#ifdef WEBGL2
#define IN in
out vec4 outValue;
#define OUTVALUE outValue
#else
#define IN varying
#define OUTVALUE gl_FragColor
#endif
#ifdef WEBGL2
flat in int MaterialIndex;
struct Material {
vec4 diffuse,emissive,specular;
vec4 parameters;
};
uniform Material Materials[Nmaterials];
vec4 diffuse;
vec3 specular;
float roughness,metallic,fresnel0;
vec4 emissive;
#ifdef COLOR
in vec4 Color;
#endif
#else
IN vec4 diffuse;
IN vec3 specular;
IN float roughness,metallic,fresnel0;
IN vec4 emissive;
#endif
#ifdef NORMAL
IN vec3 ViewPosition;
IN vec3 Normal;
vec3 normal;
struct Light {
vec3 direction;
vec3 color;
};
uniform Light Lights[Nlights];
#ifdef USE_IBL
uniform sampler2D reflBRDFSampler;
uniform sampler2D diffuseSampler;
uniform sampler2D reflImgSampler;
const float pi=acos(-1.0);
const float piInv=1.0/pi;
const float twopi=2.0*pi;
const float twopiInv=1.0/twopi;
// (x,y,z) -> (r,theta,phi);
// theta -> [0,pi]: colatitude
// phi -> [-pi,pi]: longitude
vec3 cart2sphere(vec3 cart)
{
float x=cart.x;
float y=cart.z;
float z=cart.y;
float r=length(cart);
float theta=r > 0.0 ? acos(z/r) : 0.0;
float phi=atan(y,x);
return vec3(r,theta,phi);
}
vec2 normalizedAngle(vec3 cartVec)
{
vec3 sphericalVec=cart2sphere(cartVec);
sphericalVec.y=sphericalVec.y*piInv;
sphericalVec.z=0.75-sphericalVec.z*twopiInv;
return sphericalVec.zy;
}
vec3 IBLColor(vec3 viewDir)
{
vec3 IBLDiffuse=diffuse.rgb*texture(diffuseSampler,normalizedAngle(normal)).rgb;
vec3 reflectVec=normalize(reflect(-viewDir,normal));
vec2 reflCoord=normalizedAngle(reflectVec);
vec3 IBLRefl=textureLod(reflImgSampler,reflCoord,roughness*ROUGHNESS_STEP_COUNT).rgb;
vec2 IBLbrdf=texture(reflBRDFSampler,vec2(dot(normal,viewDir),roughness)).rg;
float specularMultiplier=fresnel0*IBLbrdf.x+IBLbrdf.y;
vec3 dielectric=IBLDiffuse+specularMultiplier*IBLRefl;
vec3 metal=diffuse.rgb*IBLRefl;
return mix(dielectric,metal,metallic);
}
#else
float Roughness2;
float NDF_TRG(vec3 h)
{
float ndoth=max(dot(normal,h),0.0);
float alpha2=Roughness2*Roughness2;
float denom=ndoth*ndoth*(alpha2-1.0)+1.0;
return denom != 0.0 ? alpha2/(denom*denom) : 0.0;
}
float GGX_Geom(vec3 v)
{
float ndotv=max(dot(v,normal),0.0);
float ap=1.0+Roughness2;
float k=0.125*ap*ap;
return ndotv/((ndotv*(1.0-k))+k);
}
float Geom(vec3 v, vec3 l)
{
return GGX_Geom(v)*GGX_Geom(l);
}
float Fresnel(vec3 h, vec3 v, float fresnel0)
{
float a=1.0-max(dot(h,v),0.0);
float b=a*a;
return fresnel0+(1.0-fresnel0)*b*b*a;
}
// physical based shading using UE4 model.
vec3 BRDF(vec3 viewDirection, vec3 lightDirection)
{
vec3 lambertian=diffuse.rgb;
vec3 h=normalize(lightDirection+viewDirection);
float omegain=max(dot(viewDirection,normal),0.0);
float omegaln=max(dot(lightDirection,normal),0.0);
float D=NDF_TRG(h);
float G=Geom(viewDirection,lightDirection);
float F=Fresnel(h,viewDirection,fresnel0);
float denom=4.0*omegain*omegaln;
float rawReflectance=denom > 0.0 ? (D*G)/denom : 0.0;
vec3 dielectric=mix(lambertian,rawReflectance*specular,F);
vec3 metal=rawReflectance*diffuse.rgb;
return mix(dielectric,metal,metallic);
}
#endif
#endif
void main(void)
{
#ifdef WEBGL2
#ifdef NORMAL
Material m;
#ifdef TRANSPARENT
m=Materials[abs(MaterialIndex)-1];
emissive=m.emissive;
if(MaterialIndex >= 0)
diffuse=m.diffuse;
else {
diffuse=Color;
#if nlights == 0
emissive += Color;
#endif
}
#else
m=Materials[MaterialIndex];
emissive=m.emissive;
#ifdef COLOR
diffuse=Color;
#if nlights == 0
emissive += Color;
#endif
#else
diffuse=m.diffuse;
#endif // COLOR
#endif // TRANSPARENT
specular=m.specular.rgb;
vec4 parameters=m.parameters;
roughness=1.0-parameters[0];
metallic=parameters[1];
fresnel0=parameters[2];
#else
emissive=Materials[MaterialIndex].emissive;
#endif // NORMAL
#endif // WEBGL2
#if defined(NORMAL) && nlights > 0
normal=normalize(Normal);
normal=gl_FrontFacing ? normal : -normal;
vec3 viewDir=-normalize(ViewPosition);
vec3 color;
#ifdef USE_IBL
color=IBLColor(viewDir);
#else
Roughness2=roughness*roughness;
color=emissive.rgb;
for(int i=0; i < nlights; ++i) {
Light Li=Lights[i];
vec3 L=Li.direction;
float cosTheta=max(dot(normal,L),0.0);
vec3 radiance=cosTheta*Li.color;
color += BRDF(viewDir,L)*radiance;
}
#endif
OUTVALUE=vec4(color,diffuse.a);
#else
OUTVALUE=emissive;
#endif
}