/*****
* runpath.in
*
* Runtime functions for path operations.
*
*****/

pen      => primPen()
pair     => primPair()
path     => primPath()
transform => primTransform()
realarray* => realArray()
realarray2* => realArray2()
patharray* => pathArray()
penarray* => penArray()

#include "path.h"
#include "arrayop.h"
#include "predicates.h"

using namespace camp;
using namespace vm;

typedef array realarray;
typedef array realarray2;
typedef array patharray;

using types::realArray;
using types::realArray2;
using types::pathArray;

Int windingnumber(array *p, camp::pair z)
{
 size_t size=checkArray(p);
 Int count=0;
 for(size_t i=0; i < size; i++)
   count += read<path *>(p,i)->windingnumber(z);
 return count;
}

// Autogenerated routines:


path :nullPath()
{
 return nullpath;
}

bool ==(path a, path b)
{
 return a == b;
}

bool !=(path a, path b)
{
 return !(a == b);
}

pair point(path p, Int t)
{
 return p.point((Int) t);
}

pair point(path p, real t)
{
 return p.point(t);
}

pair precontrol(path p, Int t)
{
 return p.precontrol((Int) t);
}

pair precontrol(path p, real t)
{
 return p.precontrol(t);
}

pair postcontrol(path p, Int t)
{
 return p.postcontrol((Int) t);
}

pair postcontrol(path p, real t)
{
 return p.postcontrol(t);
}

pair dir(path p, Int t, Int sign=0, bool normalize=true)
{
 return p.dir(t,sign,normalize);
}

pair dir(path p, real t, bool normalize=true)
{
 return p.dir(t,normalize);
}

pair accel(path p, Int t, Int sign=0)
{
 return p.accel(t,sign);
}

pair accel(path p, real t)
{
 return p.accel(t);
}

real radius(path p, real t)
{
 pair v=p.dir(t,false);
 pair a=p.accel(t);
 real d=dot(a,v);
 real v2=v.abs2();
 real a2=a.abs2();
 real denom=v2*a2-d*d;
 real r=v2*sqrt(v2);
 return denom > 0 ? r/sqrt(denom) : 0.0;
}

path reverse(path p)
{
 return p.reverse();
}

path subpath(path p, Int a, Int b)
{
 return p.subpath((Int) a, (Int) b);
}

path subpath(path p, real a, real b)
{
 return p.subpath(a,b);
}

path nurb(pair z0, pair z1, pair z2, pair z3,
         real w0, real w1, real w2, real w3, Int m)
{
 return nurb(z0,z1,z2,z3,w0,w1,w2,w3,m);
}

Int length(path p)
{
 return p.length();
}

bool cyclic(path p)
{
 return p.cyclic();
}

bool straight(path p, Int t)
{
 return p.straight(t);
}

path unstraighten(path p)
{
 return p.unstraighten();
}

bool piecewisestraight(path p)
{
 return p.piecewisestraight();
}

real arclength(path p)
{
 return p.arclength();
}

real arclength(pair z0, pair c0, pair c1, pair z1)
{
 return arcLength(z0,c0,c1,z1);
}

real arctime(path p, real L)
{
 return p.arctime(L);
}

real dirtime(path p, pair z)
{
 return p.directiontime(z);
}

realarray* intersect(path p, path q, real fuzz=-1)
{
 bool exact=fuzz <= 0.0;
 if(fuzz < 0)
   fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
                      ::max(length(q.max()),length(q.min())));
 std::vector<real> S,T;
 real s,t;
 if(intersections(s,t,S,T,p,q,fuzz,true,exact)) {
   array *V=new array(2);
   (*V)[0]=s;
   (*V)[1]=t;
   return V;
 }
 return new array(0);
}

realarray2* intersections(path p, path q, real fuzz=-1)
{
 bool exact=fuzz <= 0.0;
 if(fuzz < 0.0)
   fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
                      ::max(length(q.max()),length(q.min())));
 real s,t;
 std::vector<real> S,T;
 intersections(s,t,S,T,p,q,fuzz,false,true);
 size_t n=S.size();
 if(n == 0 && !exact) {
   if(intersections(s,t,S,T,p,q,fuzz,true,false)) {
     array *V=new array(1);
     array *Vi=new array(2);
     (*V)[0]=Vi;
     (*Vi)[0]=s;
     (*Vi)[1]=t;
     return V;
   }
 }
 array *V=new array(n);
 for(size_t i=0; i < n; ++i) {
   array *Vi=new array(2);
   (*V)[i]=Vi;
   (*Vi)[0]=S[i];
   (*Vi)[1]=T[i];
 }
 stable_sort(V->begin(),V->end(),run::compare2<real>());
 return V;
}

realarray* intersections(path p, explicit pair a, explicit pair b, real fuzz=-1)
{
 if(fuzz < 0)
   fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
                      ::max(length(a),length(b)));
 std::vector<real> S;
 intersections(S,p,a,b,fuzz);
 sort(S.begin(),S.end());
 size_t n=S.size();
 array *V=new array(n);
 for(size_t i=0; i < n; ++i)
   (*V)[i]=S[i];
 return V;
}

// Return the intersection point of the extensions of the line segments
// PQ and pq.
pair extension(pair P, pair Q, pair p, pair q)
{
 pair ac=P-Q;
 pair bd=q-p;
 real det=ac.getx()*bd.gety()-ac.gety()*bd.getx();
 if(det == 0) return pair(infinity,infinity);
 return P+((p.getx()-P.getx())*bd.gety()-(p.gety()-P.gety())*bd.getx())*ac/det;
}

Int size(path p)
{
 return p.size();
}

path &(path p, path q)
{
 return camp::concat(p,q);
}

pair min(explicit path p)
{
 return p.min();
}

pair max(explicit path p)
{
 return p.max();
}

Int size(patharray *p)
{
 size_t size=checkArray(p);
 Int count=0;
 for (size_t i = 0; i < size; i++)
   count += read<path *>(p,i)->size();
 return count;
}

pair min(patharray *p)
{
 size_t size=checkArray(p);

 if(size == 0)
   error(nopoints);

 path *g = p->read<path *>(0);
 pair z = g->min();
 double minx = z.getx(), miny = z.gety();

 for (size_t i = 1; i < size; ++i) {
   path *g = p->read<path *>(i);
   pair z = g->min();
   double x = z.getx(), y = z.gety();
   if (x < minx)
     minx = x;
   if (y < miny)
     miny = y;
 }

 return pair(minx, miny);
}

pair max(patharray *p)
{
 size_t size=checkArray(p);

 if(size == 0)
   error(nopoints);

 path *g = p->read<path *>(0);
 pair z = g->max();
 double maxx = z.getx(), maxy = z.gety();

 for (size_t i = 1; i < size; ++i) {
   path *g = p->read<path *>(i);
   pair z = g->max();
   double x = z.getx(), y = z.gety();
   if (x > maxx)
     maxx = x;
   if (y > maxy)
     maxy = y;
 }

 return pair(maxx, maxy);
}

pair minAfterTransform(transform t, patharray *p)
{
 size_t size=checkArray(p);

 if(size == 0)
   error(nopoints);

 path g = p->read<path *>(0)->transformed(t);
 pair z = g.min();
 double minx = z.getx(), miny = z.gety();

 for (size_t i = 1; i < size; ++i) {
   path g = p->read<path *>(i)->transformed(t);
   pair z = g.min();
   double x = z.getx(), y = z.gety();
   if (x < minx)
     minx = x;
   if (y < miny)
     miny = y;
 }

 return pair(minx, miny);
}

pair maxAfterTransform(transform t, patharray *p)
{
 size_t size=checkArray(p);

 if(size == 0)
   error(nopoints);

 path g = p->read<path *>(0)->transformed(t);
 pair z = g.max();
 double maxx = z.getx(), maxy = z.gety();

 for (size_t i = 1; i < size; ++i) {
   path g = p->read<path *>(i)->transformed(t);
   pair z = g.max();
   double x = z.getx(), y = z.gety();
   if (x > maxx)
     maxx = x;
   if (y > maxy)
     maxy = y;
 }

 return pair(maxx, maxy);
}

realarray *mintimes(path p)
{
 array *V=new array(2);
 pair z=p.mintimes();
 (*V)[0]=z.getx();
 (*V)[1]=z.gety();
 return V;
}

realarray *maxtimes(path p)
{
 array *V=new array(2);
 pair z=p.maxtimes();
 (*V)[0]=z.getx();
 (*V)[1]=z.gety();
 return V;
}

real relativedistance(real theta, real phi, real t, bool atleast)
{
 return camp::velocity(theta,phi,tension(t,atleast));
}

Int windingnumber(patharray *p, pair z)
{
 return windingnumber(p,z);
}

bool inside(explicit patharray *g, pair z, pen fillrule=CURRENTPEN)
{
 return fillrule.inside(windingnumber(g,z));
}

bool inside(path g, pair z, pen fillrule=CURRENTPEN)
{
 return fillrule.inside(g.windingnumber(z));
}

// Return a positive (negative) value if a--b--c--cycle is oriented
// counterclockwise (clockwise) or zero if all three points are colinear.
// Equivalently, return a positive (negative) value if c lies to the
// left (right) of the line through a and b or zero if c lies on this line.
// The value returned is the determinant
// |a.x a.y 1|
// |b.x b.y 1|
// |c.x c.y 1|
//
real orient(pair a, pair b, pair c)
{
 return orient2d(a,b,c);
}

// Return a positive (negative) value if d lies inside (outside)
// the circle passing through the counterclockwise-oriented points a,b,c
// or zero if d lies on this circle.
// The value returned is the determinant
// |a.x a.y a.x^2+a.y^2 1|
// |b.x b.y b.x^2+b.y^2 1|
// |c.x c.y c.x^2+c.y^2 1|
// |d.x d.y d.x^2+d.y^2 1|
real incircle(pair a, pair b, pair c, pair d)
{
 return incircle(a.getx(),a.gety(),b.getx(),b.gety(),c.getx(),c.gety(),
                 d.getx(),d.gety());
}