/*
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
* GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States.  Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
/*
* Trackball code:
*
* Implementation of a virtual trackball.
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
*   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
*
* Vector manip code:
*
* Original code from:
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
*
* Much mucking with by:
* Gavin Bell
*/
#include <math.h>
#include "trackball.h"

/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse.  That
* point would then track the mouse as closely as possible.  This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
#define TRACKBALLSIZE  (0.8)

/*
* Local function prototypes (not defined in trackball.h)
*/
static float tb_project_to_sphere(float, float, float);
static void normalize_quat(float [4]);

void
vzero(float *v)
{
   v[0] = 0.0;
   v[1] = 0.0;
   v[2] = 0.0;
}

void
vset(float *v, float x, float y, float z)
{
   v[0] = x;
   v[1] = y;
   v[2] = z;
}

void
vsub(const float *src1, const float *src2, float *dst)
{
   dst[0] = src1[0] - src2[0];
   dst[1] = src1[1] - src2[1];
   dst[2] = src1[2] - src2[2];
}

void
vcopy(const float *v1, float *v2)
{
   register int i;
   for (i = 0 ; i < 3 ; i++)
       v2[i] = v1[i];
}

void
vcross(const float *v1, const float *v2, float *cross)
{
   float temp[3];

   temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
   temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
   temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
   vcopy(temp, cross);
}

float
vlength(const float *v)
{
   return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}

void
vscale(float *v, float div)
{
   v[0] *= div;
   v[1] *= div;
   v[2] *= div;
}

void
vnormal(float *v)
{
   vscale(v,1.0/vlength(v));
}

float
vdot(const float *v1, const float *v2)
{
   return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

void
vadd(const float *src1, const float *src2, float *dst)
{
   dst[0] = src1[0] + src2[0];
   dst[1] = src1[1] + src2[1];
   dst[2] = src1[2] + src2[2];
}

/*
* Ok, simulate a track-ball.  Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note:  This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center.  This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void
trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
{
   float a[3]; /* Axis of rotation */
   float phi;  /* how much to rotate about axis */
   float p1[3], p2[3], d[3];
   float t;

   if (p1x == p2x && p1y == p2y) {
       /* Zero rotation */
       vzero(q);
       q[3] = 1.0;
       return;
   }

   /*
    * First, figure out z-coordinates for projection of P1 and P2 to
    * deformed sphere
    */
   vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
   vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));

   /*
    *  Now, we want the cross product of P1 and P2
    */
   vcross(p2,p1,a);

   /*
    *  Figure out how much to rotate around that axis.
    */
   vsub(p1,p2,d);
   t = vlength(d) / (2.0*TRACKBALLSIZE);

   /*
    * Avoid problems with out-of-control values...
    */
   if (t > 1.0) t = 1.0;
   if (t < -1.0) t = -1.0;
   phi = 2.0 * asin(t);

   axis_to_quat(a,phi,q);
}

/*
*  Given an axis and angle, compute quaternion.
*/
void
axis_to_quat(float a[3], float phi, float q[4])
{
   vnormal(a);
   vcopy(a,q);
   vscale(q,sin(phi/2.0));
   q[3] = cos(phi/2.0);
}

/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
static float
tb_project_to_sphere(float r, float x, float y)
{
   float d, t, z;

   d = sqrt(x*x + y*y);
   if (d < r * 0.70710678118654752440) {    /* Inside sphere */
       z = sqrt(r*r - d*d);
   } else {           /* On hyperbola */
       t = r / 1.41421356237309504880;
       z = t*t / d;
   }
   return z;
}

/*
* Given two rotations, e1 and e2, expressed as quaternion rotations,
* figure out the equivalent single rotation and stuff it into dest.
*
* This routine also normalizes the result every RENORMCOUNT times it is
* called, to keep error from creeping in.
*
* NOTE: This routine is written so that q1 or q2 may be the same
* as dest (or each other).
*/

#define RENORMCOUNT 97

void
add_quats(float q1[4], float q2[4], float dest[4])
{
   static int count=0;
   float t1[4], t2[4], t3[4];
   float tf[4];

   vcopy(q1,t1);
   vscale(t1,q2[3]);

   vcopy(q2,t2);
   vscale(t2,q1[3]);

   vcross(q2,q1,t3);
   vadd(t1,t2,tf);
   vadd(t3,tf,tf);
   tf[3] = q1[3] * q2[3] - vdot(q1,q2);

   dest[0] = tf[0];
   dest[1] = tf[1];
   dest[2] = tf[2];
   dest[3] = tf[3];

   if (++count > RENORMCOUNT) {
       count = 0;
       normalize_quat(dest);
   }
}

/*
* Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
* If they don't add up to 1.0, dividing by their magnitued will
* renormalize them.
*
* Note: See the following for more information on quaternions:
*
* - Shoemake, K., Animating rotation with quaternion curves, Computer
*   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
*   graphics, The Visual Computer 5, 2-13, 1989.
*/
static void
normalize_quat(float q[4])
{
   int i;
   float mag;

   mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
   for (i = 0; i < 4; i++) q[i] /= mag;
}

/*
* Build a rotation matrix, given a quaternion rotation.
*
*/
void
build_rotmatrix(float m[4][4], float q[4])
{
   m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
   m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
   m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
   m[0][3] = 0.0;

   m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
   m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
   m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
   m[1][3] = 0.0;

   m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
   m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
   m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
   m[2][3] = 0.0;

   m[3][0] = 0.0;
   m[3][1] = 0.0;
   m[3][2] = 0.0;
   m[3][3] = 1.0;
}