/*****
* runarray.in
*
* Runtime functions for array operations.
*
*****/

pair     => primPair()
triple   => primTriple()
boolarray* => booleanArray()
Intarray*  => IntArray()
Intarray2*  => IntArray2()
realarray* => realArray()
realarray2* => realArray2()
realarray3* => realArray3()
pairarray* => pairArray()
pairarray2* => pairArray2()
pairarray3* => pairArray3()
triplearray2* => tripleArray2()
callableReal* => realRealFunction()


#include "array.h"
#include "arrayop.h"
#include "triple.h"
#include "path3.h"
#include "Delaunay.h"
#include "glrender.h"

#ifdef HAVE_LIBFFTW3
#include "fftw++.h"
 static const char *rectangular="matrix must be rectangular";
#else
static const char *installFFTW=
 "Please install fftw3, then ./configure; make";
#endif

#ifdef HAVE_EIGEN_DENSE
#include <Eigen/Dense>
typedef std::complex<double> Complex;
static const char *square="matrix must be square";
using Eigen::MatrixXd;
using Eigen::MatrixXcd;
using Eigen::RealSchur;
using Eigen::ComplexSchur;
#else
static const char *installEIGEN=
 "Please install eigen3, then ./configure; make";
#endif

using namespace camp;
using namespace vm;

namespace run {
extern pair zero;
}

typedef array boolarray;
typedef array Intarray;
typedef array Intarray2;
typedef array realarray;
typedef array realarray2;
typedef array realarray3;
typedef array pairarray;
typedef array pairarray2;
typedef array pairarray3;
typedef array triplearray2;

using types::booleanArray;
using types::IntArray;
using types::IntArray2;
using types::realArray;
using types::realArray2;
using types::realArray3;
using types::pairArray;
using types::pairArray2;
using types::pairArray3;
using types::tripleArray2;

typedef callable callableReal;

void outOfBounds(const char *op, size_t len, Int n)
{
 ostringstream buf;
 buf << op << " array of length " << len << " with out-of-bounds index " << n;
 error(buf);
}

inline item& arrayRead(array *a, Int n)
{
 size_t len=checkArray(a);
 bool cyclic=a->cyclic();
 if(cyclic && len > 0) n=imod(n,len);
 else if(n < 0 || n >= (Int) len) outOfBounds("reading",len,n);
 return (*a)[(unsigned) n];
}

// Helper function to create deep arrays.
static array* deepArray(Int depth, Int *dims)
{
 assert(depth > 0);

 if (depth == 1) {
   return new array(dims[0]);
 } else {
   Int length = dims[0];
   depth--; dims++;

   array *a = new array(length);

   for (Int index = 0; index < length; index++) {
     (*a)[index] = deepArray(depth, dims);
   }
   return a;
 }
}

namespace run {
array *Identity(Int n)
{
 size_t N=(size_t) n;
 array *c=new array(N);
 for(size_t i=0; i < N; ++i) {
   array *ci=new array(N);
   (*c)[i]=ci;
   for(size_t j=0; j < N; ++j)
     (*ci)[j]=0.0;
   (*ci)[i]=1.0;
 }
 return c;
}
}

static const char *incommensurate="Incommensurate matrices";
static const char *singular="Singular matrix";
static const char *invalidarraylength="Invalid array length: ";

static size_t *pivot,*Row,*Col;

bound_double *bounddouble(int N)
{
 if(N == 16) return bound;
 if(N == 10) return boundtri;
 ostringstream buf;
 buf << invalidarraylength << " " << N;
 error(buf);
 return NULL;
}

bound_triple *boundtriple(int N)
{
 if(N == 16) return bound;
 if(N == 10) return boundtri;
 ostringstream buf;
 buf << invalidarraylength << " " << N;
 error(buf);
 return NULL;
}

static inline void inverseAllocate(size_t n)
{
 pivot=new size_t[n];
 Row=new size_t[n];
 Col=new size_t[n];
}

static inline void inverseDeallocate()
{
 delete[] pivot;
 delete[] Row;
 delete[] Col;
}

namespace run {

array *copyArray(array *a)
{
 size_t size=checkArray(a);
 array *c=new array(size);
 for(size_t i=0; i < size; i++)
   (*c)[i]=(*a)[i];
 return c;
}

array *copyArray2(array *a)
{
 size_t size=checkArray(a);
 array *c=new array(size);
 for(size_t i=0; i < size; i++) {
   array *ai=read<array*>(a,i);
   size_t aisize=checkArray(ai);
   array *ci=new array(aisize);
   (*c)[i]=ci;
   for(size_t j=0; j < aisize; j++)
     (*ci)[j]=(*ai)[j];
 }
 return c;
}

double *copyTripleArray2Components(array *a, size_t &N, GCPlacement placement)
{
 size_t n=checkArray(a);
 N=0;
 for(size_t i=0; i < n; i++)
   N += checkArray(read<array*>(a,i));

 double *A=(placement == NoGC) ? new double [3*N] :
   new(placement) double[3*N];
 double *p=A;

 for(size_t i=0; i < n; i++) {
   array *ai=read<array*>(a,i);
   size_t m=checkArray(ai);
   for(size_t j=0; j < m; j++) {
     triple v=read<triple>(ai,j);
     *p=v.getx();
     *(p+N)=v.gety();
     *(p+2*N)=v.getz();
     ++p;
   }
 }
 return A;
}

triple *copyTripleArray2C(array *a, size_t &N, GCPlacement placement)
{
 size_t n=checkArray(a);
 N=0;
 for(size_t i=0; i < n; i++)
   N += checkArray(read<array*>(a,i));

 triple *A=(placement == NoGC) ? new triple [N] :
   new(placement) triple[N];
 triple *p=A;

 for(size_t i=0; i < n; i++) {
   array *ai=read<array*>(a,i);
   size_t m=checkArray(ai);
   for(size_t j=0; j < m; j++)
     *(p++)=read<triple>(ai,j);
 }
 return A;
}

triple operator *(const array& t, const triple& v)
{
 size_t n=checkArray(&t);
 if(n != 4) error(incommensurate);
 array *t0=read<array*>(t,0);
 array *t1=read<array*>(t,1);
 array *t2=read<array*>(t,2);
 array *t3=read<array*>(t,3);

 if(checkArray(t0) != 4 || checkArray(t1) != 4 ||
    checkArray(t2) != 4 || checkArray(t3) != 4)
   error(incommensurate);

 double x=v.getx();
 double y=v.gety();
 double z=v.getz();

 double f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
   read<real>(t3,3);
 if(f == 0.0) run::dividebyzero();
 f=1.0/f;

 return triple((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
                read<real>(t0,3))*f,
               (read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
                read<real>(t1,3))*f,
               (read<real>(t2,0)*x+read<real>(t2,1)*y+read<real>(t2,2)*z+
                read<real>(t2,3))*f);
}

template<class T>
array *mult(array *a, array *b)
{
 size_t n=checkArray(a);

 size_t nb=checkArray(b);
 size_t na0=n == 0 ? 0 : checkArray(read<array*>(a,0));
 if(na0 != nb)
   error(incommensurate);

 size_t nb0=nb == 0 ? 0 : checkArray(read<array*>(b,0));

 array *c=new array(n);

 T *A,*B;
 copyArray2C(A,a,false);
 copyArray2C(B,b,false);

 for(size_t i=0; i < n; ++i) {
   T *Ai=A+i*nb;
   array *ci=new array(nb0);
   (*c)[i]=ci;
   for(size_t j=0; j < nb0; ++j) {
     T sum=T();
     size_t kj=j;
     for(size_t k=0; k < nb; ++k, kj += nb0)
       sum += Ai[k]*B[kj];
     (*ci)[j]=sum;
   }
 }

 delete[] B;
 delete[] A;

 return c;
}

// Compute transpose(A)*A where A is an n x m matrix.
template<class T>
array *AtA(array *a)
{
 size_t n=checkArray(a);
 size_t m=n == 0 ? 0 : checkArray(read<array*>(a,0));

 array *c=new array(m);

 T *A;
 copyArray2C(A,a,false);

 for(size_t i=0; i < m; ++i) {
   array *ci=new array(m);
   (*c)[i]=ci;
   for(size_t j=0; j < m; ++j) {
     T sum=T();
     size_t kj=j;
     size_t ki=i;
     for(size_t k=0; k < n; ++k, kj += m, ki += m)
       sum += A[ki]*A[kj];
     (*ci)[j]=sum;
   }
 }

 delete[] A;
 return c;
}

double norm(double *a, size_t n)
{
 if(n == 0) return 0.0;
 double M=fabs(a[0]);
 for(size_t i=1; i < n; ++i)
   M=::max(M,fabs(a[i]));
 return M;
}

double norm(triple *a, size_t n)
{
 if(n == 0) return 0.0;
 double M=a[0].abs2();
 for(size_t i=1; i < n; ++i)
   M=::max(M,a[i].abs2());
 return sqrt(M);
}

// Transpose an n x n matrix in place.
void transpose(double *a, size_t n)
{
 for(size_t i=1; i < n; i++) {
   for(size_t j=0; j < i; j++) {
     size_t ij=n*i+j;
     size_t ji=n*j+i;
     double temp=a[ij];
     a[ij]=a[ji];
     a[ji]=temp;
   }
 }
}

// Invert an n x n array in place.
void inverse(double *M, size_t n)
{
 if(n == 2) {
   real a=M[0];
   real b=M[1];
   real c=M[2];
   real d=M[3];
   real det=a*d-b*c;
   if(det == 0.0)
     error(singular);
   det=1.0/det;
   M[0]=d*det;
   M[1]=-b*det;
   M[2]=-c*det;
   M[3]=a*det;
   return;
 }

 if(n == 3) {
   real a=M[0], b=M[1], c=M[2];
   real d=M[3], e=M[4], f=M[5];
   real g=M[6], h=M[7], i=M[8];

   real A=e*i-f*h;
   real B=f*g-d*i;
   real C=d*h-e*g;

   real det=a*A+b*B+c*C;
   if(det == 0.0)
     error(singular);
   det=1.0/det;

   M[0]=A*det; M[1]=(c*h-b*i)*det; M[2]=(b*f-c*e)*det;
   M[3]=B*det; M[4]=(a*i-c*g)*det; M[5]=(c*d-a*f)*det;
   M[6]=C*det; M[7]=(b*g-a*h)*det; M[8]=(a*e-b*d)*det;
   return;
 }

 inverseAllocate(n);

 for(size_t i=0; i < n; i++)
   pivot[i]=0;

 size_t col=0, row=0;
 // This is the main loop over the columns to be reduced.
 for(size_t i=0; i < n; i++) {
   real big=0.0;
   // This is the outer loop of the search for a pivot element.
   for(size_t j=0; j < n; j++) {
     double *aj=M+n*j;
     if(pivot[j] != 1) {
       for(size_t k=0; k < n; k++) {
         if(pivot[k] == 0) {
           real temp=fabs(aj[k]);
           if(temp >= big) {
             big=temp;
             row=j;
             col=k;
           }
         } else if(pivot[k] > 1) {
           inverseDeallocate();
           error(singular);
         }
       }
     }
   }
   ++(pivot[col]);

   // Interchange rows, if needed, to put the pivot element on the diagonal.
   double *acol=M+n*col;
   if(row != col) {
     double *arow=M+n*row;
     for(size_t k=0; k < n; k++) {
       real temp=arow[k];
       arow[k]=acol[k];
       acol[k]=temp;
     }
   }

   Row[i]=row;
   Col[i]=col;

   // Divide the pivot row by the pivot element.
   real denom=acol[col];
   if(denom == 0.0) {
     inverseDeallocate();
     error(singular);
   }
   real pivinv=1.0/denom;
   acol[col]=1.0;
   for(size_t k=0; k < n; k++)
     acol[k]=acol[k]*pivinv;

   // Reduce all rows except for the pivoted one.
   for(size_t k=0; k < n; k++) {
     if(k != col) {
       double *ak=M+n*k;
       real akcol=ak[col];
       ak[col]=0.0;
       for(size_t j=0; j < n; j++)
         ak[j] -= acol[j]*akcol;
     }
   }
 }

 // Unscramble the inverse matrix in view of the column interchanges.
 for(size_t k=n; k > 0;) {
   k--;
   size_t r=Row[k];
   size_t c=Col[k];
   if(r != c) {
     for(size_t j=0; j < n; j++) {
       double *aj=M+n*j;
       real temp=aj[r];
       aj[r]=aj[c];
       aj[c]=temp;
     }
   }
 }
 inverseDeallocate();
}
}

callable *Func;
stack *FuncStack;
double wrapFunction(double x)
{
 FuncStack->push(x);
 Func->call(FuncStack);
 return pop<double>(FuncStack);
}

callable *compareFunc;
bool compareFunction(const vm::item& i, const vm::item& j)
{
 FuncStack->push(i);
 FuncStack->push(j);
 compareFunc->call(FuncStack);
 return pop<bool>(FuncStack);
}

// Crout's algorithm for computing the LU decomposition of a square matrix.
// cf. routine ludcmp (Press et al.,  Numerical Recipes, 1991).
Int LUdecompose(double *a, size_t n, size_t* index, bool warn=true)
{
 double *vv=new double[n];
 Int swap=1;
 for(size_t i=0; i < n; ++i) {
   double big=0.0;
   double *ai=a+i*n;
   for(size_t j=0; j < n; ++j) {
     double temp=fabs(ai[j]);
     if(temp > big) big=temp;
   }
   if(big == 0.0) {
     delete[] vv;
     if(warn) error(singular);
     else return 0;
   }
   vv[i]=1.0/big;
 }
 for(size_t j=0; j < n; ++j) {
   for(size_t i=0; i < j; ++i) {
     double *ai=a+i*n;
     double sum=ai[j];
     for(size_t k=0; k < i; ++k) {
       sum -= ai[k]*a[k*n+j];
     }
     ai[j]=sum;
   }
   double big=0.0;
   size_t imax=j;
   for(size_t i=j; i < n; ++i) {
     double *ai=a+i*n;
     double sum=ai[j];
     for(size_t k=0; k < j; ++k)
       sum -= ai[k]*a[k*n+j];
     ai[j]=sum;
     double temp=vv[i]*fabs(sum);
     if(temp >= big) {
       big=temp;
       imax=i;
     }
   }
   double *aj=a+j*n;
   double *aimax=a+imax*n;
   if(j != imax) {
     for(size_t k=0; k < n; ++k) {
       double temp=aimax[k];
       aimax[k]=aj[k];
       aj[k]=temp;
     }
     swap *= -1;
     vv[imax]=vv[j];
   }
   if(index)
     index[j]=imax;
   if(j != n) {
     double denom=aj[j];
     if(denom == 0.0) {
       delete[] vv;
       if(warn) error(singular);
       else return 0;
     }
     for(size_t i=j+1; i < n; ++i)
       a[i*n+j] /= denom;
   }
 }
 delete[] vv;
 return swap;
}

namespace run {

void dividebyzero(size_t i)
{
 ostringstream buf;
 if(i > 0) buf << "array element " << i << ": ";
 buf << "Divide by zero";
 error(buf);
}

void integeroverflow(size_t i)
{
 ostringstream buf;
 if(i > 0) buf << "array element " << i << ": ";
 buf << "Integer overflow";
 error(buf);
}

}

// Autogenerated routines:


// Create an empty array.
array* :emptyArray()
{
 return new array(0);
}

// Create a new array (technically a vector).
// This array will be multidimensional.  First the number of dimensions
// is popped off the stack, followed by each dimension in reverse order.
// The array itself is technically a one dimensional array of one
// dimension arrays and so on.
array* :newDeepArray(Int depth)
{
 assert(depth > 0);

 Int *dims = new Int[depth];

 for (Int index = depth-1; index >= 0; index--) {
   Int i=pop<Int>(Stack);
   if(i < 0) error("cannot create a negative length array");
   dims[index]=i;
 }

 array *a=deepArray(depth, dims);
 delete[] dims;
 return a;
}

// Creates an array with elements already specified.  First, the number
// of elements is popped off the stack, followed by each element in
// reverse order.
array* :newInitializedArray(Int n)
{
 assert(n >= 0);

 array *a = new array(n);

 for (Int index = n-1; index >= 0; index--)
   (*a)[index] = pop(Stack);

 return a;
}

// Similar to newInitializedArray, but after the n elements, append another
// array to it.
array* :newAppendedArray(array* tail, Int n)
{
 assert(n >= 0);

 array *a = new array(n);

 for (Int index = n-1; index >= 0; index--)
   (*a)[index] = pop(Stack);

 copy(tail->begin(), tail->end(), back_inserter(*a));

 return a;
}

// Produce an array of n deep copies of value.
// typeDepth is the true depth of the array determined at compile-time when the
// operations for the array type are added.  This typeDepth argument is
// automatically pushed on the stack and is not visible to the user.
array* :copyArrayValue(Int n, item value, Int depth=Int_MAX, Int typeDepth)
{
 if(n < 0) error("cannot create a negative length array");
 if(depth < 0) error("cannot copy to a negative depth");
 if(depth > typeDepth) depth=typeDepth;
 return new array((size_t) n, value, depth);
}

// Deep copy of array.
// typeDepth is the true depth of the array determined at compile-time when the
// operations for the array type are added.  This typeDepth argument is
// automatically pushed on the stack and is not visible to the user.
array* :copyArray(array *a, Int depth=Int_MAX, Int typeDepth)
{
 if(a == 0) vm::error(dereferenceNullArray);
 if(depth < 0) error("cannot copy to a negative depth");
 if(depth > typeDepth) depth=typeDepth;
 return a->copyToDepth(depth);
}

// Read an element from an array. Checks for initialization & bounds.
item :arrayRead(array *a, Int n)
{
 item& i=arrayRead(a,n);
 if (i.empty()) {
   ostringstream buf;
   buf << "read uninitialized value from array at index " << n;
   error(buf);
 }
 return i;
}

// Slice a substring from an array.
item :arraySliceRead(array *a, Int left, Int right)
{
 checkArray(a);
 return a->slice(left, right);
}

// Slice a substring from an array.  This implements the cases a[i:] and a[:]
// where the endpoint is not given, and assumed to be the length of the array.
item :arraySliceReadToEnd(array *a, Int left)
{
 size_t len=checkArray(a);
 return a->slice(left, (Int)len);
}

// Read an element from an array of arrays. Check bounds and initialize
// as necessary.
item :arrayArrayRead(array *a, Int n)
{
 item& i=arrayRead(a,n);
 if (i.empty()) i=new array(0);
 return i;
}

// Write an element to an array.  Increase size if necessary.
// TODO: Add arrayWriteAndPop
item :arrayWrite(array *a, Int n, item value)
{
 size_t len=checkArray(a);
 bool cyclic=a->cyclic();
 if(cyclic && len > 0) n=imod(n,len);
 else {
   if(cyclic) outOfBounds("writing cyclic",len,n);
   if(n < 0) outOfBounds("writing",len,n);
   if(len <= (size_t) n)
     a->resize(n+1);
 }
 (*a)[n] = value;
 return value;
}

array * :arraySliceWrite(array *dest, Int left, Int right, array *src)
{
 checkArray(src);
 checkArray(dest);
 dest->setSlice(left, right, src);
 return src;
}

array * :arraySliceWriteToEnd(array *dest, Int left, array *src)
{
 checkArray(src);
 size_t len=checkArray(dest);
 dest->setSlice(left, (Int) len, src);
 return src;
}

// Returns the length of an array.
Int :arrayLength(array *a)
{
 return (Int) checkArray(a);
}

// Returns an array of integers representing the keys of the array.
array * :arrayKeys(array *a)
{
 size_t size=checkArray(a);

 array *keys=new array();
 for (size_t i=0; i<size; ++i) {
   item& cell = (*a)[i];
   if (!cell.empty())
     keys->push((Int)i);
 }

 return keys;
}

// Return the cyclic flag for an array.
bool :arrayCyclicFlag(array *a)
{
 checkArray(a);
 return a->cyclic();
}

bool :arraySetCyclicFlag(bool b, array *a)
{
 checkArray(a);
 a->cyclic(b);
 return b;
}

// Check to see if an array element is initialized.
bool :arrayInitializedHelper(Int n, array *a)
{
 size_t len=checkArray(a);
 bool cyclic=a->cyclic();
 if(cyclic && len > 0) n=imod(n,len);
 else if(n < 0 || n >= (Int) len) return false;
 item&i=(*a)[(unsigned) n];
 return !i.empty();
}

// Returns the initialize method for an array.
callable* :arrayInitialized(array *a)
{
 return new thunk(new bfunc(arrayInitializedHelper),a);
}

// The helper function for the cyclic method that sets the cyclic flag.
void :arrayCyclicHelper(bool b, array *a)
{
 checkArray(a);
 a->cyclic(b);
}

// Set the cyclic flag for an array.
callable* :arrayCyclic(array *a)
{
 return new thunk(new bfunc(arrayCyclicHelper),a);
}

// The helper function for the push method that does the actual operation.
item :arrayPushHelper(item x, array *a)
{
 checkArray(a);
 a->push(x);
 return x;
}

// Returns the push method for an array.
callable* :arrayPush(array *a)
{
 return new thunk(new bfunc(arrayPushHelper),a);
}

// The helper function for the append method that appends b to a.
void :arrayAppendHelper(array *b, array *a)
{
 checkArray(a);
 size_t size=checkArray(b);
 for(size_t i=0; i < size; i++)
   a->push((*b)[i]);
}

// Returns the append method for an array.
callable* :arrayAppend(array *a)
{
 return new thunk(new bfunc(arrayAppendHelper),a);
}

// The helper function for the pop method.
item :arrayPopHelper(array *a)
{
 size_t asize=checkArray(a);
 if(asize == 0)
   error("cannot pop element from empty array");
 return a->pop();
}

// Returns the pop method for an array.
callable* :arrayPop(array *a)
{
 return new thunk(new bfunc(arrayPopHelper),a);
}

// The helper function for the insert method.
item :arrayInsertHelper(Int i, array *x, array *a)
{
 size_t asize=checkArray(a);
 checkArray(x);
 if(a->cyclic() && asize > 0) i=imod(i,asize);
 if(i < 0 || i > (Int) asize)
   outOfBounds("inserting",asize,i);
 (*a).insert((*a).begin()+i,(*x).begin(),(*x).end());
}

// Returns the insert method for an array.
callable* :arrayInsert(array *a)
{
 return new thunk(new bfunc(arrayInsertHelper),a);
}

// Returns the delete method for an array.
callable* :arrayDelete(array *a)
{
 return new thunk(new bfunc(arrayDeleteHelper),a);
}

bool :arrayAlias(array *a, array *b)
{
 return a==b;
}

// Return array formed by indexing array a with elements of integer array b
array* :arrayIntArray(array *a, array *b)
{
 size_t asize=checkArray(a);
 size_t bsize=checkArray(b);
 array *r=new array(bsize);
 bool cyclic=a->cyclic();
 for(size_t i=0; i < bsize; i++) {
   Int index=read<Int>(b,i);
   if(cyclic && asize > 0) index=imod(index,asize);
   else
     if(index < 0 || index >= (Int) asize)
       outOfBounds("reading",asize,index);
   (*r)[i]=(*a)[index];
 }
 return r;
}

// returns the complement of the integer array a in {0,2,...,n-1},
// so that b[complement(a,b.length)] yields the complement of b[a].
Intarray* complement(Intarray *a, Int n)
{
 size_t asize=checkArray(a);
 array *r=new array(0);
 bool *keep=new bool[n];
 for(Int i=0; i < n; ++i) keep[i]=true;
 for(size_t i=0; i < asize; ++i) {
   Int j=read<Int>(a,i);
   if(j >= 0 && j < n) keep[j]=false;
 }
 for(Int i=0; i < n; i++)
   if(keep[i]) r->push(i);

 delete[] keep;
 return r;
}

// Generate the sequence {f(i) : i=0,1,...n-1} given a function f and integer n
Intarray* :arraySequence(callable *f, Int n)
{
 if(n < 0) n=0;
 array *a=new array(n);
 for(Int i=0; i < n; ++i) {
   Stack->push(i);
   f->call(Stack);
   (*a)[i]=pop(Stack);
 }
 return a;
}

// Return the array {0,1,...n-1}
Intarray *sequence(Int n)
{
 if(n < 0) n=0;
 array *a=new array(n);
 for(Int i=0; i < n; ++i) {
   (*a)[i]=i;
 }
 return a;
}

// Apply a function to each element of an array
array* :arrayFunction(callable *f, array *a)
{
 size_t size=checkArray(a);
 array *b=new array(size);
 for(size_t i=0; i < size; ++i) {
   Stack->push((*a)[i]);
   f->call(Stack);
   (*b)[i]=pop(Stack);
 }
 return b;
}

array* :arraySort(array *a, callable *less, bool stable=true)
{
 array *c=copyArray(a);
 compareFunc=less;
 FuncStack=Stack;
 if(stable) stable_sort(c->begin(),c->end(),compareFunction);
 else sort(c->begin(),c->end(),compareFunction);
 return c;
}

Int :arraySearch(array *a, item key, callable *less)
{
 size_t size=a->size();
 compareFunc=less;
 FuncStack=Stack;
 if(size == 0 || compareFunction(key,(*a)[0])) return -1;
 size_t u=size-1;
 if(!compareFunction(key,(*a)[u])) return Intcast(u);
 size_t l=0;

 while (l < u) {
   size_t i=(l+u)/2;
   if(compareFunction(key,(*a)[i])) u=i;
   else if(compareFunction(key,(*a)[i+1])) return Intcast(i);
   else l=i+1;
 }
 return 0;
}

bool all(boolarray *a)
{
 size_t size=checkArray(a);
 bool c=true;
 for(size_t i=0; i < size; i++)
   if(!get<bool>((*a)[i])) {c=false; break;}
 return c;
}

boolarray* !(boolarray* a)
{
 size_t size=checkArray(a);
 array *c=new array(size);
 for(size_t i=0; i < size; i++)
   (*c)[i]=!read<bool>(a,i);
 return c;
}

Int sum(boolarray *a)
{
 size_t size=checkArray(a);
 Int sum=0;
 for(size_t i=0; i < size; i++)
   sum += read<bool>(a,i) ? 1 : 0;
 return sum;
}

array* :arrayConcat(array *a)
{
 // a is an array of arrays to be concatenated together.
 // The signature is
 //   T[] concat(... T[][] a);

 size_t numArgs=checkArray(a);
 size_t resultSize=0;
 for (size_t i=0; i < numArgs; ++i) {
   resultSize += checkArray(a->read<array *>(i));
 }

 array *result=new array(resultSize);

 size_t ri=0;
 for (size_t i=0; i < numArgs; ++i) {
   array *arg=a->read<array *>(i);
   size_t size=checkArray(arg);

   for (size_t j=0; j < size; ++j) {
     (*result)[ri]=(*arg)[j];
     ++ri;
   }
 }

 return result;
}

array* :array2Transpose(array *a)
{
 size_t asize=checkArray(a);
 array *c=new array(0);
 size_t csize=0;
 for(size_t i=0; i < asize; i++) {
   size_t ip=i+1;
   array *ai=read<array*>(a,i);
   size_t aisize=checkArray(ai);
   if(c->size() < aisize) {
     c->resize(aisize);
     for(size_t j=csize; j < aisize; j++)
       (*c)[j]=new array(0);
     csize=aisize;
   }
   for(size_t j=0; j < aisize; j++) {
     if(!(*ai)[j].empty()) {
       array *cj=read<array*>(c,j);
       if(checkArray(cj) < ip) cj->resize(ip);
       (*cj)[i]=(*ai)[j];
     }
   }
 }
 return c;
}

// a is a rectangular 3D array; perm is an Int array indicating the type of
// permutation  (021 or 120, etc; original is 012).
// Transpose by sending respective members to the permutated locations:
// return the array obtained by putting a[i][j][k] into position perm{ijk}.
array* :array3Transpose(array *a, array *perm)
{
 const size_t DIM=3;

 if(checkArray(perm) != DIM) {
   ostringstream buf;
   buf << "permutation array must have length " << DIM;
   error(buf);
 }

 size_t* size=new size_t[DIM];
 for(size_t i=0; i < DIM; ++i) size[i]=DIM;

 for(size_t i=0; i < DIM; ++i) {
   Int p=read<Int>(perm,i);
   size_t P=(size_t) p;
   if(p < 0 || P >= DIM) {
     ostringstream buf;
     buf << "permutation index out of range: " << p;
     error(buf);
   }
   size[P]=P;
 }

 for(size_t i=0; i < DIM; ++i)
   if(size[i] == DIM) error("permutation indices must be distinct");

 static const char *rectangular=
   "3D transpose implemented for rectangular matrices only";

 size_t isize=size[0]=checkArray(a);
 array *a0=read<array*>(a,0);
 size[1]=checkArray(a0);
 array *a00=read<array*>(a0,0);
 size[2]=checkArray(a00);
 for(size_t i=0; i < isize; i++) {
   array *ai=read<array*>(a,i);
   size_t jsize=checkArray(ai);
   if(jsize != size[1]) error(rectangular);
   for(size_t j=0; j < jsize; j++) {
     array *aij=read<array*>(ai,j);
     if(checkArray(aij) != size[2]) error(rectangular);
   }
 }

 size_t perm0=(size_t) read<Int>(perm,0);
 size_t perm1=(size_t) read<Int>(perm,1);
 size_t perm2=(size_t) read<Int>(perm,2);

 size_t sizep0=size[perm0];
 size_t sizep1=size[perm1];
 size_t sizep2=size[perm2];

 array *c=new array(sizep0);
 for(size_t i=0; i < sizep0; ++i) {
   array *ci=new array(sizep1);
   (*c)[i]=ci;
   for(size_t j=0; j < sizep1; ++j) {
     array *cij=new array(sizep2);
     (*ci)[j]=cij;
   }
 }

 size_t* i=new size_t[DIM];

 for(i[0]=0; i[0] < size[0]; ++i[0]) {
   array *a0=read<array*>(a,i[0]);
   for(i[1]=0; i[1] < size[1]; ++i[1]) {
     array *a1=read<array*>(a0,i[1]);
     for(i[2]=0; i[2] < size[2]; ++i[2]) {
       array *c0=read<array*>(c,i[perm0]);
       array *c1=read<array*>(c0,i[perm1]);
       (*c1)[i[perm2]]=read<real>(a1,i[2]);
     }
   }
 }

 delete[] i;
 delete[] size;

 return c;
}

// Find the index of the nth true value in a boolean array or -1 if not found.
// If n is negative, search backwards.
Int find(boolarray *a, Int n=1)
{
 size_t size=checkArray(a);
 Int j=-1;
 if(n > 0)
   for(size_t i=0; i < size; i++)
     if(read<bool>(a,i)) {
       n--; if(n == 0) {j=(Int) i; break;}
     }
 if(n < 0)
   for(size_t i=size; i > 0;)
     if(read<bool>(a,--i)) {
       n++; if(n == 0) {j=(Int) i; break;}
     }
 return j;
}

// Find all indices of true values in a boolean array.
Intarray *findall(boolarray *a)
{
 size_t size=checkArray(a);
 array *b=new array(0);
 for(size_t i=0; i < size; i++) {
   if(read<bool>(a,i)) {
     b->push((Int) i);
   }
 }
 return b;
}

// construct vector obtained by replacing those elements of b for which the
// corresponding elements of a are false by the corresponding element of c.
array* :arrayConditional(array *a, array *b, array *c)
{
 size_t size=checkArray(a);
 array *r=new array(size);
 if(b && c) {
   checkArrays(a,b);
   checkArrays(b,c);
   for(size_t i=0; i < size; i++)
     (*r)[i]=read<bool>(a,i) ? (*b)[i] : (*c)[i];
 } else {
   r->clear();
   if(b) {
     checkArrays(a,b);
     for(size_t i=0; i < size; i++)
       if(read<bool>(a,i)) r->push((*b)[i]);
   } else if(c) {
     checkArrays(a,c);
     for(size_t i=0; i < size; i++)
       if(!read<bool>(a,i)) r->push((*c)[i]);
   }
 }
 return r;
}

// Return an n x n identity matrix.
realarray2 *identity(Int n)
{
 return Identity(n);
}

// Return the inverse of an n x n matrix a using Gauss-Jordan elimination.
realarray2 *inverse(realarray2 *a)
{
 size_t n=checkArray(a);
 double *A;
 copyArray2C(A,a,true,0,NoGC);
 inverse(A,n);
 a=copyCArray2(n,n,A);
 delete[] A;
 return a;
}

// Solve the linear equation ax=b by LU decomposition, returning the
// solution x, where a is an n x n matrix and b is an array of length n.
// If no solution exists, return an empty array.
realarray *solve(realarray2 *a, realarray *b, bool warn=true)
{
 size_t n=checkArray(a);

 if(n == 0) return new array(0);

 size_t m=checkArray(b);
 if(m != n) error(incommensurate);

 real *A;
 copyArray2C(A,a);
 size_t *index=new size_t[n];

 if(LUdecompose(A,n,index,warn) == 0)
   return new array(0);

 array *x=new array(n);

 real *B;
 copyArrayC(B,b);

 for(size_t i=0; i < n; ++i) {
   size_t ip=index[i];
   real sum=B[ip];
   B[ip]=B[i];
   real *Ai=A+i*n;
   for(size_t j=0; j < i; ++j)
     sum -= Ai[j]*B[j];
   B[i]=sum;
 }

 for(size_t i=n; i > 0;) {
   --i;
   real sum=B[i];
   real *Ai=A+i*n;
   for(size_t j=i+1; j < n; ++j)
     sum -= Ai[j]*B[j];
   B[i]=sum/Ai[i];
 }

 for(size_t i=0; i < n; ++i)
   (*x)[i]=B[i];

 delete[] index;
 delete[] B;
 delete[] A;

 return x;
}

// Solve the linear equation ax=b by LU decomposition, returning the
// solution x, where a is an n x n matrix and b is an n x m matrix.
// If no solution exists, return an empty array.
realarray2 *solve(realarray2 *a, realarray2 *b, bool warn=true)
{
 size_t n=checkArray(a);

 if(n == 0) return new array(0);

 if(checkArray(b) != n) error(incommensurate);
 size_t m=checkArray(read<array*>(b,0));

 real *A,*B;
 copyArray2C(A,a);
 copyArray2C(B,b,false);

 size_t *index=new size_t[n];

 if(LUdecompose(A,n,index,warn) == 0)
   return new array(0);

 array *x=new array(n);

 for(size_t i=0; i < n; ++i) {
   real *Ai=A+i*n;
   real *Bi=B+i*m;
   real *Bip=B+index[i]*m;
   for(size_t k=0; k < m; ++k) {
     real sum=Bip[k];
     Bip[k]=Bi[k];
     size_t jk=k;
     for(size_t j=0; j < i; ++j, jk += m)
       sum -= Ai[j]*B[jk];
     Bi[k]=sum;
   }
 }

 for(size_t i=n; i > 0;) {
   --i;
   real *Ai=A+i*n;
   real *Bi=B+i*m;
   for(size_t k=0; k < m; ++k) {
     real sum=Bi[k];
     size_t jk=(i+1)*m+k;
     for(size_t j=i+1; j < n; ++j, jk += m)
       sum -= Ai[j]*B[jk];
     Bi[k]=sum/Ai[i];
   }
 }

 for(size_t i=0; i < n; ++i) {
   real *Bi=B+i*m;
   array *xi=new array(m);
   (*x)[i]=xi;
   for(size_t j=0; j < m; ++j)
     (*xi)[j]=Bi[j];
 }

 delete[] index;
 delete[] B;
 delete[] A;

 return x;
}

// Compute the determinant of an n x n matrix.
real determinant(realarray2 *a)
{
 real *A;
 copyArray2C(A,a);
 size_t n=checkArray(a);

 real det=LUdecompose(A,n,NULL,false);
 size_t n1=n+1;
 for(size_t i=0; i < n; ++i)
   det *= A[i*n1];

 delete[] A;

 return det;
}

realarray *Operator *(realarray2 *a, realarray *b)
{
 size_t n=checkArray(a);
 size_t m=checkArray(b);
 array *c=new array(n);
 real *B;
 copyArrayC(B,b);
 for(size_t i=0; i < n; ++i) {
   array *ai=read<array*>(a,i);
   if(checkArray(ai) != m) error(incommensurate);
   real sum=0.0;
   for(size_t j=0; j < m; ++j)
     sum += read<real>(ai,j)*B[j];
   (*c)[i]=sum;
 }
 delete[] B;
 return c;
}

realarray *Operator *(realarray *a, realarray2 *b)
{
 size_t n=checkArray(a);
 if(n != checkArray(b)) error(incommensurate);
 real *A;
 copyArrayC(A,a);

 array **B=new array*[n];
 array *bk=read<array *>(b,0);
 B[0]=bk;
 size_t m=bk->size();
 for(size_t k=1; k < n; k++) {
   array *bk=read<array *>(b,k);
   if(bk->size() != m) error(incommensurate);
   B[k]=bk;
 }
 array *c=new array(m);

 for(size_t i=0; i < m; ++i) {
   real sum=0.0;
   for(size_t k=0; k < n; ++k)
     sum += A[k]*read<real>(B[k],i);
   (*c)[i]=sum;
 }
 delete[] B;
 delete[] A;
 return c;
}

Intarray2 *Operator *(Intarray2 *a, Intarray2 *b)
{
 return mult<Int>(a,b);
}

realarray2 *Operator *(realarray2 *a, realarray2 *b)
{
 return mult<real>(a,b);
}

pairarray2 *Operator *(pairarray2 *a, pairarray2 *b)
{
 return mult<pair>(a,b);
}

triple Operator *(realarray2 *t, triple v)
{
 return *t*v;
}

realarray2 *AtA(realarray2 *a)
{
 return AtA<real>(a);
}

pair project(triple v, realarray2 *t)
{
 size_t n=checkArray(t);
 if(n != 4) error(incommensurate);
 array *t0=read<array*>(t,0);
 array *t1=read<array*>(t,1);
 array *t3=read<array*>(t,3);
 if(checkArray(t0) != 4 || checkArray(t1) != 4 || checkArray(t3) != 4)
   error(incommensurate);

 real x=v.getx();
 real y=v.gety();
 real z=v.getz();

 real f=read<real>(t3,0)*x+read<real>(t3,1)*y+read<real>(t3,2)*z+
   read<real>(t3,3);
 if(f == 0.0) dividebyzero();
 f=1.0/f;

 return pair((read<real>(t0,0)*x+read<real>(t0,1)*y+read<real>(t0,2)*z+
              read<real>(t0,3))*f,
             (read<real>(t1,0)*x+read<real>(t1,1)*y+read<real>(t1,2)*z+
              read<real>(t1,3))*f);
}

// Compute the dot product of vectors a and b.
real dot(realarray *a, realarray *b)
{
 size_t n=checkArrays(a,b);
 real sum=0.0;
 for(size_t i=0; i < n; ++i)
   sum += read<real>(a,i)*read<real>(b,i);
 return sum;
}

// Compute the complex dot product of vectors a and b.
pair dot(pairarray *a, pairarray *b)
{
 size_t n=checkArrays(a,b);
 pair sum=zero;
 for(size_t i=0; i < n; ++i)
   sum += read<pair>(a,i)*conj(read<pair>(b,i));
 return sum;
}

// Solve the problem L\inv f, where f is an n vector and L is the n x n matrix
//
// [ b[0] c[0]           a[0]   ]
// [ a[1] b[1] c[1]             ]
// [      a[2] b[2] c[2]        ]
// [                ...         ]
// [ c[n-1]       a[n-1] b[n-1] ]
realarray *tridiagonal(realarray *a, realarray *b, realarray *c, realarray *f)
{
 size_t n=checkArrays(a,b);
 checkEqual(n,checkArray(c));
 checkEqual(n,checkArray(f));

 array *up=new array(n);
 array& u=*up;

 if(n == 0) return up;

 // Special case: zero Dirichlet boundary conditions
 if(read<real>(a,0) == 0.0 && read<real>(c,n-1) == 0.0) {
   real temp=read<real>(b,0);
   if(temp == 0.0) dividebyzero();
   temp=1.0/temp;

   real *work=new real[n];
   u[0]=read<real>(f,0)*temp;
   work[0]=-read<real>(c,0)*temp;

   for(size_t i=1; i < n; i++) {
     real temp=(read<real>(b,i)+read<real>(a,i)*work[i-1]);
     if(temp == 0.0) {delete[] work; dividebyzero();}
     temp=1.0/temp;
     u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*temp;
     work[i]=-read<real>(c,i)*temp;
   }

   for(size_t i=n-1; i >= 1; i--)
     u[i-1]=read<real>(u,i-1)+work[i-1]*read<real>(u,i);

   delete[] work;
   return up;
 }

 real binv=read<real>(b,0);
 if(binv == 0.0) dividebyzero();
 binv=1.0/binv;

 if(n == 1) {u[0]=read<real>(f,0)*binv; return up;}
 if(n == 2) {
   real factor=(read<real>(b,0)*read<real>(b,1)-
                read<real>(a,0)*read<real>(c,1));
   if(factor== 0.0) dividebyzero();
   factor=1.0/factor;
   real temp=(read<real>(b,0)*read<real>(f,1)-
              read<real>(c,1)*read<real>(f,0))*factor;
   u[0]=(read<real>(b,1)*read<real>(f,0)-
         read<real>(a,0)*read<real>(f,1))*factor;
   u[1]=temp;
   return up;
 }

 real *gamma=new real[n-2];
 real *delta=new real[n-2];

 gamma[0]=read<real>(c,0)*binv;
 delta[0]=read<real>(a,0)*binv;
 u[0]=read<real>(f,0)*binv;
 real beta=read<real>(c,n-1);
 real fn=read<real>(f,n-1)-beta*read<real>(u,0);
 real alpha=read<real>(b,n-1)-beta*delta[0];

 for(size_t i=1; i <= n-3; i++) {
   real alphainv=read<real>(b,i)-read<real>(a,i)*gamma[i-1];
   if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
   alphainv=1.0/alphainv;
   beta *= -gamma[i-1];
   gamma[i]=read<real>(c,i)*alphainv;
   u[i]=(read<real>(f,i)-read<real>(a,i)*read<real>(u,i-1))*alphainv;
   fn -= beta*read<real>(u,i);
   delta[i]=-read<real>(a,i)*delta[i-1]*alphainv;
   alpha -= beta*delta[i];
 }

 real alphainv=read<real>(b,n-2)-read<real>(a,n-2)*gamma[n-3];
 if(alphainv == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
 alphainv=1.0/alphainv;
 u[n-2]=(read<real>(f,n-2)-read<real>(a,n-2)*read<real>(u,n-3))
   *alphainv;
 beta=read<real>(a,n-1)-beta*gamma[n-3];
 real dnm1=(read<real>(c,n-2)-read<real>(a,n-2)*delta[n-3])*alphainv;
 real temp=alpha-beta*dnm1;
 if(temp == 0.0) {delete[] gamma; delete[] delta; dividebyzero();}
 u[n-1]=temp=(fn-beta*read<real>(u,n-2))/temp;
 u[n-2]=read<real>(u,n-2)-dnm1*temp;

 for(size_t i=n-2; i >= 1; i--)
   u[i-1]=read<real>(u,i-1)-gamma[i-1]*read<real>(u,i)-delta[i-1]*temp;

 delete[] delta;
 delete[] gamma;

 return up;
}

// Root solve by Newton-Raphson
real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x,
           bool verbose=false)
{
 static const real fuzz=1000.0*DBL_EPSILON;
 Int i=0;
 size_t oldPrec=0;
 if(verbose)
   oldPrec=cout.precision(DBL_DIG);

 real diff=DBL_MAX;
 real lastdiff;
 do {
   real x0=x;

   Stack->push(x);
   fprime->call(Stack);
   real dfdx=pop<real>(Stack);

   if(dfdx == 0.0) {
     x=DBL_MAX;
     break;
   }

   Stack->push(x);
   f->call(Stack);
   real fx=pop<real>(Stack);

   x -= fx/dfdx;

   lastdiff=diff;

   if(verbose)
     cout << "Newton-Raphson: " << x << endl;

   diff=fabs(x-x0);
   if(++i == iterations) {
     x=DBL_MAX;
     break;
   }
 } while (diff != 0.0 && (diff < lastdiff || diff > fuzz*fabs(x)));

 if(verbose)
   cout.precision(oldPrec);
 return x;
}

// Root solve by Newton-Raphson bisection
// cf. routine rtsafe (Press et al.,  Numerical Recipes, 1991).
real newton(Int iterations=100, callableReal *f, callableReal *fprime, real x1,
           real x2, bool verbose=false)
{
 static const real fuzz=1000.0*DBL_EPSILON;
 size_t oldPrec=0;
 if(verbose)
   oldPrec=cout.precision(DBL_DIG);

 Stack->push(x1);
 f->call(Stack);
 real f1=pop<real>(Stack);
 if(f1 == 0.0) return x1;

 Stack->push(x2);
 f->call(Stack);
 real f2=pop<real>(Stack);
 if(f2 == 0.0) return x2;

 if((f1 > 0.0 && f2 > 0.0) || (f1 < 0.0 && f2 < 0.0)) {
   ostringstream buf;
   buf << "root not bracketed, f(x1)=" << f1 << ", f(x2)=" << f2 << endl;
   error(buf);
 }

 real x=0.5*(x1+x2);
 real dxold=fabs(x2-x1);
 if(f1 > 0.0) {
   real temp=x1;
   x1=x2;
   x2=temp;
 }

 if(verbose)
   cout << "midpoint: " << x << endl;

 real dx=dxold;
 Stack->push(x);
 f->call(Stack);
 real y=pop<real>(Stack);

 Stack->push(x);
 fprime->call(Stack);
 real dy=pop<real>(Stack);

 Int j;
 for(j=0; j < iterations; j++) {
   if(((x-x2)*dy-y)*((x-x1)*dy-y) >= 0.0 || fabs(2.0*y) > fabs(dxold*dy)) {
     dxold=dx;
     dx=0.5*(x2-x1);
     x=x1+dx;
     if(verbose)
       cout << "bisection: " << x << endl;
     if(x1 == x) return x;
   } else {
     dxold=dx;
     dx=y/dy;
     real temp=x;
     x -= dx;
     if(verbose)
       cout << "Newton-Raphson: " << x << endl;
     if(temp == x) return x;
   }
   if(fabs(dx) < fuzz*fabs(x)) return x;

   Stack->push(x);
   f->call(Stack);
   y=pop<real>(Stack);

   Stack->push(x);
   fprime->call(Stack);
   dy=pop<real>(Stack);

   if(y < 0.0) x1=x;
   else x2=x;
 }
 if(verbose)
   cout.precision(oldPrec);
 return (j == iterations) ? DBL_MAX : x;
}

// Find a root for the specified continuous (but not necessarily
// differentiable) function. Whatever value t is returned, it is guaranteed
// that t is within [a, b] and within tolerance of a sign change.
// An error is thrown if fa and fb are both positive or both negative.
//
// In this implementation, the binary search is interleaved
// with a modified version of quadratic interpolation.
// This is a C++ port of the Asymptote routine written by Charles Staats III.
real _findroot(callableReal *f, real a, real b, real tolerance,
              real fa, real fb)
{
 if(fa == 0.0) return a;
 if(fb == 0.0) return b;

 const char* oppsign="fa and fb must have opposite signs";
 int sign;

 if(fa < 0.0) {
   if(fb < 0.0) error(oppsign);
   sign=1;
 } else {
   if(fb > 0.0) error(oppsign);
   fa=-fa;
   fb=-fb;
   sign=-1;
 }

 real t=a;
 real ft=fa;
 real twicetolerance=2.0*tolerance;

 while(b-a > tolerance) {
   t=(a+b)*0.5;

   Stack->push(t);
   f->call(Stack);
   ft=sign*pop<double>(Stack);
   if(ft == 0.0) return t;

   // If halving the interval already puts us within tolerance,
   // don't bother with the interpolation step.
   if(b-a >= twicetolerance) {

     real factor=1.0/(b-a);
     real q_A=2.0*(fa-2.0*ft+fb)*factor*factor;
     real q_B=(fb-fa)*factor;
     quadraticroots Q=quadraticroots(q_A,q_B,ft);

     // If the interpolation somehow failed, continue on to the next binary
     // search step. This may or may not be possible, depending on what
     // theoretical guarantees are provided by the quadraticroots function.

     real root;
     bool found=Q.roots > 0;
     if(found) {
       root=t+Q.t1;
       if(root <= a || root >= b) {
         if(Q.roots == 1) found=false;
         else {
           root=t+Q.t2;
           if(root <= a || root >= b) found=false;
         }
       }
     }

     if(found) {
       if(ft > 0.0) {
         b=t;
         fb=ft;
       } else {
         a=t;
         fa=ft;
       }

       t=root;

       // If the interpolated value is close to one edge of
       // the interval, move it farther away from the edge in
       // an effort to catch the root in the middle.
       real margin=(b-a)*1.0e-3;
       if(t-a < margin) t=a+2.0*(t-a);
       else if(b-t < margin) t=b-2.0*(b-t);

       Stack->push(t);
       f->call(Stack);
       ft=sign*pop<double>(Stack);

       if(ft == 0.0) return t;
     }
   }

   if(ft > 0.0) {
     b=t;
     fb=ft;
   } else if(ft < 0.0) {
     a=t;
     fa=ft;
   }
 }
 return a-(b-a)/(fb-fa)*fa;
}

real simpson(callableReal *f, real a, real b, real acc=DBL_EPSILON,
            real dxmax=0)
{
 real integral;
 if(dxmax <= 0) dxmax=fabs(b-a);
 callable *oldFunc=Func;
 Func=f;
 FuncStack=Stack;
 if(!simpson(integral,wrapFunction,a,b,acc,dxmax))
   error("nesting capacity exceeded in simpson");
 Func=oldFunc;
 return integral;
}

// Compute the fast Fourier transform of a pair array
pairarray* fft(pairarray *a, Int sign=1)
{
#ifdef HAVE_LIBFFTW3
 unsigned n=(unsigned) checkArray(a);
 array *c=new array(n);
 if(n) {
   Complex *f=utils::ComplexAlign(n);
   fftwpp::fft1d Forward(n,intcast(sign),f);

   for(size_t i=0; i < n; i++) {
     pair z=read<pair>(a,i);
     f[i]=Complex(z.getx(),z.gety());
   }
   Forward.fft(f);

   for(size_t i=0; i < n; i++) {
     Complex z=f[i];
     (*c)[i]=pair(z.real(),z.imag());
   }
   utils::deleteAlign(f);
 }
#else
 unused(a);
 unused(&sign);
 array *c=new array(0);
 error(installFFTW);
#endif //  HAVE_LIBFFTW3
 return c;
}

// Compute the fast Fourier transform of a 2D pair array
pairarray2* fft(pairarray2 *a, Int sign=1)
{
#ifdef HAVE_LIBFFTW3
 size_t n=checkArray(a);
 size_t m=n == 0 ? 0 : checkArray(read<array*>(a,0));

 array *c=new array(n);
 Complex *f=utils::ComplexAlign(n*m);
 fftwpp::fft2d Forward(n,m,intcast(sign),f);

 if(n) {
   for(size_t i=0; i < n; ++i) {
     array *ai=read<array *>(a,i);
     size_t aisize=checkArray(ai);
     if(aisize != m) error(rectangular);
     Complex *fi=f+m*i;
     for(size_t j=0; j < m; ++j) {
       pair z=read<pair>(ai,j);
       fi[j]=Complex(z.getx(),z.gety());
     }
   }

   Forward.fft(f);

   for(size_t i=0; i < n; ++i) {
     array *ci=new array(m);
     (*c)[i]=ci;
     Complex *fi=f+m*i;
     for(size_t j=0; j < m; ++j) {
       Complex z=fi[j];
       (*ci)[j]=pair(z.real(),z.imag());
     }
   }

   utils::deleteAlign(f);
 }
#else
 unused(a);
 unused(&sign);
 array *c=new array(0);
 error(installFFTW);
#endif //  HAVE_LIBFFTW3
 return c;
}

// Compute the fast Fourier transform of a 3D pair array
pairarray3* fft(pairarray3 *a, Int sign=1)
{
#ifdef HAVE_LIBFFTW3
 size_t n=checkArray(a);
 array *a0=read<array*>(a,0);
 size_t m=n == 0 ? 0 : checkArray(a0);
 size_t l=m == 0 ? 0 : checkArray(read<array*>(a0,0));

 array *c=new array(n);
 Complex *f=utils::ComplexAlign(n*m*l);
 fftwpp::fft3d Forward(n,m,l,intcast(sign),f);

 if(n) {
   for(size_t i=0; i < n; ++i) {
     array *ai=read<array *>(a,i);
     size_t aisize=checkArray(ai);
     if(aisize != m) error(rectangular);
     Complex *fi=f+m*l*i;
     for(size_t j=0; j < m; ++j) {
       array *aij=read<array *>(ai,j);
       size_t aijsize=checkArray(aij);
       if(aijsize != l) error(rectangular);
       Complex *fij=fi+l*j;
       for(size_t k=0; k < l; ++k) {
         pair z=read<pair>(aij,k);
         fij[k]=Complex(z.getx(),z.gety());
       }
     }
   }

   Forward.fft(f);

   for(size_t i=0; i < n; ++i) {
     array *ci=new array(m);
     (*c)[i]=ci;
     Complex *fi=f+m*l*i;
     for(size_t j=0; j < m; ++j) {
       array *cij=new array(l);
       (*ci)[j]=cij;
       Complex *fij=fi+l*j;
       for(size_t k=0; k < l; ++k) {
         Complex z=fij[k];
         (*cij)[k]=pair(z.real(),z.imag());
       }
     }
   }

   utils::deleteAlign(f);
 }
#else
 unused(a);
 unused(&sign);
 array *c=new array(0);
 error(installFFTW);
#endif //  HAVE_LIBFFTW3
 return c;
}

// Compute the real Schur decomposition of a 2D pair array
realarray3* _schur(realarray2 *a)
{
#ifdef HAVE_EIGEN_DENSE
 size_t n=checkArray(a);

 MatrixXd A(n,n);
 RealSchur<MatrixXd> schur(n);

 array *S=new array(2);

 if(n) {
   for(size_t i=0; i < n; ++i) {
     array *ai=read<array *>(a,i);
     size_t aisize=checkArray(ai);
     if(aisize != n) error(square);
     for(size_t j=0; j < n; ++j)
       A(i,j)=read<double>(ai,j);
   }

   schur.compute(A);
   MatrixXd U=schur.matrixU();
   MatrixXd T=schur.matrixT();

   array *u=new array(n);
   array *t=new array(n);
   (*S)[0]=u;
   (*S)[1]=t;

   for(size_t i=0; i < n; ++i) {
     array *ui=new array(n);
     array *ti=new array(n);
     (*u)[i]=ui;
     (*t)[i]=ti;
     for(size_t j=0; j < n; ++j) {
       (*ui)[j]=U(i,j);
       (*ti)[j]=T(i,j);
     }
   }
 }
#else
 unused(a);
 array *S=new array(0);
 error(installEIGEN);
#endif //  HAVE_EIGEN_DENSE
 return S;
}

// Compute the Schur decomposition of a 2D pair array
pairarray3* _schur(pairarray2 *a)
{
#ifdef HAVE_EIGEN_DENSE
 size_t n=checkArray(a);

 MatrixXcd A(n,n);
 ComplexSchur<MatrixXcd> schur(n);

 array *S=new array(2);

 if(n) {
   for(size_t i=0; i < n; ++i) {
     array *ai=read<array *>(a,i);
     size_t aisize=checkArray(ai);
     if(aisize != n) error(square);
     for(size_t j=0; j < n; ++j) {
       pair z=read<pair>(ai,j);
       A(i,j)=Complex(z.getx(),z.gety());
     }
   }

   schur.compute(A);
   MatrixXcd U=schur.matrixU();
   MatrixXcd T=schur.matrixT();

   array *u=new array(n);
   array *t=new array(n);
   (*S)[0]=u;
   (*S)[1]=t;

   for(size_t i=0; i < n; ++i) {
     array *ui=new array(n);
     array *ti=new array(n);
     (*u)[i]=ui;
     (*t)[i]=ti;
     for(size_t j=0; j < n; ++j) {
       Complex z=U(i,j);
       Complex w=T(i,j);
       (*ui)[j]=pair(z.real(),z.imag());
       (*ti)[j]=pair(w.real(),w.imag());
     }
   }
 }
#else
 unused(a);
 array *S=new array(0);
 error(installEIGEN);
#endif //  HAVE_EIGEN_DENSE
 return S;
}

Intarray2 *triangulate(pairarray *z)
{
 size_t nv=checkArray(z);
// Call robust version of Gilles Dumoulin's port of Paul Bourke's
// triangulation code.

 XYZ *pxyz=new XYZ[nv+3];
 ITRIANGLE *V=new ITRIANGLE[4*nv];

 for(size_t i=0; i < nv; ++i) {
   pair w=read<pair>(z,i);
   pxyz[i].p[0]=w.getx();
   pxyz[i].p[1]=w.gety();
   pxyz[i].i=(Int) i;
 }

 Int ntri;
 Triangulate((Int) nv,pxyz,V,ntri,true,false);

 size_t nt=(size_t) ntri;
 array *t=new array(nt);
 for(size_t i=0; i < nt; ++i) {
   array *ti=new array(3);
   (*t)[i]=ti;
   ITRIANGLE *Vi=V+i;
   (*ti)[0]=pxyz[Vi->p1].i;
   (*ti)[1]=pxyz[Vi->p2].i;
   (*ti)[2]=pxyz[Vi->p3].i;
 }

 delete[] V;
 delete[] pxyz;
 return t;
}

real norm(realarray *a)
{
 size_t n=checkArray(a);
 real M=0.0;
 for(size_t i=0; i < n; ++i) {
   real x=fabs(vm::read<real>(a,i));
   if(x > M) M=x;
 }
 return M;
}

real norm(realarray2 *a)
{
 size_t n=checkArray(a);
 real M=0.0;
 for(size_t i=0; i < n; ++i) {
   vm::array *ai=vm::read<vm::array*>(a,i);
   size_t m=checkArray(ai);
   for(size_t j=0; j < m; ++j) {
     real a=fabs(vm::read<real>(ai,j));
     if(a > M) M=a;
   }
 }
 return M;
}

real norm(triplearray2 *a)
{
 size_t n=checkArray(a);
 real M=0.0;
 for(size_t i=0; i < n; ++i) {
   vm::array *ai=vm::read<vm::array*>(a,i);
   size_t m=checkArray(ai);
   for(size_t j=0; j < m; ++j) {
     real a=vm::read<triple>(ai,j).abs2();
     if(a > M) M=a;
   }
 }
 return sqrt(M);
}

real change2(triplearray2 *a)
{
 size_t n=checkArray(a);
 if(n == 0) return 0.0;

 vm::array *a0=vm::read<vm::array*>(a,0);
 size_t m=checkArray(a0);
 if(m == 0) return 0.0;
 triple a00=vm::read<triple>(a0,0);
 real M=0.0;

 for(size_t i=0; i < n; ++i) {
   vm::array *ai=vm::read<vm::array*>(a,i);
   size_t m=checkArray(ai);
   for(size_t j=0; j < m; ++j) {
     real a=(vm::read<triple>(ai,j)-a00).abs2();
     if(a > M) M=a;
   }
 }
 return M;
}

triple minbezier(triplearray2 *P, triple b)
{
 size_t N;
 real *A=copyTripleArray2Components(P,N);
 bound_double *B=bounddouble(N);
 b=triple(B(A,::min,b.getx(),Fuzz*norm(A,N),maxdepth),
          B(A+N,::min,b.gety(),Fuzz*norm(A+N,N),maxdepth),
          B(A+2*N,::min,b.getz(),Fuzz*norm(A+2*N,N),maxdepth));
 delete[] A;
 return b;
}

triple maxbezier(triplearray2 *P, triple b)
{
 size_t N;
 real *A=copyTripleArray2Components(P,N);
 bound_double *B=bounddouble(N);
 b=triple(B(A,::max,b.getx(),Fuzz*norm(A,N),maxdepth),
          B(A+N,::max,b.gety(),Fuzz*norm(A+N,N),maxdepth),
          B(A+2*N,::max,b.getz(),Fuzz*norm(A+2*N,N),maxdepth));
 delete[] A;
 return b;
}

pair minratio(triplearray2 *P, pair b)
{
 size_t N;
 triple *A=copyTripleArray2C(P,N);
 real fuzz=Fuzz*norm(A,N);
 bound_triple *B=boundtriple(N);
 b=pair(B(A,::min,xratio,b.getx(),fuzz,maxdepth),
        B(A,::min,yratio,b.gety(),fuzz,maxdepth));
 delete[] A;
 return b;
}

pair maxratio(triplearray2 *P, pair b)
{
 size_t N;
 triple *A=copyTripleArray2C(P,N);
 bound_triple *B=boundtriple(N);
 real fuzz=Fuzz*norm(A,N);
 b=pair(B(A,::max,xratio,b.getx(),fuzz,maxdepth),
        B(A,::max,yratio,b.gety(),fuzz,maxdepth));
 delete[] A;
 return b;
}

realarray *_projection()
{
#ifdef HAVE_GL
 array *a=new array(14);
 gl::projection P=gl::camera();
 size_t k=0;
 (*a)[k++]=P.orthographic ? 1.0 : 0.0;

 triple camera=P.camera;
 (*a)[k++]=camera.getx();
 (*a)[k++]=camera.gety();
 (*a)[k++]=camera.getz();

 triple up=P.up;
 (*a)[k++]=up.getx();
 (*a)[k++]=up.gety();
 (*a)[k++]=up.getz();

 triple target=P.target;
 (*a)[k++]=target.getx();
 (*a)[k++]=target.gety();
 (*a)[k++]=target.getz();

 (*a)[k++]=P.zoom;
 (*a)[k++]=P.angle;

 (*a)[k++]=P.viewportshift.getx();
 (*a)[k++]=P.viewportshift.gety();
#endif
 return new array(0);
}