occurred when using
% \drawedge(A,B){} with two nodes A and B having the same coordinates.
% Now, in this case, an error message is issued in the log
% and the macro \drawedge(A,B){} is ignored.
%
% 2.1:
% - New macros to draw directly circles, rectanges, ovals,
% lines and bezier curves.
%   \drawcircle, \drawrect, \drawoval,
%   \drawline, \drawqbezier, \drawcbezier
% All these macros use gasset options and in particular:
% Nframe, Nfill, linecolor, fillcolor, dash, AHnb, etc...
% - Compatibility mode for pspictpg up to v0.6
% - Fix the bug which occured sometimes when using Nw=0,Nh=0.
%
% 2.01:
% - Fix an error that occured in v2.0 when using Nfill=y without
% defining previously fillgray or fillcolor.
% The following default setting has been added.
% \gasset{fillgray=0,Nfill=n} % Not filled but black if filled
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% A lot of changes has been made since gastex 1.0 and as a result,
% these new macros are no longer compatible with the previous ones.
% To be able to use old pictures, a compatible mode is provided
% (see \compatiblegastexun at the end of the file). The compatibility
% is almost 100% and should be sufficient in most cases.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Known problems and (hopefully) solutions.
%
% 21/10/99: Frank Goertzen ([email protected]) has
% reported that when using gastex together with german an error may
% occur when running dvips if the german package is loaded first.  The
% solution is to load gastex before german:
% \usepackage{gastex}
% \usepackage{german}
% I have no idea concerning the cause of this error.
%
% 07/03/00: A postscript error may occur when using Nw=0,Nh=0.
% Solution: Use a small value instead of 0, e.g. Nw=0.1,Nh=0.1
% Fixed in version 2.1.
%
% 27/10/00: Using gasset inside a tabular or an array produces an error.
% The reason is that I'm using the "&" symbol as a marker in order to
% process gasset options.
% Solution: Include the whole picture inside an mbox.
% \begin{tabular}{c}
%   \mbox{\begin{picture}(10,20)(-5,-5)
%   \gasset{ELdist=0}
%   \node(A)(0,0){1}\drawloop(A){$a$}
%   \end{picture}}
% \end{tabular}
%
% pdflatex: gastex does not work with pdflatex since it produces
% postscript code and pdflatex does not know what to do with it.
% Solution: Use latex and then ps2pdf.
% I don't know whether it is possible to translate my postscript code
% into pdf code. The problem is that I'm using postscript to make some
% computations and not only to draw the picture.
% I would appreciate the help of a pdf guru on this.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Internal variables and macros
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcounter{cnt@a}\newcounter{cnt@b}\newcounter{cnt@c}
\newdimen\dim@x \newdimen\dim@y
\newbox\temp@box
\newdimen\d@my@unit \d@my@unit=0.01mm
% \d@my@unit is the unit used for all drawings with gastex.
% All values given in \unitlength are converted in \d@my@unit.
% The aim is to improve the precision of the drawings.

{\catcode`t=12\catcode`p=12\gdef\no@PT#1pt{#1}}
\def\strip@PT#1{\expandafter\no@PT\the#1\space}

\def\gas@initps{!BP
 \gas@dash
 \line@width setlinewidth\space}

\def\gas@AHparam{\AH@nb\AH@d\AH@angle\AH@L\AH@l}
\def\gas@ATparam{\AT@nb\AT@d\AT@angle\AT@L\AT@l}
\def\gas@ATnul{0 \AT@d\AT@angle\AT@L\AT@l}
\def\gas@gobble#1{}%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------
% Set values for gastex parameters.
%
%   \gasset{parameter=value,parameter=value,...}
%   optional spaces are only allowed after commas
%
% Nw=number
%   widht in \unitlength of oval nodes
% Nh=number
%   height in \unitlength of oval nodes
% Nmr=number
%   maximal radius in \unitlength of oval nodes
%   The actual radius will be min(Nw/2,Nh/2,Nmr)
%   Nmr=0 yields a rectangle node
%
% Nadjust=any combination of the letters w,h,n
%   w : the node width is adjusted to the node label width + Nadjustdist
%   h : the node height is adjusted to the node label height + Nadjustdist
%   n : no adjustment
% Nadjustdist=number
%   distance in \unitlength between the label box and the node frame
%   when using Nadjust
%
% Nframe=y or n
%   boolean flag defining whether nodes are framed or not.
% Nfill=y or n
%   boolean flag defining whether nodes are filled or not.
%   Automatically set to true by the parameters fillgray and fillcolor
%
% ExtNL=y or n
%   boolean flag defining whether node labels are external or not.
% NLangle=number
%   direction in degree of node labels
% NLdist=number
%   The meaning depends on the ExtNL flag.
%   If the flag is set to "n" then NLdist defines the distance
%   in \unitlength between the node center and the label center.
%   If the flag is set to "y" then NLdist defines the distance
%   in \unitlength between the node frame and the label box.
%
% Nmarks=any combination of the letters i,f,r,n
%   i : initial mark on nodes
%   f : final mark on nodes
%   r : repeated mark on nodes
%   n : no mark on nodes
% ilength=number
%   length in \unitlength of arrows marking initial nodes
% iangle=number
%   direction in degree of arrows marking initial nodes
% flength=number
%   length in \unitlength of arrows marking final nodes
% fangle=number
%   direction in degree of arrows marking final nodes
% rdist=number
%   distance in \unitlength between the lines of repeated nodes
%   a positive value draw the second line inside the normal one
%   a negative value draw the second line outside the normal one
%   but the edges are still connected to the normal line.
%
%   An edge virtually starts from the center of the starting node and
%   ends at the center of the ending node (indeed they are only drawn
%   outside of the nodes). It is possible to change the virtual starting
%   and ending points of an edge using offsets with respect to the center
%   of the starting and ending node. This is the purpose of the following
%   parameters.
% sxo=number (starting x offset)
%   horizontal offset in \unitlength of the starting point of an edge
%   with respect to the center of the starting node.
% syo=number (starting y offset)
%   vertical offset in \unitlength of the starting point of an edge
%   with respect to the center of the starting node.
% exo=number (ending x offset)
%   horizontal offset in \unitlength of the ending point of an edge
%   with respect to the center of the ending node.
% eyo=number (ending y offset)
%   vertical offset in \unitlength of the ending point of an edge
%   with respect to the center of the ending node.
%
% curvedepth=number
%   depth in \unitlength of curved edges between two nodes
%   The absolute value of curvedepth defines the distance between the
%   middle of the curved edge and the center of the line joining the two nodes
%   With a positive/negative value the curved edge is on the left/right
%   of the line joining the two nodes.
%
% loopwidth=number
%   width in \unitlength of (vertical) loops
% loopheight=number
%   height in \unitlength of (vertical) loops
% loopdiam=number
%   width and height in \unitlength of (vertical) loops
% loopangle=number
%   direction in degree of loops
% loopCW=y or n
%   boolean flag defining whether loops are in clockwise direction or not.
%
% AHnb=number
%   number of arrow(s) at the head of edges.
%   0 for no arrowhead.
% AHdist=number
%   distance in \unitlength between two arrowheads
% AHangle=angle
%   angle in degree between the edge and the arrowhead side
% AHLength=number
%   Length in \unitlegth of the arrowhead side
% AHlength=number
%   length in \unitlegth defining the shape of the arrowhead
%     0 for an arrowhead formed with just two lines
%     Length*cos(angle) for a triangular arrowhead
%     See examples.
%
% ATnb=number
%   number of arrow(s) at the tail of edges.
%   0 for no arrowhead.
% ATdist=number
%   distance in \unitlength between two arrowtails
% ATangle=angle
%   angle in degree between the edge and the arrowtail side
% ATLength=number
%   Length in \unitlegth of the arrowtail side
% ATlength=number
%   length in \unitlegth defining the shape of the arrowtail
%     0 for an arrowtail formed with just two lines
%     Length*cos(angle) for a triangular arrowtail
%     See examples.
%
% ELside=l or r
%   label on the (l)eft or (r)ight side of the edge
% ELpos=0..100
%   position of the label along the edge.
%     0 : starting node
%    50 : middle of the edge
%   100 : ending node
% ELdist=number
%   distance in \unitlength between the label and the edge
% ELdistC=y or n
%   y : The distance is between the center of the label and the edge.
%       With ELdist=0 the center of the label is on the edge.
%   n : The distance is between the side of the label and the edge.
%       This is the default.
%       The distance is actually between the side of the label and
%       the tangent of the edge which is usually a good approximation.
%       It may not work very well if the label is large and the edge is
%       strongly curved because then the tangent is far from the edge at the
%       point that achieve the distance between the tangent and the label.
%
% linegray=decimal number between 0 and 1
%   gray level used to draw lines. 0=black, 1=white.
% fillgray=decimal number between 0 and 1
%   gray level used to fill nodes. 0=black, 1=white.
% linecolor=ColorName
%   color used to draw lines.
%   The color name should be defined in dvipsnam.def and one should
%   include \usepackage[usenames]{color}.
%   This is to avoid the trouble of defining our own colors.
%   The drawback is that it is not possible to define and use other colors.
%   It should not be very restrictive since plenty of colours are
%   defined in dvipsnam.def.
%   It should not be difficult to add the possibility of using new
%   colors if needed.
% fillcolor=ColorName
%   color used to fill nodes. See remarks above.
% linewidth=number
%   width in \unitlegth of lines
% dash={list of numbers}{offset}
%   Set the dash pattern used for drawing postscript paths.
%   The numbers in the list indicate alternately lengths
%   in \unitlength of dashes and lengths in \unitlength of spaces.
%   The list of lenghts is used circularly.
%   offset allows to start the pattern at some distance from its beginning.
%   Here are some examples:
%      dash={}{0} % continuous path
%      dash={1.5}0 % dashs of length 1.5 and empty spaces of length 1.5
%      dash={0.2 0.5}0 % looks like a sequence of dots
%      dash={4 1 1 1}0 % alternation of long and short dashs
%      dash={1.5}{1.5} % we start with the empty space and not the dash
%      dash={4}{2} % we start in the middle of the first dash
%
% arcradius=number
%   radius in \unitlength of the arcs used at the vertices
%   of polygons and broken lines. 0 for sharp angles.
% polyangle=angle
%   angle in degrees with respect to the x axis of the first vertex
%   of the regular polygon.
%
\def\gasset#1{\setkeys*[]{gastex}{#1}}%

\define@key[]{gastex}{Nw}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\N@w{\thecnt@a}}%
\define@key[]{gastex}{Nh}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\N@h{\thecnt@a}}%
\define@key[]{gastex}{Nmr}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\N@mr{\thecnt@a}}%

\newif\if@wadjust \newif\if@hadjust \newif\if@nadjust
\define@key[]{gastex}{Nadjust}{%
 \@wadjustfalse \@hadjustfalse \gasset@@Nadjust #1&}
\def\gasset@@Nadjust#1{%
 \@ifundefined{if@#1adjust}
   {\PackageWarning{gastex}{Node adjust #1 undefined}{}}
   {\csname @#1adjusttrue\endcsname}%
 \@ifnextchar&{\gas@gobble}{\gasset@@Nadjust}}
\define@key[]{gastex}{Nadjustdist}{%
 \setcounter{cnt@a}{2*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\N@adjustdist{\thecnt@a}}%

\newif\if@frame \newif\if@fill \newif\if@ExtNL \newif\if@arcPie
\def\flag@y{\relax}\def\flag@n{\relax}
\define@key[]{gastex}{Nframe}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{Nframe value should be y or n}{}}
 {\if#1y \@frametrue \else \@framefalse \fi}}
\define@key[]{gastex}{Nfill}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{Nfill value should be y or n}{}}
 {\if#1y \@filltrue \else \@fillfalse \fi}}
\define@key[]{gastex}{ExtNL}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{ExtNL value should be y or n}{}}
 {\if#1y \@ExtNLtrue \else \@ExtNLfalse \fi}}
\define@key[]{gastex}{arcPie}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{arcPie value should be y or n}{}}
 {\if#1y \@arcPietrue \else \@arcPiefalse \fi}}

\define@key[]{gastex}{NLangle}{\edef\NL@angle{#1}}%
\define@key[]{gastex}{NLdist}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\NL@dist{\thecnt@a}}%

\newif\if@imark \newif\if@fmark \newif\if@rmark \newif\if@nmark
\define@key[]{gastex}{Nmarks}{%
 \@imarkfalse \@fmarkfalse \@rmarkfalse \gasset@@Nmarks #1&}
\def\gasset@@Nmarks#1{%
 \@ifundefined{if@#1mark}
   {\PackageWarning{gastex}{Node mark #1 undefined}{}}
   {\csname @#1marktrue\endcsname}%
 \@ifnextchar&{\gas@gobble}{\gasset@@Nmarks}}

\define@key[]{gastex}{ilength}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\i@length{\thecnt@a}}%
\define@key[]{gastex}{iangle}{\edef\i@angle{#1}}%
\define@key[]{gastex}{flength}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\f@length{\thecnt@a}}%
\define@key[]{gastex}{fangle}{\edef\f@angle{#1}}%
\define@key[]{gastex}{rdist}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\rep@dist{\thecnt@a}}%

\define@key[]{gastex}{sxo}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\E@sxo{\thecnt@a}}%
\define@key[]{gastex}{syo}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\E@syo{\thecnt@a}}%
\define@key[]{gastex}{exo}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\E@exo{\thecnt@a}}%
\define@key[]{gastex}{eyo}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\E@eyo{\thecnt@a}}%

\define@key[]{gastex}{curvedepth}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\curve@depth{\thecnt@a}}%

\define@key[]{gastex}{loopwidth}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\loop@width{\thecnt@a}}%
\define@key[]{gastex}{loopheight}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\loop@height{\thecnt@a}}%
\define@key[]{gastex}{loopdiam}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\loop@width{\thecnt@a}%
 \edef\loop@height{\thecnt@a}}%
\define@key[]{gastex}{loopangle}{\edef\loop@angle{#1}}%
\newif\if@loopCW
\define@key[]{gastex}{loopCW}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{loopCW value should be y or n}{}}
 {\if#1y \@loopCWtrue \else \@loopCWfalse \fi}}

\define@key[]{gastex}{AHnb}{\edef\AH@nb{#1\space}}%
\define@key[]{gastex}{AHdist}{%
 \dim@x=#1\unitlength \edef\AH@d{\strip@PT\dim@x}}%
\define@key[]{gastex}{AHangle}{\edef\AH@angle{#1\space}}%
\define@key[]{gastex}{AHLength}{%
 \dim@x=#1\unitlength \edef\AH@L{\strip@PT\dim@x}}%
\define@key[]{gastex}{AHlength}{%
 \dim@x=#1\unitlength \edef\AH@l{\strip@PT\dim@x}}%

\define@key[]{gastex}{ATnb}{\edef\AT@nb{#1\space}}%
\define@key[]{gastex}{ATdist}{%
 \dim@x=#1\unitlength \edef\AT@d{\strip@PT\dim@x}}%
\define@key[]{gastex}{ATangle}{\edef\AT@angle{#1\space}}%
\define@key[]{gastex}{ATLength}{%
 \dim@x=#1\unitlength \edef\AT@L{\strip@PT\dim@x}}%
\define@key[]{gastex}{ATlength}{%
 \dim@x=#1\unitlength \edef\AT@l{\strip@PT\dim@x}}%

\def\ELside@l{\relax}\def\ELside@r{\relax}
\define@key[]{gastex}{ELside}{%
 \@ifundefined{ELside@#1}
 {\PackageWarning{gastex}{ELside value should be l or r}{}}
 {\edef\EL@s{#1}}}%
\define@key[]{gastex}{ELpos}{
 \ifnum#1>100
   \PackageWarning{gastex}{ELpos value should be between 0 and 100}{}
 \else\ifnum#1<0
   \PackageWarning{gastex}{ELpos value should be between 0 and 100}{}
 \else\edef\EL@p{#1}\fi\fi}%
\define@key[]{gastex}{ELdist}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\EL@dist{\thecnt@a}}%
\newif\if@ELdistC
\define@key[]{gastex}{ELdistC}{%
 \@ifundefined{flag@#1}
 {\PackageWarning{gastex}{ELdistC value should be y or n}{}}
 {\if#1y \@ELdistCtrue \else \@ELdistCfalse \fi}}

\def\gas@rgb@model{setrgbcolor}%
\def\gas@cmyk@model{setcmykcolor}%
\def\gas@gray@model{setgray}%
\def\gas@color#1#2{\@ifundefined{gas@#1@model}%
 {\PackageWarning{gastex}{Color model '#1'  not supported}{}}
 {\def\gas@tmp@col{}\gas@recode #2,&}%
  \edef\gas@tmp@col{\gas@tmp@col\csname gas@#1@model\endcsname}}%
\def\gas@recode#1,{\edef\gas@tmp@col{\gas@tmp@col #1 }%
 \@ifnextchar&{\gas@gobble}{\gas@recode}}

\define@key[]{gastex}{linegray}{\edef\line@color{#1 setgray\space}}%
\define@key[]{gastex}{linecolor}{\@ifundefined{extractcolorspec}%
 {\@ifundefined{\string\color @#1}
   {\PackageWarning{gastex}{Color #1 undefined}{}}
   {\edef\line@color{#1\space}}}%
 {\extractcolorspec{#1}{\gas@tmp@color}%
  \expandafter\gas@color\gas@tmp@color%
  \edef\line@color{\gas@tmp@col\space}}}%

\define@key[]{gastex}{fillgray}{\@filltrue\edef\fill@color{#1 setgray\space}}%
\define@key[]{gastex}{fillcolor}{\@ifundefined{extractcolorspec}%
 {\@ifundefined{\string\color @#1}
   {\PackageWarning{gastex}{Color #1 undefined}{}}
   {\@filltrue\edef\fill@color{#1\space}}}%
 {\extractcolorspec{#1}{\gas@tmp@color}%
  \expandafter\gas@color\gas@tmp@color%
  \@filltrue\edef\fill@color{\gas@tmp@col\space}}}%

\define@key[]{gastex}{linewidth}{%
 \dim@x=#1\unitlength \edef\line@width{\strip@PT\dim@x}}%
\define@key[]{gastex}{dash}{\gasset@@dash #1}%
\def\gasset@@dash#1#2{%
 \def\gas@dash{[}%
 \gas@convert 0 #1 &
 \dim@x=#2\unitlength
 \edef\gas@dash{\gas@dash] \strip@PT\dim@x setdash\space}}%
\def\gas@convert#1 {%
 \dim@x=#1\unitlength
 \ifdim\dim@x=0pt\else\edef\gas@dash{\gas@dash\strip@PT\dim@x}\fi%
 \@ifnextchar&{\gas@gobble}{\gas@convert}}

\define@key[]{gastex}{arcradius}{%
 \dim@x=#1\unitlength \edef\arc@radius{\strip@PT\dim@x}}%
\define@key[]{gastex}{polyangle}{\edef\poly@angle{#1}}%

\define@key[]{gastex}{snakew}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\snake@w{\thecnt@a}}%

\define@key[]{gastex}{snakeh}{%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}}
 \edef\snake@h{\thecnt@a}}%

%-----------------------------------------------------------------------
% Default settings
\unitlength=1mm
\gasset{Nw=8,Nh=8,Nmr=4} % circle
\gasset{Nframe=y,arcPie=n}
\gasset{fillgray=0,Nfill=n} % Not filled but black if filled
\gasset{ExtNL=n,NLangle=90,NLdist=0}
\gasset{iangle=180,ilength=5}
\gasset{fangle=0,flength=5}
\gasset{rdist=0.7}
\gasset{Nmarks=n} % no mark
\gasset{Nadjustdist=1,Nadjust=n} % no adjust
\gasset{sxo=0,syo=0,exo=0,eyo=0}
\gasset{curvedepth=0}
\gasset{loopdiam=8,loopangle=90,loopCW=y}
% One triangular small arrowhead
\gasset{AHnb=1,AHdist=1.41,AHangle=20,AHLength=1.5,AHlength=1.41}
\gasset{ATnb=0,ATdist=1.41,ATangle=20,ATLength=1.5,ATlength=1.41}
\gasset{ELside=l,ELpos=50,ELdist=1}
\gasset{linegray=0} % black lines
\gasset{linewidth=0.14,dash={}0} % continuous path
\gasset{arcradius=0,polyangle=0} % sharp angles
\gasset{snakew=2,snakeh=1} % width and height of snake waves

% Settings for slides
\ifgastexslide
 \gasset{Nw=12,Nh=12,Nmr=6,ilength=8,flength=8,rdist=1,loopdiam=12}
 \gasset{linewidth=0.21,AHdist=2.1,AHLength=2.25,AHlength=2.1}
 \gasset{ATdist=2.1,ATLength=2.25,ATlength=2.1}
\fi

%%%%%%%%%%% NEW FOR MD5 %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newif\if@picthavechanged\@picthavechangedfalse
\def\g@cstocheckmdfive#1{\expandafter\def\csname cs@#1\endcsname{\relax}}%
\def\g@check@mdfive#1#2{% #1 is the pict number, #2 is the new md5
 \@ifundefined{g@oldmdfive@#1}{\global\@picthavechangedtrue%
   \immediate\write 2 {!pict #1 has changed!}}{%
%       This is my way of testing whether the old and new md5 are equal
   \g@cstocheckmdfive{\csname g@oldmdfive@#1\endcsname}%
   \@ifundefined{cs@#2}{\global\@picthavechangedtrue%
     \immediate\write 2 {!pict #1 has changed!}}{}}%
}
\def\g@mdfivemsg{\if@picthavechanged%
 \PackageWarning{gastex}{Pictures have changed. Compile once more}%
 \fi}
\ifgastex@mdfive
 \AtBeginDocument{\immediate\openout2 = "\g@hashfilename"}%
 \AtEndDocument{\immediate\closeout2 \g@mdfivemsg}%
\fi
%%%%%%%%%%% NEW FOR AUTO-PST-PDF %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcounter{g@cnt@pict}\setcounter{g@cnt@pict}{0}%
\define@cmdkeys[]{gastex}{name}
\define@boolkey[]{gastex}{frame}[true]{\ifgastex@pdflatex\setkeys*{Gin}{frame=#1}\fi}
%
\long\def\g@normalpicture(#1)(#2)#3&g@stex&{%
 \begin{picture}(#1)(#2)\nullfont%
 \ifgastex@frame\put(#2){{\unitlength=1mm\gasset{linewidth=0.05}}\drawrect[Nfill=n](0,0,#1)}\fi
 #3
 \end{picture}}%
%
\long\def\g@pdfpicture(#1,#2)(#3,#4)#5&g@stex&{{%
 \begin{postscript}\special{header=gastex.pro}%
 \begin{picture}(#1,#2)(#3,#4)\nullfont%
   #5
 \end{picture}%
 \end{postscript}%
}}%
%
\long\def\g@picture#1{\@ifnextchar({\g@@picture}{\g@@picture(10,10)}#1&g@stex&}%
%
\long\def\g@@picture(#1)#2&g@stex&{%
 \ifgastex@pdflatex%
   \@ifnextchar({\g@pdfpicture(#1)}{\g@pdfpicture(#1)(0,0)}#2&g@stex&%
 \else%
   \@ifnextchar({\g@normalpicture(#1)}{\g@normalpicture(#1)(0,0)}#2&g@stex&%
 \fi%
}%
%
\NewEnviron{gpicture}[1][]{{%
 \gasset{#1}%
%   \let\g@opt@Gin=\XKV@rm%
 \setrmkeys*{Gin}%
 \expandafter\g@picture\expandafter{\BODY}%
 \refstepcounter{g@cnt@pict}%
 \ifgastex@mdfive%
   \xdef\g@lastmdfive{\pdfmdfivesum{\meaning\BODY}}%
   \gsavepicture{\g@lastmdfive}%
   \immediate\write 2 {:md5 of pict:\theg@cnt@pict:\g@lastmdfive:}%
   \g@check@mdfive{\theg@cnt@pict}{\g@lastmdfive}%
 \fi%
 \@ifundefined{cmdgastex@name}{}{\gsavepicture{\cmdgastex@name}}%
%     \ifGin@ignore\else\gusepicture[\g@opt@Gin]{\g@lastmdfive}\fi%
}} % [\gusepicture[\g@opt@Gin]{\g@lastmdfive}\ignorespacesafterend]
%
% I define alternate versions of \savepicture and \usepicture since the ones
% from pst-pdf do not work properly (at least not as I expect).
\def\gsavepicture#1{\expandafter\xdef\csname ppf@@@#1\endcsname{\theg@cnt@pict}}%
%
\newcommand\gusepicture[2][]{%
 \ifgastex@pdflatex%
   \@ifundefined{ppf@@@#2}{\usepicture[#1]{#2}}{%
   \usepicture[#1]{\csname ppf@@@#2\endcsname}}%
 \else%
   \PackageWarning{gastex}{gusepicture is not available when pdflatex option of gastex.sty is not set (to true)}\relax%
 \fi}
% \tracingonline=1
% \tracingmacros=1
% \tracingcommands=1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Nodes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------
% Define and draw a node whose shape is a regular polygon.
%
%   \rpnode(NodeName)(x,y)(n,r){NodeLabel}
%   \rpnode[parameter=value,...](NodeName)(x,y)(n,r){NodeLabel}
%
% Required arguments:
%   NodeName : name of the node
%     x,y : coordinates in \unitlengh of the node (center of the polygon).
%       n : number of sides of the polygon.
%       r : radius in \unitlengh of the circle containing the polygon.
%   NodeLabel : label of the node. Empty if no label.
% Optional argument: (in particular, polyangle and arcradius)
%   [parameter=value,...]
% One may just define a node without drawing it using an empty label
% and the parameters Nframe=n,Nfill=n
\def\rpnode#1(#2)(#3)(#4)#5{{%
 \@ifnextchar[{\process@rpnodeopt}{\rp@node}#1(#2)(#3)(#4){#5}}}
\def\process@rpnodeopt[#1]{\gasset{#1}\rp@node}%
\def\rp@node(#1)(#2,#3)(#4,#5)#6{{%
% The value -1 assigned to node@#1@w characterizes polygonal nodes
 \global\expandafter\edef\csname node@#1@w\endcsname{-1}%
 \setcounter{cnt@a}{1*\ratio{#2\unitlength}{\d@my@unit}}
 \global\expandafter\edef\csname node@#1@x\endcsname{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#3\unitlength}{\d@my@unit}}
 \global\expandafter\edef\csname node@#1@y\endcsname{\thecnt@a}%
 \global\expandafter\edef\csname node@#1@n\endcsname{#4}%
 \setcounter{cnt@a}{1*\ratio{#5\unitlength}{\d@my@unit}}
 \global\expandafter\edef\csname node@#1@rad\endcsname{\thecnt@a}%
 \global\expandafter\edef\csname node@#1@a\endcsname{\poly@angle}%
% Definition of the polygonal path for the node
 \dim@x=\csname node@#1@x\endcsname\d@my@unit
 \dim@y=\csname node@#1@y\endcsname\d@my@unit
 \edef\ps@path{\strip@PT\dim@x\strip@PT\dim@y\csname node@#1@n\endcsname\space}%
 \dim@x=\csname node@#1@rad\endcsname\d@my@unit
 \edef\ps@path{\ps@path \strip@PT\dim@x \csname node@#1@a\endcsname\space}%
 \edef\ps@path{\ps@path \arc@radius 0 !psrpolygonpath\space}%
 \global\expandafter\edef\csname node@#1@path\endcsname{\ps@path}%
 \put(0,0){\special{" \gas@initps
   \if@fill
         \fill@color \csname node@#1@path\endcsname fill
       \fi
   \if@frame
     \line@color \csname node@#1@path\endcsname stroke
       \fi
 }}
 \if@imark \imark(#1) \fi
 \if@fmark \fmark(#1) \fi
 \if@rmark \rmark(#1) \fi
%   \@ExtNLfalse
 \nodelabel(#1){#6}
}}

%-----------------------------------------------------------------------
% Define and draw a node.
%
%   \node(NodeName)(x,y){NodeLabel}
%   \node[parameter=value,...](NodeName)(x,y){NodeLabel}
%
% Required arguments:
%   NodeName : name of the node
%   (x,y) : coordinates of the node in \unitlengh.
%   NodeLabel : label of the node. Empty if no label.
% Optional argument:
%   [parameter=value,...]
% One may just define a node without drawing it using an empty label
% and the parameters Nframe=n,Nfill=n
\def\node#1(#2)(#3,#4)#5{{%
 \@ifnextchar[{\process@nodeopt}{\i@node}#1(#2)(#3,#4){#5}}}
\def\process@nodeopt[#1]{\gasset{#1}\i@node}%
\def\i@node(#1)(#2,#3)#4{%
 \let@node(#1)(#2,#3){#4}\draw@node(#1){#4}}

%-----------------------------------------------------------------------
% Define a node without drawing it.
% Internal macro also used in \compatiblegastexun.
%
%   \let@node(NodeName)(x,y){NodeLabel}
%
% Required arguments:
%   NodeName : name of the node
%   x,y : coordinates of the node in \unitlengh.
%   NodeLabel : label of the node. Empty if no label.
\def\let@node(#1)(#2,#3)#4{{%
% width and height of the box containing #4
 \setbox\temp@box\hbox{\selectfont #4}
 \if@wadjust
   \setcounter{cnt@a}{\N@adjustdist + \wd\temp@box / \d@my@unit}
   \edef\N@w{\thecnt@a}%
 \fi
 \if@hadjust
   \setcounter{cnt@a}{\N@adjustdist + (\ht\temp@box+\dp\temp@box) / \d@my@unit}
   \edef\N@h{\thecnt@a}%
 \fi
 \global\expandafter\edef\csname node@#1@w\endcsname{\N@w}%
 \global\expandafter\edef\csname node@#1@h\endcsname{\N@h}%
 \ifnum\N@h<\N@w
       \setcounter{cnt@a}{\N@h/2}
 \else
       \setcounter{cnt@a}{\N@w/2}
 \fi
 \ifnum\N@mr<\thecnt@a\setcounter{cnt@a}{\N@mr}\fi
 \global\expandafter\edef\csname node@#1@r\endcsname{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#2\unitlength}{\d@my@unit}}
 \global\expandafter\edef\csname node@#1@x\endcsname{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#3\unitlength}{\d@my@unit}}
 \global\expandafter\edef\csname node@#1@y\endcsname{\thecnt@a}%
% Definition of the oval path for the node
 \dim@x=#2\unitlength \edef\ps@path{\strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=\N@w\d@my@unit \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=\N@h\d@my@unit \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=\N@mr\d@my@unit \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \edef\ps@path{\ps@path !psovalpath\space}%
 \global\expandafter\edef\csname node@#1@path\endcsname{\ps@path}%
}}

%-----------------------------------------------------------------------
% Draw a node which is already defined. Internal macro.
%
%   \draw@node(NodeName){NodeLabel}
%
% Required arguments:
%   NodeName : name of the node
%   NodeLabel : label of the node. Empty if no label.
\def\draw@node(#1)#2{{%
 \put(0,0){\special{" \gas@initps
   \if@fill
         \fill@color \csname node@#1@path\endcsname fill
       \fi
   \if@frame
     \line@color \csname node@#1@path\endcsname stroke
       \fi
 }}
 \if@imark \imark(#1) \fi
 \if@fmark \fmark(#1) \fi
 \if@rmark \rmark(#1) \fi
 \nodelabel(#1){#2}
}}

%-----------------------------------------------------------------------
% Add an ingoing arrow to mark an initial node.
% This arrow is usually drawn by \node using Nmarks=i.
% This separate macro can be used to draw several arrows
% or arrows with different colors, thickness, dash, ...
%
%   \imark(NodeName)
%   \imark[parameter=value,...](NodeName)
%
% Required arguments:
%   NodeName : name of the node
% Optional argument:
%   [parameter=value,...]
\def\imark#1(#2){{%
 \@ifnextchar[{\process@imarkopt}{\i@mark}#1(#2)}}
\def\process@imarkopt[#1]{\gasset{#1}\i@mark}%
\def\i@mark(#1){{%
 \dim@x=\csname node@#1@x\endcsname\d@my@unit \edef\ps@par{\strip@PT\dim@x}%
 \dim@x=\csname node@#1@y\endcsname\d@my@unit \edef\ps@par{\ps@par \strip@PT\dim@x}%
 \dim@x=\i@length\d@my@unit \edef\ps@par{\ps@par \strip@PT\dim@x \i@angle\space}%
 \put(0,0){\special{" \gas@initps \line@color
% Path around the node
   \csname node@#1@path\endcsname /path!a false upath cvlit def
   \gas@ATnul \gas@AHparam \ps@par !node_mark}}
}}

%-----------------------------------------------------------------------
% Add an outgoing arrow to mark a final node.
% This arrow is usually drawn by \node using Nmarks=f.
% This separate macro can be used to draw several arrows
% or arrows with different colors, thickness, dash, ...
%
%   \fmark(NodeName)
%   \fmark[parameter=value,...](NodeName)
%
% Required arguments:
%   NodeName : name of the node
% Optional argument:
%   [parameter=value,...]
\def\fmark#1(#2){{%
 \@ifnextchar[{\process@fmarkopt}{\f@mark}#1(#2)}}
\def\process@fmarkopt[#1]{\gasset{#1}\f@mark}%
\def\f@mark(#1){{%
 \dim@x=\csname node@#1@x\endcsname\d@my@unit \edef\ps@par{\strip@PT\dim@x}%
 \dim@x=\csname node@#1@y\endcsname\d@my@unit \edef\ps@par{\ps@par \strip@PT\dim@x}%
 \dim@x=\f@length\d@my@unit \edef\ps@par{\ps@par \strip@PT\dim@x \f@angle\space}%
 \put(0,0){\special{" \gas@initps \line@color
% Path around the node
   \csname node@#1@path\endcsname /path!a false upath cvlit def
   \gas@AHparam \gas@ATnul \ps@par !node_mark}}
}}

%-----------------------------------------------------------------------
% Add a second line to mark a repeated node.
% This line is usually drawn by \node using Nmarks=r.
% This separate macro can be used to draw several lines around the
% node or lines with different colors, thickness, dash, ...
%
%   \rmark(NodeName)
%   \rmark[parameter=value,...](NodeName)
%
% Required arguments:
%   NodeName : name of the node
% Optional argument:
%   [parameter=value,...]
\def\rmark#1(#2){{%
 \@ifnextchar[{\process@rmarkopt}{\r@mark}#1(#2)}}
\def\process@rmarkopt[#1]{\gasset{#1}\r@mark}%
\def\r@mark(#1){{%
 \ifnum\csname node@#1@w\endcsname=-1 % then it's a polygonal node
   \dim@x=\csname node@#1@x\endcsname\d@my@unit
   \edef\ps@path{\strip@PT\dim@x}%
   \dim@x=\csname node@#1@y\endcsname\d@my@unit
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \edef\ps@path{\ps@path \csname node@#1@n\endcsname\space}%
   \dim@x=\csname node@#1@rad\endcsname\d@my@unit
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \edef\ps@path{\ps@path \csname node@#1@a\endcsname\space}%
   \dim@y=\rep@dist\d@my@unit
   \edef\ps@path{\ps@path \arc@radius \strip@PT\dim@y !psrpolygonpath\space}%
   \put(0,0){\special{" \gas@initps \line@color \ps@path stroke}}
 \else % it's an oval node
   \dim@x=\csname node@#1@x\endcsname\d@my@unit
   \edef\ps@path{\strip@PT\dim@x}%
   \dim@x=\csname node@#1@y\endcsname\d@my@unit
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \dim@y=-\rep@dist\d@my@unit
   \dim@x=\csname node@#1@w\endcsname\d@my@unit
   \advance\dim@x\dim@y\advance\dim@x\dim@y
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \dim@x=\csname node@#1@h\endcsname\d@my@unit
   \advance\dim@x\dim@y\advance\dim@x\dim@y
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \dim@x=\csname node@#1@r\endcsname\d@my@unit
   \advance\dim@x\dim@y
   \edef\ps@path{\ps@path \strip@PT\dim@x}%
   \put(0,0){\special{" \gas@initps \line@color \ps@path !psovalpath stroke}}
 \fi
}}

%-----------------------------------------------------------------------
% Add a label to the node.
% The position of the label is determined by the ExtNL flag
% and the parameters NLangle and NLdist.
% The label is usually drawn by \node.
% This separate macro can be used to add several labels
%
%   \nodelabel(NodeName){NodeLabel}
%   \nodelabel[parameter=value,...](NodeName){NodeLabel}
%
% Required arguments:
%   NodeName : name of the node
%   NodeLabel : label of the node.
% Optional argument:
%   [parameter=value,...]
\newif\if@cosneg \newif\if@sinneg
\def\nodelabel#1(#2)#3{{%
 \@ifnextchar[{\process@nodelabelopt}{\node@label}#1(#2){#3}}}
\def\process@nodelabelopt[#1]{\gasset{#1}\node@label}%
\def\node@label(#1)#2{{%
 \unitlength=\d@my@unit
 \edef\cs@x{\csname node@#1@x\endcsname}%
 \edef\cs@y{\csname node@#1@y\endcsname}%
 \if@ExtNL
   \node@diam(#1,\NL@angle)
   \setcounter{cnt@a}{\cs@nd/2}\edef\cs@nr{\thecnt@a}%
% width and height of the box containing #2
   \setbox\temp@box\hbox{\selectfont #2}
   \setcounter{cnt@a}{\wd\temp@box / \d@my@unit}
   \edef\cs@bw{\thecnt@a}%
   \setcounter{cnt@a}{(\ht\temp@box+\dp\temp@box) / \d@my@unit}
   \edef\cs@bh{\thecnt@a}%
%
   \@cosnegfalse \@sinnegfalse
   \dim@x=\cs@cos pt \ifnum \dim@x<0 \@cosnegtrue \dim@x=-\dim@x \fi
   \edef\cs@abscos{\strip@PT\dim@x}%
   \dim@x=\cs@sin pt \ifnum \dim@x<0 \@sinnegtrue \dim@x=-\dim@x \fi
   \edef\cs@abssin{\strip@PT\dim@x}%
%
   \ifnum\csname node@#1@w\endcsname=-1 % then it's a polygonal node
     \setcounter{cnt@c}{\cs@nr+\NL@dist+%
                       (\cs@bw*\real{\cs@abscos}+\cs@bh*\real{\cs@abssin})/2}
     \setcounter{cnt@a}{\cs@x+\thecnt@c*\real{\cs@cos}}
     \setcounter{cnt@b}{\cs@y+\thecnt@c*\real{\cs@sin}}
     \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #2}}
   \else % it's an oval node
     \setcounter{cnt@a}{((\cs@h+\cs@bh)/2+\NL@dist)*\real{\cs@abscos}}
     \setcounter{cnt@b}{((\cs@w+\cs@bw)/2-\cs@r)*\real{\cs@abssin}}
     \ifnum\thecnt@a<\thecnt@b
       \setcounter{cnt@c}{(\cs@h+\cs@bh)/2+\NL@dist}
       \if@sinneg \setcounter{cnt@c}{-\thecnt@c} \fi
       \setcounter{cnt@a}{\cs@x+\thecnt@c*\real{\cs@cos}/\real{\cs@sin}}
       \setcounter{cnt@b}{\cs@y+\thecnt@c}
       \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #2}}
     \else
       \setcounter{cnt@a}{((\cs@w+\cs@bw)/2+\NL@dist)*\real{\cs@abssin}}
       \setcounter{cnt@b}{((\cs@h+\cs@bh)/2-\cs@r)*\real{\cs@abscos}}
       \ifnum\thecnt@a<\thecnt@b
         \setcounter{cnt@c}{(\cs@w+\cs@bw)/2+\NL@dist}
         \if@cosneg \setcounter{cnt@c}{-\thecnt@c} \fi
         \setcounter{cnt@a}{\cs@x+\thecnt@c}
         \setcounter{cnt@b}{\cs@y+\thecnt@c*\real{\cs@sin}/\real{\cs@cos}}
         \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #2}}
       \else
 % auxiliary parameters
         \setcounter{cnt@a}{\cs@r-(\cs@w+\cs@bw)/2}
         \edef\cs@xx{\thecnt@a}%
         \setcounter{cnt@a}{\cs@r-(\cs@h+\cs@bh)/2}
         \edef\cs@yy{\thecnt@a}%
         \setcounter{cnt@a}{(\cs@r+\NL@dist)*(\cs@r+\NL@dist)}
         \edef\cs@lim{\thecnt@a}%
         \def\cs@tmin{0}%
         \setcounter{cnt@a}{\NL@dist+(\cs@bw+\cs@bh)/2}
         \edef\cs@tmax{\thecnt@a}%
 % computation of the center of the label
         \setcounter{cnt@c}{10}
         \@whilenum\thecnt@c>0\do{
           \setcounter{cnt@a}{(\cs@tmin+\cs@tmax)/2}
           \edef\cs@t{\thecnt@a}%
           \setcounter{cnt@a}{(\cs@nr+\cs@t)*\real{\cs@abscos}+\cs@xx}
           \setcounter{cnt@b}{(\cs@nr+\cs@t)*\real{\cs@abssin}+\cs@yy}
           \setcounter{cnt@a}{\thecnt@a*\thecnt@a + \thecnt@b*\thecnt@b}
           \ifnum\thecnt@a<\cs@lim
             \edef\cs@tmin{\cs@t}%
           \else
             \edef\cs@tmax{\cs@t}%
           \fi
           \addtocounter{cnt@c}{-1}}
         \setcounter{cnt@a}{\cs@x+(\cs@nr+\cs@t)*\real{\cs@cos}}
         \setcounter{cnt@b}{\cs@y+(\cs@nr+\cs@t)*\real{\cs@sin}}
         \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #2}}
       \fi
     \fi
   \fi
 \else % regular node label
   \CalculateCos{\NL@angle} \edef\cs@cos{\UseCos{\NL@angle}}%
   \CalculateSin{\NL@angle} \edef\cs@sin{\UseSin{\NL@angle}}%
   \setcounter{cnt@a}{\cs@x+\NL@dist*\real{\cs@cos}}
   \setcounter{cnt@b}{\cs@y+\NL@dist*\real{\cs@sin}}
   \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #2}}
 \fi
}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Edges
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------
% Edge between two nodes.
%
%   \drawedge(startingNode,endingNode){label}
%   \drawedge[parameter=value,...](startingNode,endingNode){label}
%
% Required arguments:
%   startingNode : name of the starting node,
%   endingNode : name of the ending node,
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawedge#1(#2)#3{{%
 \@ifnextchar[{\process@edgeopt}{\draw@edge}#1(#2){#3}}}
\def\process@edgeopt[#1]{\gasset{#1}\draw@edge}%
\def\draw@edge(#1,#2)#3{%
% Control points of the cubic Bezier curve
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#2@x\endcsname + \E@exo}%
 \edef\cs@xd{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#2@y\endcsname + \E@eyo}%
 \edef\cs@yd{\thecnt@a}%
 \setcounter{cnt@a}{\cs@xd-\cs@xa}
 \setcounter{cnt@b}{\cs@yd-\cs@ya}
 \setcounter{cnt@c}{\thecnt@a*\thecnt@a+\thecnt@b*\thecnt@b}
 \ifnum\thecnt@c=0
   \PackageError{gastex}{drawedge(#1,#2)}{}
   \typeout{The starting and ending nodes should not have the same coordinates.}
 \else
   \gas@sqrt{\thecnt@c}
   \setcounter{cnt@b}{\cs@xa+\cs@xd-4*\curve@depth*(\cs@yd-\cs@ya)/\the@sqrt}
   \setcounter{cnt@a}{(\thecnt@b+\cs@xa)/3}\edef\cs@xb{\thecnt@a}%
   \setcounter{cnt@a}{(\thecnt@b+\cs@xd)/3}\edef\cs@xc{\thecnt@a}%
   \setcounter{cnt@b}{\cs@ya+\cs@yd+4*\curve@depth*(\cs@xd-\cs@xa)/\the@sqrt}
   \setcounter{cnt@a}{(\thecnt@b+\cs@ya)/3}\edef\cs@yb{\thecnt@a}%
   \setcounter{cnt@a}{(\thecnt@b+\cs@yd)/3}\edef\cs@yc{\thecnt@a}%
   \unitlength=\d@my@unit
   \draw@b@edge(#1,#2){#3}
 \fi
}

%-----------------------------------------------------------------------
% Edge between two nodes following a quadratic Bezier curve.
% The first and last control points are the centers of the starting
% and ending nodes resp, modified with the starting and ending offsets.
% The middle control point is given by its absolute cartesian coordinates
%
%   \drawqbedge(startingNode,x,y,endingNode){label}
%   \drawqbedge[parameter=value,...](startingNode,x,y,endingNode){label}
%
% Required arguments:
%   startingNode : name of the starting node,
%   x,y : coordinates in \unitlength of the intermediary control point
%   endingNode : name of the ending node,
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawqbedge#1(#2)#3{{%
 \@ifnextchar[{\process@qbedgeopt}{\draw@qbedge}#1(#2){#3}}}
\def\process@qbedgeopt[#1]{\gasset{#1}\draw@qbedge}%
\def\draw@qbedge(#1,#2,#3,#4)#5{%
% Control points of the cubic Bezier curve
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@x\endcsname + \E@exo}%
 \edef\cs@xd{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@y\endcsname + \E@eyo}%
 \edef\cs@yd{\thecnt@a}%
 \setcounter{cnt@b}{2*\ratio{#2\unitlength}{\d@my@unit}}
 \setcounter{cnt@a}{(\cs@xa+\thecnt@b)/3}\edef\cs@xb{\thecnt@a}%
 \setcounter{cnt@a}{(\cs@xd+\thecnt@b)/3}\edef\cs@xc{\thecnt@a}%
 \setcounter{cnt@b}{2*\ratio{#3\unitlength}{\d@my@unit}}
 \setcounter{cnt@a}{(\cs@ya+\thecnt@b)/3}\edef\cs@yb{\thecnt@a}%
 \setcounter{cnt@a}{(\cs@yd+\thecnt@b)/3}\edef\cs@yc{\thecnt@a}%
 \unitlength=\d@my@unit
 \draw@b@edge(#1,#4){#5}
}

%-----------------------------------------------------------------------
% Edge between two nodes following a quadratic Bezier curve.
% The first and last control points are the centers of the starting
% and ending nodes resp, modified with the starting and ending offsets.
% The middle control point is defined by two angles.
%
%   \drawqbpedge(startingNode,sa,endingNode,ea){label}
%   \drawqbpedge[parameter=value,...](startingNode,sa,endingNode,ea){label}
%
% Required arguments:
%   startingNode : name of the starting node,
%   endingNode : name of the ending node,
%   sa,ea : angles in degree at the starting and ending nodes,
%           these angles define intermediary control point
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawqbpedge#1(#2)#3{{%
 \@ifnextchar[{\process@qbpedgeopt}{\draw@qbpedge}#1(#2){#3}}}
\def\process@qbpedgeopt[#1]{\gasset{#1}\draw@qbpedge}%
\def\draw@qbpedge(#1,#2,#3,#4)#5{%
% Control points of the cubic Bezier curve
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#3@x\endcsname + \E@exo}%
 \edef\cs@xd{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#3@y\endcsname + \E@eyo}%
 \edef\cs@yd{\thecnt@a}%
 \edef\cs@sangle{#2}%
 \CalculateCos\cs@sangle \CalculateSin\cs@sangle
 \edef\cs@eangle{#4}%
 \CalculateCos\cs@eangle \CalculateSin\cs@eangle
 \setcounter{cnt@a}{1000*\real{\UseCos\cs@sangle}*\real{\UseSin\cs@eangle}
                   -1000*\real{\UseSin\cs@sangle}*\real{\UseCos\cs@eangle}}
 \ifnum\thecnt@a=0
   \PackageError{gastex}{drawqbpedge(#1,#2,#3,#4)}{}
   \typeout{The angles do not allow to compute the intersection point.}
 \else
   \setcounter{cnt@c}{((\cs@xd-\cs@xa)*1000*\real{\UseSin\cs@eangle}
                      -(\cs@yd-\cs@ya)*1000*\real{\UseCos\cs@eangle})
                      /\thecnt@a}
   \setcounter{cnt@b}{2*(\cs@xa+\thecnt@c*\real{\UseCos\cs@sangle})}
   \setcounter{cnt@a}{(\cs@xa+\thecnt@b)/3}\edef\cs@xb{\thecnt@a}%
   \setcounter{cnt@a}{(\cs@xd+\thecnt@b)/3}\edef\cs@xc{\thecnt@a}%
   \setcounter{cnt@b}{2*(\cs@ya+\thecnt@c*\real{\UseSin\cs@sangle})}
   \setcounter{cnt@a}{(\cs@ya+\thecnt@b)/3}\edef\cs@yb{\thecnt@a}%
   \setcounter{cnt@a}{(\cs@yd+\thecnt@b)/3}\edef\cs@yc{\thecnt@a}%
   \unitlength=\d@my@unit
   \draw@b@edge(#1,#3){#5}
 \fi
}

%-----------------------------------------------------------------------
% Edge between two nodes following a cubic Bezier curve.
% The first and last control points are the centers of the starting
% and ending nodes resp, modified with the starting and ending offsets.
% The second and third control points are given by their polar coordinates
% relative to the first and last control points resp.
%
%   \drawbpedge(startingNode,sa,sr,endingNode,ea,er){label}
%   \drawbpedge[parameter=value,...](startingNode,sa,sr,endingNode,ea,er){label}
%
% Required arguments:
%   startingNode : name of the starting node,
%   sa,sr : polar coordinates of the second control point relative to the
%           first control point (angle in degree and radius in \unitlength)
%   endingNode : name of the ending node,
%   ea,er : polar coordinates of the third control point relative to the
%           last control point (angle in degree and radius in \unitlength)
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawbpedge#1(#2)#3{{%
 \@ifnextchar[{\process@bpedgeopt}{\draw@bpedge}#1(#2){#3}}}
\let\drawcbpedge\drawbpedge
\def\process@bpedgeopt[#1]{\gasset{#1}\draw@bpedge}%
\def\draw@bpedge(#1,#2,#3,#4,#5,#6)#7{%
% Control points of the cubic Bezier curve
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@x\endcsname + \E@exo}%
 \edef\cs@xd{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@y\endcsname + \E@eyo}%
 \edef\cs@yd{\thecnt@a}%
 \setcounter{cnt@b}{1*\ratio{#3\unitlength}{\d@my@unit}}
 \edef\cs@angle{#2}%
 \CalculateCos\cs@angle \CalculateSin\cs@angle
 \setcounter{cnt@a}{\cs@xa+\thecnt@b*\real{\UseCos\cs@angle}}
 \edef\cs@xb{\thecnt@a}%
 \setcounter{cnt@a}{\cs@ya+\thecnt@b*\real{\UseSin\cs@angle}}
 \edef\cs@yb{\thecnt@a}%
 \setcounter{cnt@b}{1*\ratio{#6\unitlength}{\d@my@unit}}
 \edef\cs@angle{#5}%
 \CalculateCos\cs@angle \CalculateSin\cs@angle
 \setcounter{cnt@a}{\cs@xd+\thecnt@b*\real{\UseCos\cs@angle}}
 \edef\cs@xc{\thecnt@a}%
 \setcounter{cnt@a}{\cs@yd+\thecnt@b*\real{\UseSin\cs@angle}}
 \edef\cs@yc{\thecnt@a}%
 \unitlength=\d@my@unit
 \draw@b@edge(#1,#4){#7}
}

%-----------------------------------------------------------------------
% Edge between two nodes following a cubic Bezier curve.
% The first and last control points are the centers of the starting
% and ending nodes resp, modified with the starting and ending offsets.
% The second and third control points are given by their absolute
% cartesian coordinates.
%
%   \drawbcedge(startingNode,xs,ys,endingNode,xe,ye){label}
%   \drawbcedge[parameter=value,...](startingNode,xs,ys,endingNode,xe,ye){label}
%
% Required arguments:
%   startingNode : name of the starting node,
%   xs,ys : coordinates in \unitlength of the control point defining
%           the tangent at the starting node
%   endingNode : name of the ending node,
%   xe,ye : coordinates in \unitlength of the control point defining
%           the tangent at the ending node
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawbcedge#1(#2)#3{{%
 \@ifnextchar[{\process@bcedgeopt}{\draw@bcedge}#1(#2){#3}}}
\let\drawcbedge\drawbcedge
\def\process@bcedgeopt[#1]{\gasset{#1}\draw@bcedge}%
\def\draw@bcedge(#1,#2,#3,#4,#5,#6)#7{%
% Control points of the cubic Bezier curve
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@x\endcsname + \E@exo}%
 \edef\cs@xd{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#4@y\endcsname + \E@eyo}%
 \edef\cs@yd{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#2\unitlength}{\d@my@unit}}
 \edef\cs@xb{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#3\unitlength}{\d@my@unit}}
 \edef\cs@yb{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#5\unitlength}{\d@my@unit}}
 \edef\cs@xc{\thecnt@a}%
 \setcounter{cnt@a}{1*\ratio{#6\unitlength}{\d@my@unit}}
 \edef\cs@yc{\thecnt@a}%
 \unitlength=\d@my@unit
 \draw@b@edge(#1,#4){#7}
}

%-----------------------------------------------------------------------
% Loop on a node following a cubic Bezier curve.
% Only the starting offsets sxo and syo are used.
%
%   \drawloop(Node){label}
%   \drawloop[parameter=value,...](Node){label}
%
% Required arguments:
%   Node : name of the node,
%   label : label of the edge. {} for no label.
% Optional argument:
%   [parameter=value,...]
\def\drawloop#1(#2)#3{{%
 \@ifnextchar[{\process@loopopt}{\draw@loop}#1(#2){#3}}}
\def\process@loopopt[#1]{\gasset{#1}\draw@loop}%
\def\draw@loop(#1)#2{%
% Control points of the cubic Bezier curve
 \unitlength=\d@my@unit
 \setcounter{cnt@a}{\csname node@#1@x\endcsname + \E@sxo}%
 \edef\cs@xa{\thecnt@a}%
 \setcounter{cnt@a}{\csname node@#1@y\endcsname + \E@syo}%
 \edef\cs@ya{\thecnt@a}%
 \edef\cs@xd{\cs@xa}%
 \edef\cs@yd{\cs@ya}%
 \node@diam(#1,\loop@angle)
 \setcounter{cnt@a}{2*(\cs@nd+2*\loop@height)/3}
 \setcounter{cnt@b}{\loop@width*1732/1000} % approx of sqrt(3)
% Rotation
 \setcounter{cnt@c}
   {\cs@xa+\thecnt@a*\real{\cs@cos}-\thecnt@b*\real{\cs@sin}}
 \if@loopCW
   \edef\cs@xb{\thecnt@c}%
 \else
   \edef\cs@xc{\thecnt@c}%
 \fi
 \setcounter{cnt@c}
   {\cs@xa+\thecnt@a*\real{\cs@cos}+\thecnt@b*\real{\cs@sin}}
 \if@loopCW
   \edef\cs@xc{\thecnt@c}%
 \else
   \edef\cs@xb{\thecnt@c}%
 \fi
 \setcounter{cnt@c}
   {\cs@ya+\thecnt@a*\real{\cs@sin}+\thecnt@b*\real{\cs@cos}}
 \if@loopCW
   \edef\cs@yb{\thecnt@c}%
 \else
   \edef\cs@yc{\thecnt@c}%
 \fi
 \setcounter{cnt@c}
   {\cs@ya+\thecnt@a*\real{\cs@sin}-\thecnt@b*\real{\cs@cos}}
 \if@loopCW
   \edef\cs@yc{\thecnt@c}%
 \else
   \edef\cs@yb{\thecnt@c}%
 \fi
 \draw@b@edge(#1,#1){#2}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Other macros
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------
% Draw a broken line defined by n points (n>1).
% The line may have arrowhead(s), arrowtail(s), color, ...
% depending of the current settings
%
%   \drawline(x1,y1)...(xn,yn)
%   \drawline[parameter=value,...](x1,y1)...(xn,yn)
%
% Required arguments in \unitlengh:
%   (x1,y1)...(xn,yn) : coordinates of the points.
% Optional argument:
%   [parameter=value,...]
\def\drawline#1(#2){\begingroup%
 \setcounter{cnt@a}{0} \edef\ps@param{}%
 \@ifnextchar[{\process@drawlineopt}{\draw@line}#1(#2)}
\def\process@drawlineopt[#1]{\gasset{#1}\draw@line}%
\def\draw@line(#1,#2){%
 \setcounter{cnt@a}{\thecnt@a+1}
 \dim@x=#1\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \@ifnextchar({\draw@line}{
   \put(0,0){\special{" \gas@initps \line@color
     \gas@ATparam \gas@AHparam \ps@param \thecnt@a\space \arc@radius !pslines}}
   \endgroup
 }
}

%-----------------------------------------------------------------------
% Draw a line with snake waves between two points.
% width and height of the waves are controlled by parameters snakeh and snakeh
% The line may have arrowhead(s), arrowtail(s), color, ...
% depending of the current settings
%
%   \drawsnake(x1,y1)(x2,y2)
%   \drawsnake[parameter=value,...](x1,y1)(x2,y2)
%
% Required arguments in \unitlengh:
%   (x1,y1)(x2,y2) : coordinates of the points.
% Optional argument:
%   [parameter=value,...]
\def\drawsnake#1(#2)(#3){{%
 \@ifnextchar[{\process@drawsnakeopt}{\draw@snake}#1(#2)(#3)}}
\def\process@drawsnakeopt[#1]{\gasset{#1}\draw@snake}%
\def\draw@snake(#1,#2)(#3,#4){%
 \setcounter{cnt@a}{1*\ratio{#1\unitlength}{\d@my@unit}} % x1
 \edef\snake@x{\thecnt@a}
 \setcounter{cnt@a}{1*\ratio{#2\unitlength}{\d@my@unit}} % x1
 \edef\snake@y{\thecnt@a}
 \setcounter{cnt@a}{1*\ratio{#3\unitlength}{\d@my@unit}} % x1
 \edef\snake@X{\thecnt@a}
 \setcounter{cnt@a}{1*\ratio{#4\unitlength}{\d@my@unit}} % x1
 \edef\snake@Y{\thecnt@a}
 %
 \edef\ps@param{}
 \dim@x=\snake@x\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=\snake@y\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 %
 \setcounter{cnt@a}{\snake@X-\snake@x}
 \edef\snake@A{\thecnt@a}
 \setcounter{cnt@a}{\snake@Y-\snake@y}
 \edef\snake@B{\thecnt@a}
 \setcounter{cnt@a}{\snake@A*\snake@A+\snake@B*\snake@B}
 \gas@sqrt{\thecnt@a}
 \edef\snake@L{\the@sqrt}
 %
 \setcounter{cnt@@a}{\snake@w/2}
 \setcounter{cnt@a}{\snake@x+\snake@A*\thecnt@@a/\snake@L}
 \setcounter{cnt@b}{\snake@y+\snake@B*\thecnt@@a/\snake@L}
 \dim@x=\thecnt@a\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=\thecnt@b\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \setcounter{cnt@@a}{\thecnt@@a+3*\snake@w/4}
 \setcounter{cnt@@c}{1}
 %
 \setcounter{cnt@c}{(\snake@L-5*\snake@w/2)/\snake@w} % nb iteration
 \@whilenum\thecnt@c>0\do{%
   \setcounter{cnt@@b}{\thecnt@@c*\snake@h}
   \setcounter{cnt@a}{\snake@x+(\snake@A*\thecnt@@a-\snake@B*\thecnt@@b)/\snake@L}
   \setcounter{cnt@b}{\snake@y+(\snake@B*\thecnt@@a+\snake@A*\thecnt@@b)/\snake@L}
   \dim@x=\thecnt@a\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
   \dim@x=\thecnt@b\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
   \setcounter{cnt@@a}{\thecnt@@a+\snake@w}
   \setcounter{cnt@@c}{-\thecnt@@c}
   \setcounter{cnt@c}{\thecnt@c-1}
 }
 \setcounter{cnt@@a}{\thecnt@@a-\snake@w/4}
 \setcounter{cnt@a}{\snake@x+\snake@A*\thecnt@@a/\snake@L}
 \setcounter{cnt@b}{\snake@y+\snake@B*\thecnt@@a/\snake@L}
 \dim@x=\thecnt@a\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=\thecnt@b\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=\snake@X\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=\snake@Y\d@my@unit \edef\ps@param{\ps@param \strip@PT\dim@x}%
 %
 \setcounter{cnt@c}{4+(\snake@L-5*\snake@w/2)/\snake@w} % nb iteration
 \put(0,0){\special{" \gas@initps \line@color
   \gas@ATparam \gas@AHparam
   \ps@param \thecnt@c\space !pscurve}}
}

%-----------------------------------------------------------------------
% Draw an arc of a circle.
%
%   \drawarc(x,y,r,a,b)
%   \drawarc[parameter=value,...](x,y,r,a,b)
%
% Required arguments:
%   x,y : coordinates of the circle center (in \unitlengh).
%   r : radius of the circle (in \unitlengh).
%   a : starting angle of the arc (in degree)
%   b : ending angle of the arc (in degree)
% Optional argument:
%   [parameter=value,...]
\def\drawarc#1(#2){{%
 \@ifnextchar[{\process@arcopt}{\draw@arc}#1(#2)}}
\def\process@arcopt[#1]{\gasset{#1}\draw@arc}%
\def\draw@arc(#1,#2,#3,#4,#5){{%
 \dim@x=#1\unitlength \edef\ps@x{\strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@y{\strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@r{\strip@PT\dim@x}%
 \put(0,0){\special{" \gas@initps
   \if@fill \fill@color
     newpath
     \if@arcPie \ps@x \ps@y moveto \fi
     \ps@x \ps@y \ps@r #4 #5 arc
     \if@arcPie closepath \fi
     fill
   \fi
   \if@frame \line@color
     newpath
     \if@arcPie \ps@x \ps@y moveto \fi
     \ps@x \ps@y \ps@r #4 #5 arc
     \if@arcPie closepath \fi
     stroke
   \fi
 }}
}}

%-----------------------------------------------------------------------
% Draw a circle.
%
%   \drawcircle(x,y,d)
%   \drawcircle[parameter=value,...](x,y,d)
%
% Required arguments in \unitlengh:
%   x,y : coordinates of the circle center.
%   d : diameter of the circle.
% Optional argument:
%   [parameter=value,...]
\def\drawcircle#1(#2){{%
 \@ifnextchar[{\process@circleopt}{\draw@circle}#1(#2)}}
\def\process@circleopt[#1]{\gasset{#1}\draw@circle}%
\def\draw@circle(#1,#2,#3){{%
 \dim@x=#1\unitlength \edef\ps@x{\strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@y{\strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@d{\strip@PT\dim@x}%
 \put(0,0){\special{" \gas@initps
   \if@fill
         \fill@color
     \ps@x \ps@y \ps@d 2 div !pscirclepath fill
       \fi
   \if@frame
     \line@color
     \ps@x \ps@y \ps@d 2 div !pscirclepath stroke
       \fi
 }}
}}

%-----------------------------------------------------------------------
% Draw a rectangle.
%
%   \drawrect(x0,y0,x1,y1)
%   \drawrect[parameter=value,...](x0,y0,x1,y1)
%
% Required arguments in \unitlengh:
%   x0,y0 : coordinates of the lower left corner of the rectangle.
%   x1,y1 : coordinates of the upper right corner of the rectangle.
% Optional argument:
%   [parameter=value,...]
\def\drawrect#1(#2,#3,#4,#5){\drawpolygon#1(#2,#3)(#4,#3)(#4,#5)(#2,#5)}%
% \def\drawrect#1(#2){{%
%   \@ifnextchar[{\process@rectopt}{\draw@rect}#1(#2)}}
% \def\process@rectopt[#1]{\gasset{#1}\draw@rect}%
% \def\draw@rect(#1,#2,#3,#4){{%
%   \dim@x=#1\unitlength \edef\ps@x{\strip@PT\dim@x}%
%   \dim@x=#2\unitlength \edef\ps@y{\strip@PT\dim@x}%
%   \dim@x=#3\unitlength \edef\ps@a{\strip@PT\dim@x}%
%   \dim@x=#4\unitlength \edef\ps@b{\strip@PT\dim@x}%
%   \put(0,0){\special{" \gas@initps
%     \if@fill
%         \fill@color
%       \ps@x \ps@y \ps@a \ps@b !psrectpath fill
%       \fi
%     \if@frame
%       \line@color
%       \ps@x \ps@y \ps@a \ps@b !psrectpath stroke
%       \fi
%   }}
% }}

%-----------------------------------------------------------------------
% Draw an oval.
%
%   \drawoval(x,y,w,h,mr)
%   \drawoval[parameter=value,...](x,y,w,h,mr)
%
% Required arguments in \unitlengh:
%   x,y : coordinates of the oval center.
%   w,h : width and height of the oval.
%   rm : defines the maximal radius for the corners.
% Optional argument:
%   [parameter=value,...]
\def\drawoval#1(#2){{%
 \@ifnextchar[{\process@ovalopt}{\draw@oval}#1(#2)}}
\def\process@ovalopt[#1]{\gasset{#1}\draw@oval}%
\def\draw@oval(#1,#2,#3,#4,#5){{%
 \dim@x=#1\unitlength \edef\ps@path{\strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=#4\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \dim@x=#5\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \edef\ps@path{\ps@path !psovalpath\space}%
 \put(0,0){\special{" \gas@initps
   \if@fill
     \fill@color \ps@path fill
   \fi
   \if@frame
     \line@color \ps@path stroke
   \fi
 }}
}}

%-----------------------------------------------------------------------
% Draw a polygon defined by n points (n>1).
% The polygon may be framed and/or filled depending on the current parameters.
%
%   \drawpolygon(x1,y1)...(xn,yn)
%   \drawpolygon[parameter=value,...](x1,y1)...(xn,yn)
%
% Required arguments in \unitlengh:
%   (x1,y1)...(xn,yn) : coordinates of the points.
% Optional argument:
%   [parameter=value,...]
\def\drawpolygon#1(#2){\begingroup%
 \setcounter{cnt@a}{0} \edef\ps@param{}%
 \@ifnextchar[{\process@polygonopt}{\draw@polygon}#1(#2)}
\def\process@polygonopt[#1]{\gasset{#1}\draw@polygon}%
\def\draw@polygon(#1,#2){%
 \setcounter{cnt@a}{\thecnt@a+1}
 \dim@x=#1\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \@ifnextchar({\draw@polygon}{
   \put(0,0){\special{" \gas@initps
     \if@fill
       \fill@color
       \ps@param \thecnt@a\space \arc@radius !pspolygonpath fill
     \fi
     \if@frame
       \line@color
       \ps@param \thecnt@a\space \arc@radius !pspolygonpath stroke
     \fi
   }}
   \endgroup
 }}

%-----------------------------------------------------------------------
% Draw a regular polygon
% The polygon may be framed and/or filled depending on the current parameters.
%
%   \drawrpolygon(x,y)(n,r)
%   \drawrpolygon[parameter=value,...](x,y)(n,r)
%
% Required arguments:
%   x,y : coordinates in \unitlengh of the center of the polygon.
%     n : number of sides of the polygon.
%     r : radius in \unitlengh of the polygon.
% Optional argument: (in particular, polyangle and arcradius)
%   [parameter=value,...]
\def\drawrpolygon#1(#2)(#3){\begingroup%
 \@ifnextchar[{\process@rpolygonopt}{\draw@rpolygon}#1(#2)(#3)}
\def\process@rpolygonopt[#1]{\gasset{#1}\draw@rpolygon}%
\def\draw@rpolygon(#1,#2)(#3,#4){%
 \dim@x=#1\unitlength \dim@y=#2\unitlength
 \edef\ps@path{\strip@PT\dim@x \strip@PT\dim@y #3\space}%
 \dim@x=#4\unitlength \edef\ps@path{\ps@path \strip@PT\dim@x}%
 \edef\ps@path{\ps@path \poly@angle\space \arc@radius 0 !psrpolygonpath\space}%
 \put(0,0){\special{" \gas@initps
   \if@fill
     \fill@color \ps@path fill
   \fi
   \if@frame
     \line@color \ps@path stroke
   \fi
 }}
 \endgroup}

%-----------------------------------------------------------------------
% Draw closed curve defined by n points (n>1).
% Between each pair of consecutive points, we use a cubic Bezier curve.
% The control points of the cubic Bezier curves are determined so that
% the whole curve is C^1 and the tangent at each point is orthogonal to
% the bisector at this point.
% The closed curve may be framed and/or filled depending on
% the current parameters.
%
%   \drawccurve(x1,y1)...(xn,yn)
%   \drawccurve[parameter=value,...](x1,y1)...(xn,yn)
%
% Required arguments in \unitlengh:
%   (x1,y1)...(xn,yn) : coordinates of the points.
% Optional argument:
%   [parameter=value,...]
\def\drawccurve#1(#2){\begingroup%
 \setcounter{cnt@a}{0} \edef\ps@param{}%
 \@ifnextchar[{\process@drawccurveopt}{\draw@c@curve}#1(#2)}
\def\process@drawccurveopt[#1]{\gasset{#1}\draw@c@curve}%
\def\draw@c@curve(#1,#2){%
 \setcounter{cnt@a}{\thecnt@a+1}
 \dim@x=#1\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \@ifnextchar({\draw@c@curve}{
 \put(0,0){\special{" \gas@initps
   \if@fill
         \fill@color
     \ps@param \thecnt@a\space !psccurvepath fill
       \fi
   \if@frame
     \line@color
     \ps@param \thecnt@a\space !psccurvepath stroke
       \fi
 }}
 \endgroup
}}

%-----------------------------------------------------------------------
% Draw curve defined by n points (n>1).
% Between each pair of consecutive points, we use a cubic Bezier curve.
% The control points of the cubic Bezier curves are determined so that
% the whole curve is C^1 and the tangent at each point is orthogonal to
% the bisector at this point.
%
%   \drawcurve(x1,y1)...(xn,yn)
%   \drawcurve[parameter=value,...](x1,y1)...(xn,yn)
%
% Required arguments in \unitlengh:
%   (x1,y1)...(xn,yn) : coordinates of the points.
% Optional argument:
%   [parameter=value,...]
\def\drawcurve#1(#2){\begingroup%
 \setcounter{cnt@a}{0} \edef\ps@param{}%
 \@ifnextchar[{\process@drawcurveopt}{\draw@curve}#1(#2)}
\def\process@drawcurveopt[#1]{\gasset{#1}\draw@curve}%
\def\draw@curve(#1,#2){%
 \setcounter{cnt@a}{\thecnt@a+1}
 \dim@x=#1\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@param{\ps@param \strip@PT\dim@x}%
 \@ifnextchar({\draw@curve}{
 \put(0,0){\special{" \gas@initps \line@color
   \gas@ATparam \gas@AHparam
   \ps@param \thecnt@a\space !pscurve}}
 \endgroup
}}

%-----------------------------------------------------------------------
% Draw a quadratic Bezier curve.
% The line may have arrowhead(s), ... depending of the current settings
%
%   \drawqbezier(x0,y0,x1,y1,x2,y2)
%   \drawqbezier[parameter=value,...](x0,y0,x1,y1,x2,y2)
%
% \drawqbezier arguments:
%   x0,y0,x1,y1,x2,y2 : coordinates in \unitlength of the control points
% Optional argument:
%   [parameter=value,...]
\def\drawqbezier#1(#2){{%
 \@ifnextchar[{\process@drawqbezieropt}{\draw@q@bezier}#1(#2)}}
\def\process@drawqbezieropt[#1]{\gasset{#1}\draw@q@bezier}%
\def\draw@q@bezier(#1,#2,#3,#4,#5,#6){{%
 \dim@x=#1\unitlength \edef\ps@xa{\strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@ya{\strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@xb{\strip@PT\dim@x}%
 \dim@x=#4\unitlength \edef\ps@yb{\strip@PT\dim@x}%
 \dim@x=#5\unitlength \edef\ps@xc{\strip@PT\dim@x}%
 \dim@x=#6\unitlength \edef\ps@yc{\strip@PT\dim@x}%
 \put(0,0){\special{" \gas@initps \line@color
   \gas@ATparam \gas@AHparam
       \ps@xa \ps@ya \ps@xb \ps@yb \ps@xc \ps@yc !ps_qbezier}}
}}

%-----------------------------------------------------------------------
% Draw a cubic Bezier curve.
% The line may have arrowhead(s), ... depending of the current settings
%
%   \drawcbezier(x0,y0,x1,y1,x2,y2,x3,y3)
%   \drawcbezier[parameter=value,...](x0,y0,x1,y1,x2,y2,x3,y3)
%
% \drawcbezier arguments:
%   x0,y0,x1,y1,x2,y2,x3,y3 : coordinates in \unitlength of the control points
% Optional argument:
%   [parameter=value,...]
\def\drawcbezier#1(#2){{%
 \@ifnextchar[{\process@drawcbezieropt}{\draw@c@bezier}#1(#2)}}
\def\process@drawcbezieropt[#1]{\gasset{#1}\draw@c@bezier}%
\def\draw@c@bezier(#1,#2,#3,#4,#5,#6,#7,#8){{%
 \dim@x=#1\unitlength \edef\ps@xa{\strip@PT\dim@x}%
 \dim@x=#2\unitlength \edef\ps@ya{\strip@PT\dim@x}%
 \dim@x=#3\unitlength \edef\ps@xb{\strip@PT\dim@x}%
 \dim@x=#4\unitlength \edef\ps@yb{\strip@PT\dim@x}%
 \dim@x=#5\unitlength \edef\ps@xc{\strip@PT\dim@x}%
 \dim@x=#6\unitlength \edef\ps@yc{\strip@PT\dim@x}%
 \dim@x=#7\unitlength \edef\ps@xd{\strip@PT\dim@x}%
 \dim@x=#8\unitlength \edef\ps@yd{\strip@PT\dim@x}%
 \put(0,0){\special{" \gas@initps \line@color
   \gas@ATparam \gas@AHparam
       \ps@xa \ps@ya \ps@xb \ps@yb \ps@xc \ps@yc \ps@xd \ps@yd !ps_cbezier}}
}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Internal macros
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-----------------------------------------------------------------------
% Compute the diameter of a node in some direction
%
%   \node@diam(Node,angle)
%
% Result in \cs@nd.
% Byproduct: \cs@cos=cos(angle), \cs@sin=sin(angle) are also defined.
%
% There are 3 cases depending on whether the direction intersects the node
% on a vertical line, an horizontal line or a rounded corner.
\def\node@diam(#1,#2){%
 \CalculateCos{#2} \edef\cs@cos{\UseCos{#2}}%
 \CalculateSin{#2} \edef\cs@sin{\UseSin{#2}}%
 \ifnum\csname node@#1@w\endcsname=-1 % then it's a polygonal node
   \edef\cs@rad{\csname node@#1@rad\endcsname}%
   \edef\cs@n{\csname node@#1@n\endcsname}%
   \edef\cs@a{\csname node@#1@a\endcsname}%
   \setcounter{cnt@b}{360/\cs@n}\edef\cs@b{\thecnt@b}%
   \setcounter{cnt@a}{#2-\cs@a}
   \@whilenum\thecnt@a>\thecnt@b\do{\setcounter{cnt@a}{\thecnt@a-\thecnt@b}}
   \@whilenum\thecnt@a<0\do{\setcounter{cnt@a}{\thecnt@a+\thecnt@b}}
   \setcounter{cnt@b}{\thecnt@b/2}
   \setcounter{cnt@a}{\thecnt@a-\thecnt@b}
   \ifnum\thecnt@a<0 \setcounter{cnt@a}{-\thecnt@a} \fi
   \CalculateCos{\thecnt@a} \CalculateCos{\thecnt@b}%
   \setcounter{cnt@c}{2*\cs@rad*\real{\UseCos{\thecnt@b}}/\real{\UseCos{\thecnt@a}}}
   \edef\cs@nd{\thecnt@c}%
 \else % it's an oval node
   \edef\cs@w{\csname node@#1@w\endcsname}%
   \edef\cs@h{\csname node@#1@h\endcsname}%
   \edef\cs@r{\csname node@#1@r\endcsname}%
   \setcounter{cnt@a}{\cs@r+\cs@r}\edef\cs@rr{\thecnt@a}%
   \setcounter{cnt@a}{(\cs@h-\cs@rr)*\real{\cs@cos}}
   \ifnum\thecnt@a<0\edef\cs@A{-\thecnt@a}\else\edef\cs@A{\thecnt@a}\fi%
   \setcounter{cnt@a}{(\cs@w-\cs@rr)*\real{\cs@sin}}
   \ifnum\thecnt@a<0\edef\cs@B{-\thecnt@a}\else\edef\cs@B{\thecnt@a}\fi%
   \setcounter{cnt@a}{\cs@w*\real{\cs@sin}}
   \ifnum\thecnt@a<0\setcounter{cnt@a}{-\thecnt@a}\fi
   \ifnum\thecnt@a<\cs@A
     \setcounter{cnt@c}{\cs@w/\real{\cs@cos}}
     \ifnum\thecnt@c<0\edef\cs@nd{-\thecnt@c}\else\edef\cs@nd{\thecnt@c}\fi%
   \else
     \setcounter{cnt@a}{\cs@h*\real{\cs@cos}}
     \ifnum\thecnt@a<0\setcounter{cnt@a}{-\thecnt@a}\fi
     \ifnum\thecnt@a<\cs@B
       \setcounter{cnt@c}{\cs@h/\real{\cs@sin}}
       \ifnum\thecnt@c<0\edef\cs@nd{-\thecnt@c}\else\edef\cs@nd{\thecnt@c}\fi%
     \else
       \setcounter{cnt@a}{\cs@rr*\cs@rr-(\cs@B-\cs@A)*(\cs@B-\cs@A)}
       \gas@sqrt{\thecnt@a}
       \setcounter{cnt@a}{(\cs@w-\cs@rr)*\real{\cs@cos}}
       \ifnum\thecnt@a<0\edef\cs@E{-\thecnt@a}\else\edef\cs@E{\thecnt@a}\fi%
       \setcounter{cnt@a}{(\cs@h-\cs@rr)*\real{\cs@sin}}
       \ifnum\thecnt@a<0\edef\cs@F{-\thecnt@a}\else\edef\cs@F{\thecnt@a}\fi%
       \setcounter{cnt@a}{\the@sqrt+\cs@E+\cs@F}\edef\cs@nd{\thecnt@a}%
     \fi
   \fi
 \fi
%   \typeout{w=\cs@w,h=\cs@h,r=\cs@r,angle=#2,\cs@nd}
}

%-----------------------------------------------------------------------
% Draw the cubic Bezier curve.
% The control points
% (\cs@xa,\cs@ya)(\cs@xb,\cs@yb)(\cs@xc,\cs@yc)(\cs@xd,\cs@yd)
% should already be defined.
%
% #1 : name of the starting node
% #2 : name of the ending node
% #3 : label of the edge
\def\draw@b@edge(#1,#2)#3{{%
% Parameters for the Bezier curve.
 \dim@x=\cs@xa\unitlength \edef\ps@xa{\strip@PT\dim@x}%
 \dim@x=\cs@ya\unitlength \edef\ps@ya{\strip@PT\dim@x}%
 \dim@x=\cs@xb\unitlength \edef\ps@xb{\strip@PT\dim@x}%
 \dim@x=\cs@yb\unitlength \edef\ps@yb{\strip@PT\dim@x}%
 \dim@x=\cs@xc\unitlength \edef\ps@xc{\strip@PT\dim@x}%
 \dim@x=\cs@yc\unitlength \edef\ps@yc{\strip@PT\dim@x}%
 \dim@x=\cs@xd\unitlength \edef\ps@xd{\strip@PT\dim@x}%
 \dim@x=\cs@yd\unitlength \edef\ps@yd{\strip@PT\dim@x}%
 \put(0,0){\special{" \gas@initps \line@color
% Path around starting node
   \csname node@#1@path\endcsname /path!a false upath cvlit def
% Path around ending node
   \csname node@#2@path\endcsname /path!b false upath cvlit def
% The curve
       \gas@ATparam \gas@AHparam
       \ps@xa \ps@ya \ps@xb \ps@yb \ps@xc \ps@yc \ps@xd \ps@yd !ps_r_cbezier
 }}
% Coordinates (\cs@x,\cs@y) and slope (\cs@deltax,\cs@deltay) at the
% point of the curve defined by the parameter label@pos.
 \def\@N{100}%
% coefficients of the polynomial x(t)
 \setcounter{cnt@a}{\cs@xd-\cs@xa+3*(\cs@xb-\cs@xc)}\edef\@A{\thecnt@a}%
 \setcounter{cnt@a}{3*(\cs@xa+\cs@xc-2*\cs@xb)}\edef\@B{\thecnt@a}%
 \setcounter{cnt@a}{3*(\cs@xb-\cs@xa)}\edef\@C{\thecnt@a}%
% computation of \cs@x and \cs@deltax
 \setcounter{cnt@a}{((\@A*\EL@p/\@N+\@B)*\EL@p/\@N+\@C)*\EL@p/\@N+\cs@xa}
 \edef\cs@x{\thecnt@a}%
 \setcounter{cnt@a}{(3*\@A*\EL@p/\@N+2*\@B)*\EL@p/\@N+\@C}
 \edef\cs@deltax{\thecnt@a}%
% coefficients of the polynomial y(t)
 \setcounter{cnt@a}{\cs@yd-\cs@ya+3*(\cs@yb-\cs@yc)}\edef\@A{\thecnt@a}%
 \setcounter{cnt@a}{3*(\cs@ya+\cs@yc-2*\cs@yb)}\edef\@B{\thecnt@a}%
 \setcounter{cnt@a}{3*(\cs@yb-\cs@ya)}\edef\@C{\thecnt@a}%
% computation of \cs@y and \cs@deltay
 \setcounter{cnt@a}{((\@A*\EL@p/\@N+\@B)*\EL@p/\@N+\@C)*\EL@p/\@N+\cs@ya}
 \edef\cs@y{\thecnt@a}%
 \setcounter{cnt@a}{(3*\@A*\EL@p/\@N+2*\@B)*\EL@p/\@N+\@C}
 \edef\cs@deltay{\thecnt@a}%
% Computation of sqrt(\cs@deltax^2+\cs@deltay^2).
 \setcounter{cnt@c}{\cs@deltax*\cs@deltax+\cs@deltay*\cs@deltay}
 \gas@sqrt{\thecnt@c}
 \ifnum\the@sqrt=0\def\the@sqrt{1}\fi
% Label of the edge.
% Computation of the shift from C to the center of the label.
 \if@ELdistC
   \setcounter{cnt@c}{\EL@dist}
 \else
   \setbox\temp@box\hbox{\selectfont #3}
   \setcounter{cnt@a}{\wd\temp@box / \d@my@unit * \cs@deltay}
   \ifnum\thecnt@a<0 \setcounter{cnt@a}{-\thecnt@a} \fi
   \setcounter{cnt@c}{(\ht\temp@box+\dp\temp@box) / \d@my@unit * \cs@deltax}
   \ifnum\thecnt@c<0 \setcounter{cnt@c}{-\thecnt@c} \fi
   \setcounter{cnt@c}{(\thecnt@c+\thecnt@a) / \the@sqrt / 2 + \EL@dist}
 \fi
 \if r\EL@s
   \setcounter{cnt@a}{\cs@x + \cs@deltay * \thecnt@c / \the@sqrt}
   \setcounter{cnt@b}{\cs@y - \cs@deltax * \thecnt@c / \the@sqrt}
 \else
   \setcounter{cnt@a}{\cs@x - \cs@deltay * \thecnt@c / \the@sqrt}
   \setcounter{cnt@b}{\cs@y + \cs@deltax * \thecnt@c / \the@sqrt}
 \fi
% Shifting point C and drawing the label.
 \put(\thecnt@a,\thecnt@b){\makebox(0,0){\selectfont #3}}
}}

%-----------------------------------------------------------------------
% Compute the lower interger part of the square root of
% (the absolute value of) its argument.
% The result is obtained with \the@sqrt.
% We use Heron's method which converges quickly.
\newcounter{cnt@@a}\newcounter{cnt@@b}\newcounter{cnt@@c}
\def\gas@sqrt#1{%
 \ifnum#1<0\setcounter{cnt@@a}{-#1}\else\setcounter{cnt@@a}{#1}\fi
 \ifnum\thecnt@@a>1
   \setcounter{cnt@@b}{\thecnt@@a}
   \setcounter{cnt@@c}{(\thecnt@@a+1)/2}
       \@whilenum\thecnt@@b>\thecnt@@c\do{
     \setcounter{cnt@@b}{\thecnt@@c}
     \setcounter{cnt@@c}{(\thecnt@@b+\thecnt@@a/\thecnt@@b)/2}}
       \edef\the@sqrt{\thecnt@@b}
 \else
       \edef\the@sqrt{\thecnt@@a}
 \fi
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Compatibility with gastex v1.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Should be called inside the scope of a group
%
%   {\compatiblegastexun ... }
%
% The macros \drawloop and \drawedge are redefined to match the old
% ones (v1.0) hence the new ones (v2.0) cannot be used inside the scope
% of \compatiblegastexun.
%
% The compatibility is almost 100%:
% - the following are ignored
%   \setmaxbezier
%   The optional argument of letstate defining the repeated state diameter
% - \settransdecal, \setedgedecal give curved edges
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\compatiblegastexun{
%-----------------------------------------------------------------------
% Definitions
%-----------------------------------------------------------------------
 \unitlength=4pt
 \d@my@unit= 2048sp % =1/32 pt ~= 0.011 mm
 \gasset{AHnb=1,AHangle=20}
 \def\AH@L{\strip@PT\@wholewidth 9 mul }
 \def\AH@l{\strip@PT\@wholewidth 9 mul 20 cos mul }
 \def\line@width{\strip@PT\@wholewidth}
%
 \def\setstatediam##1{\gasset{Nw=##1,Nh=##1,Nmr=##1}}
 \def\setvertexdiam{\setstatediam}
 \setstatediam{6}
%
 \def\setrepeatedstatediam##1{%
   \setcounter{cnt@a}{1*\ratio{##1\unitlength}{\d@my@unit}}
   \edef\repeated@diam{\thecnt@a}}%
 \setrepeatedstatediam{5}
%
 \def\setloopdiam##1{\gasset{loopdiam=##1}}%
 \setloopdiam{6}
%
 \def\settranslabelskip##1{\gasset{ELdist=##1}}%
 \def\setedgelabelskip##1{\gasset{ELdist=##1}}
 \settranslabelskip{1}
%
 \def\setprofcurve##1{%
   \setcounter{cnt@a}{1*\ratio{##1\unitlength}{\d@my@unit}}
   \edef\prof@curve{\thecnt@a}}%
 \setprofcurve{3}
%
 \def\settransdecal##1{%
   \setcounter{cnt@a}{1*\ratio{##1\unitlength}{\d@my@unit}}
   \edef\trans@decal{\thecnt@a}}%
 \settransdecal{0}
 \def\setedgedecal{\settransdecal}
%
 \def\setmaxbezier##1{}
 \def\setnbptbezier##1{} % compatibilite version 0.3
 \def\setprecision##1{} % compatibilite version 0.3
%
 \def\setpsdash{\@ifnextchar[{\i@setpsdash}{\i@setpsdash[0]}}
 \def\i@setpsdash[##1](##2){%
       \dim@y=\unitlength \unitlength=1pt
   \gasset@@dash{0 ##2}{##1}
       \unitlength=\dim@y
       \def\ps@dash{[##2] ##1\space}}%
 \setpsdash() % continuous path
%
 \def\pcolor{}
 \def\pictcolor##1##2{}
%
 \def\setpsgray##1{\gasset{linegray=##1,fillgray=##1}}%
 \setpsgray{0} % black
%-----------------------------------------------------------------------
% States
%-----------------------------------------------------------------------
 \def\letstate{\@ifnextchar[{\i@letstate}{\ii@letstate}}%
 \def\i@letstate[##1,##2] ##3=(##4,##5){{%
   \gasset{Nw=##1,Nh=##1,Nmr=##1}
   \let@node(##3)(##4,##5){}}}
 \def\ii@letstate ##1=(##2,##3){%
   \let@node(##1)(##2,##3){}}
 \def\letvertex{\@ifnextchar[{\i@letvertex}{\ii@letstate}}%
 \def\i@letvertex[##1] ##2=(##3,##4){{%
   \gasset{Nw=##1,Nh=##1,Nmr=##1}
   \let@node(##2)(##3,##4){}}}
%
 \def\drawstate(##1)##2{{\gasset{Nfill=n}\draw@node(##1){##2}}}%
 \def\drawvertex(##1)##2{{\gasset{Nfill=n,Nframe=n}\draw@node(##1){##2}}}%
 \def\drawcircledvertex{\drawstate}%
%
 \def\drawinitialstate{%
   \@ifnextchar[{\@idrawinitialstate}{\@idrawinitialstate[l]}}
 \def\@idrawinitialstate[##1](##2)##3{{%
   \gasset{Nfill=n}\draw@node(##2){##3}
   \setcounter{cnt@a}{\N@w*\ratio{\d@my@unit}{\unitlength}/2}
   \if##1l \imark[iangle=180,ilength=\thecnt@a](##2) \fi
   \if##1r \imark[iangle=  0,ilength=\thecnt@a](##2) \fi
   \if##1t \imark[iangle= 90,ilength=\thecnt@a](##2) \fi
   \if##1b \imark[iangle=-90,ilength=\thecnt@a](##2) \fi}}
%
 \def\drawfinalstate{%
   \@ifnextchar[{\@idrawfinalstate}{\@idrawfinalstate[r]}}
 \def\@idrawfinalstate[##1](##2)##3{{%
   \gasset{Nfill=n}\draw@node(##2){##3}
   \setcounter{cnt@a}{\N@w*\ratio{\d@my@unit}{\unitlength}/2}
   \if##1l \fmark[fangle=180,flength=\thecnt@a](##2) \fi
   \if##1r \fmark[fangle=  0,flength=\thecnt@a](##2) \fi
   \if##1t \fmark[fangle= 90,flength=\thecnt@a](##2) \fi
   \if##1b \fmark[fangle=-90,flength=\thecnt@a](##2) \fi}}
%
 \def\drawrepeatedstate(##1)##2{{%
   \gasset{Nfill=n}\draw@node(##1){##2}
   \setcounter{cnt@a}{(\N@w-\repeated@diam)/2}
   \edef\rep@dist{\thecnt@a}%
   \rmark(##1)}}
%-----------------------------------------------------------------------
% Transitions
%-----------------------------------------------------------------------
 \let\gas@edge=\drawedge
 \def\drawtrans{\@ifnextchar[{\@idrawtrans}{\@idrawtrans[l]}}
 \def\@idrawtrans[##1](##2,##3)##4{%
   \setcounter{cnt@a}{\trans@decal*\ratio{\d@my@unit}{\unitlength}}
   \if##1r \gas@edge[ELside=r,curvedepth=\thecnt@a](##2,##3){##4}
   \else \if##1b \gas@edge[ELside=r,curvedepth=\thecnt@a](##2,##3){##4}
   \else \gas@edge[ELside=l,curvedepth=\thecnt@a](##2,##3){##4} \fi\fi}
 \def\drawedge{\drawtrans}
 \def\drawundirectededge##1(##2,##3)##4{%
   {\def\AH@nb{0 }\drawtrans##1(##2,##3){##4}}}
%
 \def\drawcurvedtrans{%
   \@ifnextchar[{\@idrawcurvedtrans}{\@idrawcurvedtrans[l]}}
 \def\@idrawcurvedtrans[##1](##2,##3)##4{%
   \setcounter{cnt@a}{\prof@curve*\ratio{\d@my@unit}{\unitlength}}
   \if##1r \gas@edge[ELside=r,curvedepth=\thecnt@a](##2,##3){##4}
   \else \if##1b \gas@edge[ELside=r,curvedepth=\thecnt@a](##2,##3){##4}
   \else \gas@edge[ELside=l,curvedepth=\thecnt@a](##2,##3){##4} \fi\fi}
 \def\drawcurvededge{\drawcurvedtrans}
 \def\drawundirectedcurvededge##1(##2,##3)##4{%
   {\def\AH@nb{0 }\drawcurvedtrans##1(##2,##3){##4}}}
%
 \def\drawqbeziertrans{%
   \@ifnextchar[{\@idrawqbeziertrans}{\@idrawqbeziertrans[l]}}
 \def\@idrawqbeziertrans[##1](##2)(##3,##4)(##5)##6{%
   \if##1r \drawqbedge[ELside=r](##2,##3,##4,##5){##6}
   \else \if##1b \drawqbedge[ELside=r](##2,##3,##4,##5){##6}
   \else \drawqbedge[ELside=l](##2,##3,##4,##5){##6} \fi\fi}
 \def\drawqbezieredge{\drawqbeziertrans}
 \def\drawundirectedqbezieredge##1(##2)(##3,##4)(##5)##6{%
   {\def\AH@nb{0 }\drawqbeziertrans##1(##2)(##3,##4)(##5){##6}}}
%
 \def\drawcbeziertrans{%
   \@ifnextchar[{\@idrawcbeziertrans}{\@idrawcbeziertrans[l]}}
 \def\@idrawcbeziertrans[##1](##2)(##3,##4)(##5,##6)(##7)##8{{%
   \if##1r \edef\EL@s{r}
   \else \if##1b \edef\EL@s{r}
   \else \edef\EL@s{l} \fi\fi
       \draw@bcedge(##2,##3,##4,##7,##5,##6){##8}
 }}
 \def\drawcbezieredge{\drawcbeziertrans}
 \def\drawundirectedcbezieredge##1(##2)(##3,##4)(##5,##6)(##7)##8{%
   {\def\AH@nb{0 }\drawcbeziertrans##1(##2)(##3,##4)(##5,##6)(##7){##8}}}
%
 \let\gas@loop=\drawloop
 \def\drawloop{\@ifnextchar[{\@idrawloop}{\@idrawloop[t]}}%
 \def\@idrawloop[##1](##2)##3{%
   \if##1l \gas@loop[loopangle=180](##2){##3} \fi
   \if##1r \gas@loop[loopangle=  0](##2){##3} \fi
   \if##1t \gas@loop[loopangle= 90](##2){##3} \fi
   \if##1b \gas@loop[loopangle=-90](##2){##3} \fi}
 \def\drawundirectedloop##1(##2)##3{%
   {\def\AH@nb{0 }\drawloop##1(##2){##3}}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Compatibility with pspictpg v0.6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Should be called inside the scope of a group
%
%   {\compatiblepspictpg ... }
%
% The macros \drawline and \drawcircle are redefined to match those of
% pspictpg hence thoses of GasTeX cannot be used inside the scope
% of \compatiblepspictpg.
%
% The following macros are ignored. Use linecolor and fillcolor instead.
% \pcolor, \pictcolor
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\compatiblepspictpg{
%
 \def\setpsdash{\@ifnextchar[{\i@setpsdash}{\i@setpsdash[0]}}
 \def\i@setpsdash[##1](##2){%
       \dim@y=\unitlength \unitlength=1pt
   \gasset@@dash{0 ##2}{##1}
       \unitlength=\dim@y
       \def\ps@dash{[##2] ##1\space}}%
 \setpsdash() % continuous path
%
 \def\pcolor{}
 \def\pictcolor##1##2{}
%
 \def\setpsgray##1{\gasset{linegray=##1,fillgray=##1}}%
 \setpsgray{0} % black
%
 % Redefinition of latex \line(a,b){L}.
 % Can be used with any values for a and b.
 \def\line(##1,##2)##3{{%
   \@xarg ##1\relax \@yarg ##2\relax
   \dim@x=##3\unitlength
   \special{" \gas@initps \line@color
     \the\@xarg\space \the\@yarg\space \strip@PT\dim@x !pslatexline}
 }}
%
 % Redefinition of latex \vector(a,b){L}.
 % Can be used with any values for a and b.
 \def\vector(##1,##2)##3{{%
   \@xarg ##1\relax \@yarg ##2\relax
   \dim@x=##3\unitlength
   \special{" \gas@initps \line@color \gas@ATnul \gas@AHparam
     \the\@xarg\space \the\@yarg\space \strip@PT\dim@x !pslatexvector}
 }}
%
 % redefinition of \circle of LaTeX
 % can be used with any diameter
 \def\circle{\@ifnextchar*{\@idisk}{\@icircle}}
 \def\@icircle##1{{%
   \dim@x=##1\unitlength
   \special{" \gas@initps \line@color
     \strip@PT\dim@x !pscircle}
 }}
 \def\@idisk*##1{{%
   \dim@x=##1\unitlength
   \special{" \gas@initps \fill@color
     \strip@PT\dim@x !psdisk}
 }}
%
 \def\drawline(##1,##2)(##3,##4){\begingroup%
   \setcounter{cnt@a}{0} \edef\ps@param{}%
   \process@drawlineopt[ATnb=0,AHnb=0](##1,##2)(##3,##4)}
 \def\drawvector(##1,##2)(##3,##4){\begingroup%
   \setcounter{cnt@a}{0} \edef\ps@param{}%
   \process@drawlineopt[ATnb=0,AHnb=1](##1,##2)(##3,##4)}
 \def\drawcircle(##1,##2)(##3){{%
   \gasset{Nframe=y,Nfill=n}\draw@circle(##1,##2,##3)}}
 \def\drawdisk(##1,##2)(##3){{%
   \gasset{Nframe=n,Nfill=y}\draw@circle(##1,##2,##3)}}
 \def\cbezier(##1,##2)(##3,##4)(##5,##6)(##7,##8){%
   \drawcbezier[ATnb=0,AHnb=0](##1,##2,##3,##4,##5,##6,##7,##8)}
 \def\cbeziervector(##1,##2)(##3,##4)(##5,##6)(##7,##8){%
   \drawcbezier[ATnb=0,AHnb=1](##1,##2,##3,##4,##5,##6,##7,##8)}
 \def\qbezier(##1,##2)(##3,##4)(##5,##6){%
   \drawqbezier[ATnb=0,AHnb=0](##1,##2,##3,##4,##5,##6)}
 \def\qbeziervector(##1,##2)(##3,##4)(##5,##6){%
   \drawqbezier[ATnb=0,AHnb=1](##1,##2,##3,##4,##5,##6)}
}

\endinput